| /* |
| * net/sched/sch_red.c Random Early Detection queue. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> |
| * |
| * Changes: |
| * J Hadi Salim <hadi@nortel.com> 980914: computation fixes |
| * Alexey Makarenko <makar@phoenix.kharkov.ua> 990814: qave on idle link was calculated incorrectly. |
| * J Hadi Salim <hadi@nortelnetworks.com> 980816: ECN support |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <asm/uaccess.h> |
| #include <asm/system.h> |
| #include <linux/bitops.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/socket.h> |
| #include <linux/sockios.h> |
| #include <linux/in.h> |
| #include <linux/errno.h> |
| #include <linux/interrupt.h> |
| #include <linux/if_ether.h> |
| #include <linux/inet.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/notifier.h> |
| #include <net/ip.h> |
| #include <net/route.h> |
| #include <linux/skbuff.h> |
| #include <net/sock.h> |
| #include <net/pkt_sched.h> |
| #include <net/inet_ecn.h> |
| #include <net/dsfield.h> |
| |
| |
| /* Random Early Detection (RED) algorithm. |
| ======================================= |
| |
| Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways |
| for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. |
| |
| This file codes a "divisionless" version of RED algorithm |
| as written down in Fig.17 of the paper. |
| |
| Short description. |
| ------------------ |
| |
| When a new packet arrives we calculate the average queue length: |
| |
| avg = (1-W)*avg + W*current_queue_len, |
| |
| W is the filter time constant (chosen as 2^(-Wlog)), it controls |
| the inertia of the algorithm. To allow larger bursts, W should be |
| decreased. |
| |
| if (avg > th_max) -> packet marked (dropped). |
| if (avg < th_min) -> packet passes. |
| if (th_min < avg < th_max) we calculate probability: |
| |
| Pb = max_P * (avg - th_min)/(th_max-th_min) |
| |
| and mark (drop) packet with this probability. |
| Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). |
| max_P should be small (not 1), usually 0.01..0.02 is good value. |
| |
| max_P is chosen as a number, so that max_P/(th_max-th_min) |
| is a negative power of two in order arithmetics to contain |
| only shifts. |
| |
| |
| Parameters, settable by user: |
| ----------------------------- |
| |
| limit - bytes (must be > qth_max + burst) |
| |
| Hard limit on queue length, should be chosen >qth_max |
| to allow packet bursts. This parameter does not |
| affect the algorithms behaviour and can be chosen |
| arbitrarily high (well, less than ram size) |
| Really, this limit will never be reached |
| if RED works correctly. |
| |
| qth_min - bytes (should be < qth_max/2) |
| qth_max - bytes (should be at least 2*qth_min and less limit) |
| Wlog - bits (<32) log(1/W). |
| Plog - bits (<32) |
| |
| Plog is related to max_P by formula: |
| |
| max_P = (qth_max-qth_min)/2^Plog; |
| |
| F.e. if qth_max=128K and qth_min=32K, then Plog=22 |
| corresponds to max_P=0.02 |
| |
| Scell_log |
| Stab |
| |
| Lookup table for log((1-W)^(t/t_ave). |
| |
| |
| NOTES: |
| |
| Upper bound on W. |
| ----------------- |
| |
| If you want to allow bursts of L packets of size S, |
| you should choose W: |
| |
| L + 1 - th_min/S < (1-(1-W)^L)/W |
| |
| th_min/S = 32 th_min/S = 4 |
| |
| log(W) L |
| -1 33 |
| -2 35 |
| -3 39 |
| -4 46 |
| -5 57 |
| -6 75 |
| -7 101 |
| -8 135 |
| -9 190 |
| etc. |
| */ |
| |
| struct red_sched_data |
| { |
| /* Parameters */ |
| u32 limit; /* HARD maximal queue length */ |
| u32 qth_min; /* Min average length threshold: A scaled */ |
| u32 qth_max; /* Max average length threshold: A scaled */ |
| u32 Rmask; |
| u32 Scell_max; |
| unsigned char flags; |
| char Wlog; /* log(W) */ |
| char Plog; /* random number bits */ |
| char Scell_log; |
| u8 Stab[256]; |
| |
| /* Variables */ |
| unsigned long qave; /* Average queue length: A scaled */ |
| int qcount; /* Packets since last random number generation */ |
| u32 qR; /* Cached random number */ |
| |
| psched_time_t qidlestart; /* Start of idle period */ |
| struct tc_red_xstats st; |
| }; |
| |
| static int red_ecn_mark(struct sk_buff *skb) |
| { |
| if (skb->nh.raw + 20 > skb->tail) |
| return 0; |
| |
| switch (skb->protocol) { |
| case __constant_htons(ETH_P_IP): |
| if (INET_ECN_is_not_ect(skb->nh.iph->tos)) |
| return 0; |
| IP_ECN_set_ce(skb->nh.iph); |
| return 1; |
| case __constant_htons(ETH_P_IPV6): |
| if (INET_ECN_is_not_ect(ipv6_get_dsfield(skb->nh.ipv6h))) |
| return 0; |
| IP6_ECN_set_ce(skb->nh.ipv6h); |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| static int |
| red_enqueue(struct sk_buff *skb, struct Qdisc* sch) |
| { |
| struct red_sched_data *q = qdisc_priv(sch); |
| |
| psched_time_t now; |
| |
| if (!PSCHED_IS_PASTPERFECT(q->qidlestart)) { |
| long us_idle; |
| int shift; |
| |
| PSCHED_GET_TIME(now); |
| us_idle = PSCHED_TDIFF_SAFE(now, q->qidlestart, q->Scell_max); |
| PSCHED_SET_PASTPERFECT(q->qidlestart); |
| |
| /* |
| The problem: ideally, average length queue recalcultion should |
| be done over constant clock intervals. This is too expensive, so that |
| the calculation is driven by outgoing packets. |
| When the queue is idle we have to model this clock by hand. |
| |
| SF+VJ proposed to "generate" m = idletime/(average_pkt_size/bandwidth) |
| dummy packets as a burst after idle time, i.e. |
| |
| q->qave *= (1-W)^m |
| |
| This is an apparently overcomplicated solution (f.e. we have to precompute |
| a table to make this calculation in reasonable time) |
| I believe that a simpler model may be used here, |
| but it is field for experiments. |
| */ |
| shift = q->Stab[us_idle>>q->Scell_log]; |
| |
| if (shift) { |
| q->qave >>= shift; |
| } else { |
| /* Approximate initial part of exponent |
| with linear function: |
| (1-W)^m ~= 1-mW + ... |
| |
| Seems, it is the best solution to |
| problem of too coarce exponent tabulation. |
| */ |
| |
| us_idle = (q->qave * us_idle)>>q->Scell_log; |
| if (us_idle < q->qave/2) |
| q->qave -= us_idle; |
| else |
| q->qave >>= 1; |
| } |
| } else { |
| q->qave += sch->qstats.backlog - (q->qave >> q->Wlog); |
| /* NOTE: |
| q->qave is fixed point number with point at Wlog. |
| The formulae above is equvalent to floating point |
| version: |
| |
| qave = qave*(1-W) + sch->qstats.backlog*W; |
| --ANK (980924) |
| */ |
| } |
| |
| if (q->qave < q->qth_min) { |
| q->qcount = -1; |
| enqueue: |
| if (sch->qstats.backlog + skb->len <= q->limit) { |
| __skb_queue_tail(&sch->q, skb); |
| sch->qstats.backlog += skb->len; |
| sch->bstats.bytes += skb->len; |
| sch->bstats.packets++; |
| return NET_XMIT_SUCCESS; |
| } else { |
| q->st.pdrop++; |
| } |
| kfree_skb(skb); |
| sch->qstats.drops++; |
| return NET_XMIT_DROP; |
| } |
| if (q->qave >= q->qth_max) { |
| q->qcount = -1; |
| sch->qstats.overlimits++; |
| mark: |
| if (!(q->flags&TC_RED_ECN) || !red_ecn_mark(skb)) { |
| q->st.early++; |
| goto drop; |
| } |
| q->st.marked++; |
| goto enqueue; |
| } |
| |
| if (++q->qcount) { |
| /* The formula used below causes questions. |
| |
| OK. qR is random number in the interval 0..Rmask |
| i.e. 0..(2^Plog). If we used floating point |
| arithmetics, it would be: (2^Plog)*rnd_num, |
| where rnd_num is less 1. |
| |
| Taking into account, that qave have fixed |
| point at Wlog, and Plog is related to max_P by |
| max_P = (qth_max-qth_min)/2^Plog; two lines |
| below have the following floating point equivalent: |
| |
| max_P*(qave - qth_min)/(qth_max-qth_min) < rnd/qcount |
| |
| Any questions? --ANK (980924) |
| */ |
| if (((q->qave - q->qth_min)>>q->Wlog)*q->qcount < q->qR) |
| goto enqueue; |
| q->qcount = 0; |
| q->qR = net_random()&q->Rmask; |
| sch->qstats.overlimits++; |
| goto mark; |
| } |
| q->qR = net_random()&q->Rmask; |
| goto enqueue; |
| |
| drop: |
| kfree_skb(skb); |
| sch->qstats.drops++; |
| return NET_XMIT_CN; |
| } |
| |
| static int |
| red_requeue(struct sk_buff *skb, struct Qdisc* sch) |
| { |
| struct red_sched_data *q = qdisc_priv(sch); |
| |
| PSCHED_SET_PASTPERFECT(q->qidlestart); |
| |
| __skb_queue_head(&sch->q, skb); |
| sch->qstats.backlog += skb->len; |
| sch->qstats.requeues++; |
| return 0; |
| } |
| |
| static struct sk_buff * |
| red_dequeue(struct Qdisc* sch) |
| { |
| struct sk_buff *skb; |
| struct red_sched_data *q = qdisc_priv(sch); |
| |
| skb = __skb_dequeue(&sch->q); |
| if (skb) { |
| sch->qstats.backlog -= skb->len; |
| return skb; |
| } |
| PSCHED_GET_TIME(q->qidlestart); |
| return NULL; |
| } |
| |
| static unsigned int red_drop(struct Qdisc* sch) |
| { |
| struct sk_buff *skb; |
| struct red_sched_data *q = qdisc_priv(sch); |
| |
| skb = __skb_dequeue_tail(&sch->q); |
| if (skb) { |
| unsigned int len = skb->len; |
| sch->qstats.backlog -= len; |
| sch->qstats.drops++; |
| q->st.other++; |
| kfree_skb(skb); |
| return len; |
| } |
| PSCHED_GET_TIME(q->qidlestart); |
| return 0; |
| } |
| |
| static void red_reset(struct Qdisc* sch) |
| { |
| struct red_sched_data *q = qdisc_priv(sch); |
| |
| __skb_queue_purge(&sch->q); |
| sch->qstats.backlog = 0; |
| PSCHED_SET_PASTPERFECT(q->qidlestart); |
| q->qave = 0; |
| q->qcount = -1; |
| } |
| |
| static int red_change(struct Qdisc *sch, struct rtattr *opt) |
| { |
| struct red_sched_data *q = qdisc_priv(sch); |
| struct rtattr *tb[TCA_RED_STAB]; |
| struct tc_red_qopt *ctl; |
| |
| if (opt == NULL || |
| rtattr_parse_nested(tb, TCA_RED_STAB, opt) || |
| tb[TCA_RED_PARMS-1] == 0 || tb[TCA_RED_STAB-1] == 0 || |
| RTA_PAYLOAD(tb[TCA_RED_PARMS-1]) < sizeof(*ctl) || |
| RTA_PAYLOAD(tb[TCA_RED_STAB-1]) < 256) |
| return -EINVAL; |
| |
| ctl = RTA_DATA(tb[TCA_RED_PARMS-1]); |
| |
| sch_tree_lock(sch); |
| q->flags = ctl->flags; |
| q->Wlog = ctl->Wlog; |
| q->Plog = ctl->Plog; |
| q->Rmask = ctl->Plog < 32 ? ((1<<ctl->Plog) - 1) : ~0UL; |
| q->Scell_log = ctl->Scell_log; |
| q->Scell_max = (255<<q->Scell_log); |
| q->qth_min = ctl->qth_min<<ctl->Wlog; |
| q->qth_max = ctl->qth_max<<ctl->Wlog; |
| q->limit = ctl->limit; |
| memcpy(q->Stab, RTA_DATA(tb[TCA_RED_STAB-1]), 256); |
| |
| q->qcount = -1; |
| if (skb_queue_empty(&sch->q)) |
| PSCHED_SET_PASTPERFECT(q->qidlestart); |
| sch_tree_unlock(sch); |
| return 0; |
| } |
| |
| static int red_init(struct Qdisc* sch, struct rtattr *opt) |
| { |
| return red_change(sch, opt); |
| } |
| |
| static int red_dump(struct Qdisc *sch, struct sk_buff *skb) |
| { |
| struct red_sched_data *q = qdisc_priv(sch); |
| unsigned char *b = skb->tail; |
| struct rtattr *rta; |
| struct tc_red_qopt opt; |
| |
| rta = (struct rtattr*)b; |
| RTA_PUT(skb, TCA_OPTIONS, 0, NULL); |
| opt.limit = q->limit; |
| opt.qth_min = q->qth_min>>q->Wlog; |
| opt.qth_max = q->qth_max>>q->Wlog; |
| opt.Wlog = q->Wlog; |
| opt.Plog = q->Plog; |
| opt.Scell_log = q->Scell_log; |
| opt.flags = q->flags; |
| RTA_PUT(skb, TCA_RED_PARMS, sizeof(opt), &opt); |
| rta->rta_len = skb->tail - b; |
| |
| return skb->len; |
| |
| rtattr_failure: |
| skb_trim(skb, b - skb->data); |
| return -1; |
| } |
| |
| static int red_dump_stats(struct Qdisc *sch, struct gnet_dump *d) |
| { |
| struct red_sched_data *q = qdisc_priv(sch); |
| |
| return gnet_stats_copy_app(d, &q->st, sizeof(q->st)); |
| } |
| |
| static struct Qdisc_ops red_qdisc_ops = { |
| .next = NULL, |
| .cl_ops = NULL, |
| .id = "red", |
| .priv_size = sizeof(struct red_sched_data), |
| .enqueue = red_enqueue, |
| .dequeue = red_dequeue, |
| .requeue = red_requeue, |
| .drop = red_drop, |
| .init = red_init, |
| .reset = red_reset, |
| .change = red_change, |
| .dump = red_dump, |
| .dump_stats = red_dump_stats, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int __init red_module_init(void) |
| { |
| return register_qdisc(&red_qdisc_ops); |
| } |
| static void __exit red_module_exit(void) |
| { |
| unregister_qdisc(&red_qdisc_ops); |
| } |
| module_init(red_module_init) |
| module_exit(red_module_exit) |
| MODULE_LICENSE("GPL"); |