| /* |
| * Copyright (C) 1995 Linus Torvalds |
| * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs. |
| */ |
| |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/ptrace.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/tty.h> |
| #include <linux/vt_kern.h> /* For unblank_screen() */ |
| #include <linux/compiler.h> |
| #include <linux/vmalloc.h> |
| #include <linux/module.h> |
| #include <linux/kprobes.h> |
| #include <linux/uaccess.h> |
| #include <linux/kdebug.h> |
| |
| #include <asm/system.h> |
| #include <asm/pgalloc.h> |
| #include <asm/smp.h> |
| #include <asm/tlbflush.h> |
| #include <asm/proto.h> |
| #include <asm-generic/sections.h> |
| |
| /* |
| * Page fault error code bits |
| * bit 0 == 0 means no page found, 1 means protection fault |
| * bit 1 == 0 means read, 1 means write |
| * bit 2 == 0 means kernel, 1 means user-mode |
| * bit 3 == 1 means use of reserved bit detected |
| * bit 4 == 1 means fault was an instruction fetch |
| */ |
| #define PF_PROT (1<<0) |
| #define PF_WRITE (1<<1) |
| #define PF_USER (1<<2) |
| #define PF_RSVD (1<<3) |
| #define PF_INSTR (1<<4) |
| |
| static inline int notify_page_fault(struct pt_regs *regs) |
| { |
| #ifdef CONFIG_KPROBES |
| int ret = 0; |
| |
| /* kprobe_running() needs smp_processor_id() */ |
| if (!user_mode(regs)) { |
| preempt_disable(); |
| if (kprobe_running() && kprobe_fault_handler(regs, 14)) |
| ret = 1; |
| preempt_enable(); |
| } |
| |
| return ret; |
| #else |
| return 0; |
| #endif |
| } |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * Return EIP plus the CS segment base. The segment limit is also |
| * adjusted, clamped to the kernel/user address space (whichever is |
| * appropriate), and returned in *eip_limit. |
| * |
| * The segment is checked, because it might have been changed by another |
| * task between the original faulting instruction and here. |
| * |
| * If CS is no longer a valid code segment, or if EIP is beyond the |
| * limit, or if it is a kernel address when CS is not a kernel segment, |
| * then the returned value will be greater than *eip_limit. |
| * |
| * This is slow, but is very rarely executed. |
| */ |
| static inline unsigned long get_segment_eip(struct pt_regs *regs, |
| unsigned long *eip_limit) |
| { |
| unsigned long ip = regs->ip; |
| unsigned seg = regs->cs & 0xffff; |
| u32 seg_ar, seg_limit, base, *desc; |
| |
| /* Unlikely, but must come before segment checks. */ |
| if (unlikely(regs->flags & VM_MASK)) { |
| base = seg << 4; |
| *eip_limit = base + 0xffff; |
| return base + (ip & 0xffff); |
| } |
| |
| /* The standard kernel/user address space limit. */ |
| *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg; |
| |
| /* By far the most common cases. */ |
| if (likely(SEGMENT_IS_FLAT_CODE(seg))) |
| return ip; |
| |
| /* Check the segment exists, is within the current LDT/GDT size, |
| that kernel/user (ring 0..3) has the appropriate privilege, |
| that it's a code segment, and get the limit. */ |
| __asm__("larl %3,%0; lsll %3,%1" |
| : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg)); |
| if ((~seg_ar & 0x9800) || ip > seg_limit) { |
| *eip_limit = 0; |
| return 1; /* So that returned ip > *eip_limit. */ |
| } |
| |
| /* Get the GDT/LDT descriptor base. |
| When you look for races in this code remember that |
| LDT and other horrors are only used in user space. */ |
| if (seg & (1<<2)) { |
| /* Must lock the LDT while reading it. */ |
| mutex_lock(¤t->mm->context.lock); |
| desc = current->mm->context.ldt; |
| desc = (void *)desc + (seg & ~7); |
| } else { |
| /* Must disable preemption while reading the GDT. */ |
| desc = (u32 *)get_cpu_gdt_table(get_cpu()); |
| desc = (void *)desc + (seg & ~7); |
| } |
| |
| /* Decode the code segment base from the descriptor */ |
| base = get_desc_base((struct desc_struct *)desc); |
| |
| if (seg & (1<<2)) |
| mutex_unlock(¤t->mm->context.lock); |
| else |
| put_cpu(); |
| |
| /* Adjust EIP and segment limit, and clamp at the kernel limit. |
| It's legitimate for segments to wrap at 0xffffffff. */ |
| seg_limit += base; |
| if (seg_limit < *eip_limit && seg_limit >= base) |
| *eip_limit = seg_limit; |
| return ip + base; |
| } |
| #endif |
| |
| /* |
| * X86_32 |
| * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. |
| * Check that here and ignore it. |
| * |
| * X86_64 |
| * Sometimes the CPU reports invalid exceptions on prefetch. |
| * Check that here and ignore it. |
| * |
| * Opcode checker based on code by Richard Brunner |
| */ |
| static int is_prefetch(struct pt_regs *regs, unsigned long addr, |
| unsigned long error_code) |
| { |
| unsigned char *instr; |
| int scan_more = 1; |
| int prefetch = 0; |
| unsigned char *max_instr; |
| |
| #ifdef CONFIG_X86_32 |
| unsigned long limit; |
| if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD && |
| boot_cpu_data.x86 >= 6)) { |
| /* Catch an obscure case of prefetch inside an NX page. */ |
| if (nx_enabled && (error_code & PF_INSTR)) |
| return 0; |
| } else { |
| return 0; |
| } |
| instr = (unsigned char *)get_segment_eip(regs, &limit); |
| #else |
| /* If it was a exec fault ignore */ |
| if (error_code & PF_INSTR) |
| return 0; |
| instr = (unsigned char __user *)convert_rip_to_linear(current, regs); |
| #endif |
| |
| max_instr = instr + 15; |
| |
| #ifdef CONFIG_X86_64 |
| if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) |
| return 0; |
| #endif |
| |
| while (scan_more && instr < max_instr) { |
| unsigned char opcode; |
| unsigned char instr_hi; |
| unsigned char instr_lo; |
| |
| #ifdef CONFIG_X86_32 |
| if (instr > (unsigned char *)limit) |
| break; |
| #endif |
| if (probe_kernel_address(instr, opcode)) |
| break; |
| |
| instr_hi = opcode & 0xf0; |
| instr_lo = opcode & 0x0f; |
| instr++; |
| |
| switch (instr_hi) { |
| case 0x20: |
| case 0x30: |
| /* |
| * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. |
| * In X86_64 long mode, the CPU will signal invalid |
| * opcode if some of these prefixes are present so |
| * X86_64 will never get here anyway |
| */ |
| scan_more = ((instr_lo & 7) == 0x6); |
| break; |
| #ifdef CONFIG_X86_64 |
| case 0x40: |
| /* |
| * In AMD64 long mode 0x40..0x4F are valid REX prefixes |
| * Need to figure out under what instruction mode the |
| * instruction was issued. Could check the LDT for lm, |
| * but for now it's good enough to assume that long |
| * mode only uses well known segments or kernel. |
| */ |
| scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS); |
| break; |
| #endif |
| case 0x60: |
| /* 0x64 thru 0x67 are valid prefixes in all modes. */ |
| scan_more = (instr_lo & 0xC) == 0x4; |
| break; |
| case 0xF0: |
| /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ |
| scan_more = !instr_lo || (instr_lo>>1) == 1; |
| break; |
| case 0x00: |
| /* Prefetch instruction is 0x0F0D or 0x0F18 */ |
| scan_more = 0; |
| #ifdef CONFIG_X86_32 |
| if (instr > (unsigned char *)limit) |
| break; |
| #endif |
| if (probe_kernel_address(instr, opcode)) |
| break; |
| prefetch = (instr_lo == 0xF) && |
| (opcode == 0x0D || opcode == 0x18); |
| break; |
| default: |
| scan_more = 0; |
| break; |
| } |
| } |
| return prefetch; |
| } |
| |
| static void force_sig_info_fault(int si_signo, int si_code, |
| unsigned long address, struct task_struct *tsk) |
| { |
| siginfo_t info; |
| |
| info.si_signo = si_signo; |
| info.si_errno = 0; |
| info.si_code = si_code; |
| info.si_addr = (void __user *)address; |
| force_sig_info(si_signo, &info, tsk); |
| } |
| |
| static int bad_address(void *p) |
| { |
| unsigned long dummy; |
| return probe_kernel_address((unsigned long *)p, dummy); |
| } |
| |
| void dump_pagetable(unsigned long address) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| pgd = (pgd_t *)read_cr3(); |
| |
| pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); |
| pgd += pgd_index(address); |
| if (bad_address(pgd)) goto bad; |
| printk("PGD %lx ", pgd_val(*pgd)); |
| if (!pgd_present(*pgd)) goto ret; |
| |
| pud = pud_offset(pgd, address); |
| if (bad_address(pud)) goto bad; |
| printk("PUD %lx ", pud_val(*pud)); |
| if (!pud_present(*pud)) goto ret; |
| |
| pmd = pmd_offset(pud, address); |
| if (bad_address(pmd)) goto bad; |
| printk("PMD %lx ", pmd_val(*pmd)); |
| if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret; |
| |
| pte = pte_offset_kernel(pmd, address); |
| if (bad_address(pte)) goto bad; |
| printk("PTE %lx", pte_val(*pte)); |
| ret: |
| printk("\n"); |
| return; |
| bad: |
| printk("BAD\n"); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static const char errata93_warning[] = |
| KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" |
| KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n" |
| KERN_ERR "******* Please consider a BIOS update.\n" |
| KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; |
| |
| /* Workaround for K8 erratum #93 & buggy BIOS. |
| BIOS SMM functions are required to use a specific workaround |
| to avoid corruption of the 64bit RIP register on C stepping K8. |
| A lot of BIOS that didn't get tested properly miss this. |
| The OS sees this as a page fault with the upper 32bits of RIP cleared. |
| Try to work around it here. |
| Note we only handle faults in kernel here. */ |
| |
| static int is_errata93(struct pt_regs *regs, unsigned long address) |
| { |
| static int warned; |
| if (address != regs->ip) |
| return 0; |
| if ((address >> 32) != 0) |
| return 0; |
| address |= 0xffffffffUL << 32; |
| if ((address >= (u64)_stext && address <= (u64)_etext) || |
| (address >= MODULES_VADDR && address <= MODULES_END)) { |
| if (!warned) { |
| printk(errata93_warning); |
| warned = 1; |
| } |
| regs->ip = address; |
| return 1; |
| } |
| return 0; |
| } |
| #endif |
| |
| static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs, |
| unsigned long error_code) |
| { |
| unsigned long flags = oops_begin(); |
| struct task_struct *tsk; |
| |
| printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", |
| current->comm, address); |
| dump_pagetable(address); |
| tsk = current; |
| tsk->thread.cr2 = address; |
| tsk->thread.trap_no = 14; |
| tsk->thread.error_code = error_code; |
| if (__die("Bad pagetable", regs, error_code)) |
| regs = NULL; |
| oops_end(flags, regs, SIGKILL); |
| } |
| |
| /* |
| * Handle a fault on the vmalloc area |
| * |
| * This assumes no large pages in there. |
| */ |
| static int vmalloc_fault(unsigned long address) |
| { |
| pgd_t *pgd, *pgd_ref; |
| pud_t *pud, *pud_ref; |
| pmd_t *pmd, *pmd_ref; |
| pte_t *pte, *pte_ref; |
| |
| /* Copy kernel mappings over when needed. This can also |
| happen within a race in page table update. In the later |
| case just flush. */ |
| |
| pgd = pgd_offset(current->mm ?: &init_mm, address); |
| pgd_ref = pgd_offset_k(address); |
| if (pgd_none(*pgd_ref)) |
| return -1; |
| if (pgd_none(*pgd)) |
| set_pgd(pgd, *pgd_ref); |
| else |
| BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); |
| |
| /* Below here mismatches are bugs because these lower tables |
| are shared */ |
| |
| pud = pud_offset(pgd, address); |
| pud_ref = pud_offset(pgd_ref, address); |
| if (pud_none(*pud_ref)) |
| return -1; |
| if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) |
| BUG(); |
| pmd = pmd_offset(pud, address); |
| pmd_ref = pmd_offset(pud_ref, address); |
| if (pmd_none(*pmd_ref)) |
| return -1; |
| if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) |
| BUG(); |
| pte_ref = pte_offset_kernel(pmd_ref, address); |
| if (!pte_present(*pte_ref)) |
| return -1; |
| pte = pte_offset_kernel(pmd, address); |
| /* Don't use pte_page here, because the mappings can point |
| outside mem_map, and the NUMA hash lookup cannot handle |
| that. */ |
| if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) |
| BUG(); |
| return 0; |
| } |
| |
| int show_unhandled_signals = 1; |
| |
| /* |
| * This routine handles page faults. It determines the address, |
| * and the problem, and then passes it off to one of the appropriate |
| * routines. |
| */ |
| asmlinkage void __kprobes do_page_fault(struct pt_regs *regs, |
| unsigned long error_code) |
| { |
| struct task_struct *tsk; |
| struct mm_struct *mm; |
| struct vm_area_struct *vma; |
| unsigned long address; |
| int write, fault; |
| unsigned long flags; |
| int si_code; |
| |
| /* |
| * We can fault from pretty much anywhere, with unknown IRQ state. |
| */ |
| trace_hardirqs_fixup(); |
| |
| tsk = current; |
| mm = tsk->mm; |
| prefetchw(&mm->mmap_sem); |
| |
| /* get the address */ |
| address = read_cr2(); |
| |
| si_code = SEGV_MAPERR; |
| |
| |
| /* |
| * We fault-in kernel-space virtual memory on-demand. The |
| * 'reference' page table is init_mm.pgd. |
| * |
| * NOTE! We MUST NOT take any locks for this case. We may |
| * be in an interrupt or a critical region, and should |
| * only copy the information from the master page table, |
| * nothing more. |
| * |
| * This verifies that the fault happens in kernel space |
| * (error_code & 4) == 0, and that the fault was not a |
| * protection error (error_code & 9) == 0. |
| */ |
| if (unlikely(address >= TASK_SIZE64)) { |
| /* |
| * Don't check for the module range here: its PML4 |
| * is always initialized because it's shared with the main |
| * kernel text. Only vmalloc may need PML4 syncups. |
| */ |
| if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) && |
| ((address >= VMALLOC_START && address < VMALLOC_END))) { |
| if (vmalloc_fault(address) >= 0) |
| return; |
| } |
| if (notify_page_fault(regs)) |
| return; |
| /* |
| * Don't take the mm semaphore here. If we fixup a prefetch |
| * fault we could otherwise deadlock. |
| */ |
| goto bad_area_nosemaphore; |
| } |
| |
| if (notify_page_fault(regs)) |
| return; |
| |
| if (likely(regs->flags & X86_EFLAGS_IF)) |
| local_irq_enable(); |
| |
| if (unlikely(error_code & PF_RSVD)) |
| pgtable_bad(address, regs, error_code); |
| |
| /* |
| * If we're in an interrupt, have no user context or are running in an |
| * atomic region then we must not take the fault. |
| */ |
| if (unlikely(in_atomic() || !mm)) |
| goto bad_area_nosemaphore; |
| |
| /* |
| * User-mode registers count as a user access even for any |
| * potential system fault or CPU buglet. |
| */ |
| if (user_mode_vm(regs)) |
| error_code |= PF_USER; |
| |
| again: |
| /* When running in the kernel we expect faults to occur only to |
| * addresses in user space. All other faults represent errors in the |
| * kernel and should generate an OOPS. Unfortunately, in the case of an |
| * erroneous fault occurring in a code path which already holds mmap_sem |
| * we will deadlock attempting to validate the fault against the |
| * address space. Luckily the kernel only validly references user |
| * space from well defined areas of code, which are listed in the |
| * exceptions table. |
| * |
| * As the vast majority of faults will be valid we will only perform |
| * the source reference check when there is a possibility of a deadlock. |
| * Attempt to lock the address space, if we cannot we then validate the |
| * source. If this is invalid we can skip the address space check, |
| * thus avoiding the deadlock. |
| */ |
| if (!down_read_trylock(&mm->mmap_sem)) { |
| if ((error_code & PF_USER) == 0 && |
| !search_exception_tables(regs->ip)) |
| goto bad_area_nosemaphore; |
| down_read(&mm->mmap_sem); |
| } |
| |
| vma = find_vma(mm, address); |
| if (!vma) |
| goto bad_area; |
| if (likely(vma->vm_start <= address)) |
| goto good_area; |
| if (!(vma->vm_flags & VM_GROWSDOWN)) |
| goto bad_area; |
| if (error_code & PF_USER) { |
| /* Allow userspace just enough access below the stack pointer |
| * to let the 'enter' instruction work. |
| */ |
| if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp) |
| goto bad_area; |
| } |
| if (expand_stack(vma, address)) |
| goto bad_area; |
| /* |
| * Ok, we have a good vm_area for this memory access, so |
| * we can handle it.. |
| */ |
| good_area: |
| si_code = SEGV_ACCERR; |
| write = 0; |
| switch (error_code & (PF_PROT|PF_WRITE)) { |
| default: /* 3: write, present */ |
| /* fall through */ |
| case PF_WRITE: /* write, not present */ |
| if (!(vma->vm_flags & VM_WRITE)) |
| goto bad_area; |
| write++; |
| break; |
| case PF_PROT: /* read, present */ |
| goto bad_area; |
| case 0: /* read, not present */ |
| if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) |
| goto bad_area; |
| } |
| |
| /* |
| * If for any reason at all we couldn't handle the fault, |
| * make sure we exit gracefully rather than endlessly redo |
| * the fault. |
| */ |
| fault = handle_mm_fault(mm, vma, address, write); |
| if (unlikely(fault & VM_FAULT_ERROR)) { |
| if (fault & VM_FAULT_OOM) |
| goto out_of_memory; |
| else if (fault & VM_FAULT_SIGBUS) |
| goto do_sigbus; |
| BUG(); |
| } |
| if (fault & VM_FAULT_MAJOR) |
| tsk->maj_flt++; |
| else |
| tsk->min_flt++; |
| up_read(&mm->mmap_sem); |
| return; |
| |
| /* |
| * Something tried to access memory that isn't in our memory map.. |
| * Fix it, but check if it's kernel or user first.. |
| */ |
| bad_area: |
| up_read(&mm->mmap_sem); |
| |
| bad_area_nosemaphore: |
| /* User mode accesses just cause a SIGSEGV */ |
| if (error_code & PF_USER) { |
| |
| /* |
| * It's possible to have interrupts off here. |
| */ |
| local_irq_enable(); |
| |
| if (is_prefetch(regs, address, error_code)) |
| return; |
| |
| /* Work around K8 erratum #100 K8 in compat mode |
| occasionally jumps to illegal addresses >4GB. We |
| catch this here in the page fault handler because |
| these addresses are not reachable. Just detect this |
| case and return. Any code segment in LDT is |
| compatibility mode. */ |
| if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && |
| (address >> 32)) |
| return; |
| |
| if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && |
| printk_ratelimit()) { |
| printk( |
| "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx\n", |
| tsk->pid > 1 ? KERN_INFO : KERN_EMERG, |
| tsk->comm, tsk->pid, address, regs->ip, |
| regs->sp, error_code); |
| } |
| |
| tsk->thread.cr2 = address; |
| /* Kernel addresses are always protection faults */ |
| tsk->thread.error_code = error_code | (address >= TASK_SIZE); |
| tsk->thread.trap_no = 14; |
| |
| force_sig_info_fault(SIGSEGV, si_code, address, tsk); |
| return; |
| } |
| |
| no_context: |
| /* Are we prepared to handle this kernel fault? */ |
| if (fixup_exception(regs)) |
| return; |
| |
| /* |
| * Hall of shame of CPU/BIOS bugs. |
| */ |
| |
| if (is_prefetch(regs, address, error_code)) |
| return; |
| |
| if (is_errata93(regs, address)) |
| return; |
| |
| /* |
| * Oops. The kernel tried to access some bad page. We'll have to |
| * terminate things with extreme prejudice. |
| */ |
| |
| flags = oops_begin(); |
| |
| if (address < PAGE_SIZE) |
| printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); |
| else |
| printk(KERN_ALERT "Unable to handle kernel paging request"); |
| printk(" at %016lx RIP: \n" KERN_ALERT, address); |
| printk_address(regs->ip); |
| dump_pagetable(address); |
| tsk->thread.cr2 = address; |
| tsk->thread.trap_no = 14; |
| tsk->thread.error_code = error_code; |
| if (__die("Oops", regs, error_code)) |
| regs = NULL; |
| /* Executive summary in case the body of the oops scrolled away */ |
| printk(KERN_EMERG "CR2: %016lx\n", address); |
| oops_end(flags, regs, SIGKILL); |
| |
| /* |
| * We ran out of memory, or some other thing happened to us that made |
| * us unable to handle the page fault gracefully. |
| */ |
| out_of_memory: |
| up_read(&mm->mmap_sem); |
| if (is_global_init(current)) { |
| yield(); |
| goto again; |
| } |
| printk("VM: killing process %s\n", tsk->comm); |
| if (error_code & 4) |
| do_group_exit(SIGKILL); |
| goto no_context; |
| |
| do_sigbus: |
| up_read(&mm->mmap_sem); |
| |
| /* Kernel mode? Handle exceptions or die */ |
| if (!(error_code & PF_USER)) |
| goto no_context; |
| |
| tsk->thread.cr2 = address; |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = 14; |
| force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); |
| return; |
| } |
| |
| DEFINE_SPINLOCK(pgd_lock); |
| LIST_HEAD(pgd_list); |
| |
| void vmalloc_sync_all(void) |
| { |
| /* Note that races in the updates of insync and start aren't |
| problematic: |
| insync can only get set bits added, and updates to start are only |
| improving performance (without affecting correctness if undone). */ |
| static DECLARE_BITMAP(insync, PTRS_PER_PGD); |
| static unsigned long start = VMALLOC_START & PGDIR_MASK; |
| unsigned long address; |
| |
| for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) { |
| if (!test_bit(pgd_index(address), insync)) { |
| const pgd_t *pgd_ref = pgd_offset_k(address); |
| struct page *page; |
| |
| if (pgd_none(*pgd_ref)) |
| continue; |
| spin_lock(&pgd_lock); |
| list_for_each_entry(page, &pgd_list, lru) { |
| pgd_t *pgd; |
| pgd = (pgd_t *)page_address(page) + pgd_index(address); |
| if (pgd_none(*pgd)) |
| set_pgd(pgd, *pgd_ref); |
| else |
| BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); |
| } |
| spin_unlock(&pgd_lock); |
| set_bit(pgd_index(address), insync); |
| } |
| if (address == start) |
| start = address + PGDIR_SIZE; |
| } |
| /* Check that there is no need to do the same for the modules area. */ |
| BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL)); |
| BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) == |
| (__START_KERNEL & PGDIR_MASK))); |
| } |