blob: 2c04bdc7674e34f4f5bcb01920ba2b1f2246730a [file] [log] [blame]
/* Copyright (c) 2010, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/*
* Qualcomm PMIC8058 PWM driver
*
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/pwm.h>
#include <linux/mfd/pmic8058.h>
#include <linux/pmic8058-pwm.h>
#include <linux/slab.h>
#define PM8058_LPG_BANKS 8
#define PM8058_PWM_CHANNELS PM8058_LPG_BANKS /* MAX=8 */
#define PM8058_LPG_CTL_REGS 7
/* PMIC8058 LPG/PWM */
#define SSBI_REG_ADDR_LPG_CTL_BASE 0x13C
#define SSBI_REG_ADDR_LPG_CTL(n) (SSBI_REG_ADDR_LPG_CTL_BASE + (n))
#define SSBI_REG_ADDR_LPG_BANK_SEL 0x143
#define SSBI_REG_ADDR_LPG_BANK_EN 0x144
#define SSBI_REG_ADDR_LPG_LUT_CFG0 0x145
#define SSBI_REG_ADDR_LPG_LUT_CFG1 0x146
#define SSBI_REG_ADDR_LPG_TEST 0x147
/* Control 0 */
#define PM8058_PWM_1KHZ_COUNT_MASK 0xF0
#define PM8058_PWM_1KHZ_COUNT_SHIFT 4
#define PM8058_PWM_1KHZ_COUNT_MAX 15
#define PM8058_PWM_OUTPUT_EN 0x08
#define PM8058_PWM_PWM_EN 0x04
#define PM8058_PWM_RAMP_GEN_EN 0x02
#define PM8058_PWM_RAMP_START 0x01
#define PM8058_PWM_PWM_START (PM8058_PWM_OUTPUT_EN \
| PM8058_PWM_PWM_EN)
#define PM8058_PWM_RAMP_GEN_START (PM8058_PWM_RAMP_GEN_EN \
| PM8058_PWM_RAMP_START)
/* Control 1 */
#define PM8058_PWM_REVERSE_EN 0x80
#define PM8058_PWM_BYPASS_LUT 0x40
#define PM8058_PWM_HIGH_INDEX_MASK 0x3F
/* Control 2 */
#define PM8058_PWM_LOOP_EN 0x80
#define PM8058_PWM_RAMP_UP 0x40
#define PM8058_PWM_LOW_INDEX_MASK 0x3F
/* Control 3 */
#define PM8058_PWM_VALUE_BIT7_0 0xFF
#define PM8058_PWM_VALUE_BIT5_0 0x3F
/* Control 4 */
#define PM8058_PWM_VALUE_BIT8 0x80
#define PM8058_PWM_CLK_SEL_MASK 0x60
#define PM8058_PWM_CLK_SEL_SHIFT 5
#define PM8058_PWM_CLK_SEL_NO 0
#define PM8058_PWM_CLK_SEL_1KHZ 1
#define PM8058_PWM_CLK_SEL_32KHZ 2
#define PM8058_PWM_CLK_SEL_19P2MHZ 3
#define PM8058_PWM_PREDIVIDE_MASK 0x18
#define PM8058_PWM_PREDIVIDE_SHIFT 3
#define PM8058_PWM_PREDIVIDE_2 0
#define PM8058_PWM_PREDIVIDE_3 1
#define PM8058_PWM_PREDIVIDE_5 2
#define PM8058_PWM_PREDIVIDE_6 3
#define PM8058_PWM_M_MASK 0x07
#define PM8058_PWM_M_MIN 0
#define PM8058_PWM_M_MAX 7
/* Control 5 */
#define PM8058_PWM_PAUSE_COUNT_HI_MASK 0xFC
#define PM8058_PWM_PAUSE_COUNT_HI_SHIFT 2
#define PM8058_PWM_PAUSE_ENABLE_HIGH 0x02
#define PM8058_PWM_SIZE_9_BIT 0x01
/* Control 6 */
#define PM8058_PWM_PAUSE_COUNT_LO_MASK 0xFC
#define PM8058_PWM_PAUSE_COUNT_LO_SHIFT 2
#define PM8058_PWM_PAUSE_ENABLE_LOW 0x02
#define PM8058_PWM_RESERVED 0x01
#define PM8058_PWM_PAUSE_COUNT_MAX 56 /* < 2^6 = 64*/
/* LUT_CFG1 */
#define PM8058_PWM_LUT_READ 0x40
/* TEST */
#define PM8058_PWM_DTEST_MASK 0x38
#define PM8058_PWM_DTEST_SHIFT 3
#define PM8058_PWM_DTEST_BANK_MASK 0x07
/* PWM frequency support
*
* PWM Frequency = Clock Frequency / (N * T)
* or
* PWM Period = Clock Period * (N * T)
* where
* N = 2^9 or 2^6 for 9-bit or 6-bit PWM size
* T = Pre-divide * 2^m, m = 0..7 (exponent)
*
* We use this formula to figure out m for the best pre-divide and clock:
* (PWM Period / N) / 2^m = (Pre-divide * Clock Period)
*/
#define NUM_CLOCKS 3
#define NSEC_1000HZ (NSEC_PER_SEC / 1000)
#define NSEC_32768HZ (NSEC_PER_SEC / 32768)
#define NSEC_19P2MHZ (NSEC_PER_SEC / 19200000)
#define CLK_PERIOD_MIN NSEC_19P2MHZ
#define CLK_PERIOD_MAX NSEC_1000HZ
#define NUM_PRE_DIVIDE 3 /* No default support for pre-divide = 6 */
#define PRE_DIVIDE_0 2
#define PRE_DIVIDE_1 3
#define PRE_DIVIDE_2 5
#define PRE_DIVIDE_MIN PRE_DIVIDE_0
#define PRE_DIVIDE_MAX PRE_DIVIDE_2
static char *clks[NUM_CLOCKS] = {
"1K", "32768", "19.2M"
};
static unsigned pre_div[NUM_PRE_DIVIDE] = {
PRE_DIVIDE_0, PRE_DIVIDE_1, PRE_DIVIDE_2
};
static unsigned int pt_t[NUM_PRE_DIVIDE][NUM_CLOCKS] = {
{ PRE_DIVIDE_0 * NSEC_1000HZ,
PRE_DIVIDE_0 * NSEC_32768HZ,
PRE_DIVIDE_0 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_1 * NSEC_1000HZ,
PRE_DIVIDE_1 * NSEC_32768HZ,
PRE_DIVIDE_1 * NSEC_19P2MHZ,
},
{ PRE_DIVIDE_2 * NSEC_1000HZ,
PRE_DIVIDE_2 * NSEC_32768HZ,
PRE_DIVIDE_2 * NSEC_19P2MHZ,
},
};
#define MIN_MPT ((PRE_DIVIDE_MIN * CLK_PERIOD_MIN) << PM8058_PWM_M_MIN)
#define MAX_MPT ((PRE_DIVIDE_MAX * CLK_PERIOD_MAX) << PM8058_PWM_M_MAX)
/* Private data */
struct pm8058_pwm_chip;
struct pwm_device {
int pwm_id; /* = bank/channel id */
int in_use;
const char *label;
int pwm_period;
int pwm_duty;
u8 pwm_ctl[PM8058_LPG_CTL_REGS];
int irq;
struct pm8058_pwm_chip *chip;
};
struct pm8058_pwm_chip {
struct pwm_device pwm_dev[PM8058_PWM_CHANNELS];
u8 bank_mask;
struct mutex pwm_mutex;
struct pm8058_chip *pm_chip;
struct pm8058_pwm_pdata *pdata;
};
static struct pm8058_pwm_chip *pwm_chip;
struct pw8058_pwm_config {
int pwm_size; /* round up to 6 or 9 for 6/9-bit PWM SIZE */
int clk;
int pre_div;
int pre_div_exp;
int pwm_value;
int bypass_lut;
/* LUT parameters when bypass_lut is 0 */
int lut_duty_ms;
int lut_lo_index;
int lut_hi_index;
int lut_pause_hi;
int lut_pause_lo;
int flags;
};
static u16 duty_msec[PM8058_PWM_1KHZ_COUNT_MAX + 1] = {
0, 1, 2, 3, 4, 6, 8, 16, 18, 24, 32, 36, 64, 128, 256, 512
};
static u16 pause_count[PM8058_PWM_PAUSE_COUNT_MAX + 1] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
23, 28, 31, 42, 47, 56, 63, 83, 94, 111, 125, 167, 188, 222, 250, 333,
375, 500, 667, 750, 800, 900, 1000, 1100,
1200, 1300, 1400, 1500, 1600, 1800, 2000, 2500,
3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500,
7000
};
/* Internal functions */
static int pm8058_pwm_bank_enable(struct pwm_device *pwm, int enable)
{
int rc;
u8 reg;
struct pm8058_pwm_chip *chip;
chip = pwm->chip;
if (enable)
reg = chip->bank_mask | (1 << pwm->pwm_id);
else
reg = chip->bank_mask & ~(1 << pwm->pwm_id);
rc = pm8058_write(chip->pm_chip, SSBI_REG_ADDR_LPG_BANK_EN, &reg, 1);
if (rc) {
pr_err("%s: pm8058_write(): rc=%d (Enable LPG Bank)\n",
__func__, rc);
goto bail_out;
}
chip->bank_mask = reg;
bail_out:
return rc;
}
static int pm8058_pwm_bank_sel(struct pwm_device *pwm)
{
int rc;
u8 reg;
reg = pwm->pwm_id;
rc = pm8058_write(pwm->chip->pm_chip, SSBI_REG_ADDR_LPG_BANK_SEL,
&reg, 1);
if (rc)
pr_err("%s: pm8058_write(): rc=%d (Select PWM Bank)\n",
__func__, rc);
return rc;
}
static int pm8058_pwm_start(struct pwm_device *pwm, int start, int ramp_start)
{
int rc;
u8 reg;
if (start) {
reg = pwm->pwm_ctl[0] | PM8058_PWM_PWM_START;
if (ramp_start)
reg |= PM8058_PWM_RAMP_GEN_START;
else
reg &= ~PM8058_PWM_RAMP_GEN_START;
} else {
reg = pwm->pwm_ctl[0] & ~PM8058_PWM_PWM_START;
reg &= ~PM8058_PWM_RAMP_GEN_START;
}
rc = pm8058_write(pwm->chip->pm_chip, SSBI_REG_ADDR_LPG_CTL(0),
&reg, 1);
if (rc)
pr_err("%s: pm8058_write(): rc=%d (Enable PWM Ctl 0)\n",
__func__, rc);
else
pwm->pwm_ctl[0] = reg;
return rc;
}
static void pm8058_pwm_calc_period(unsigned int period_us,
struct pw8058_pwm_config *pwm_conf)
{
int n, m, clk, div;
int best_m, best_div, best_clk;
int last_err, cur_err, better_err, better_m;
unsigned int tmp_p, last_p, min_err, period_n;
/* PWM Period / N : handle underflow or overflow */
if (period_us < (PM_PWM_PERIOD_MAX / NSEC_PER_USEC))
period_n = (period_us * NSEC_PER_USEC) >> 6;
else
period_n = (period_us >> 6) * NSEC_PER_USEC;
if (period_n >= MAX_MPT) {
n = 9;
period_n >>= 3;
} else
n = 6;
min_err = MAX_MPT;
best_m = 0;
best_clk = 0;
best_div = 0;
for (clk = 0; clk < NUM_CLOCKS; clk++) {
for (div = 0; div < NUM_PRE_DIVIDE; div++) {
tmp_p = period_n;
last_p = tmp_p;
for (m = 0; m <= PM8058_PWM_M_MAX; m++) {
if (tmp_p <= pt_t[div][clk]) {
/* Found local best */
if (!m) {
better_err = pt_t[div][clk] -
tmp_p;
better_m = m;
} else {
last_err = last_p -
pt_t[div][clk];
cur_err = pt_t[div][clk] -
tmp_p;
if (cur_err < last_err) {
better_err = cur_err;
better_m = m;
} else {
better_err = last_err;
better_m = m - 1;
}
}
if (better_err < min_err) {
min_err = better_err;
best_m = better_m;
best_clk = clk;
best_div = div;
}
break;
} else {
last_p = tmp_p;
tmp_p >>= 1;
}
}
}
}
pwm_conf->pwm_size = n;
pwm_conf->clk = best_clk;
pwm_conf->pre_div = best_div;
pwm_conf->pre_div_exp = best_m;
pr_debug("%s: period=%u: n=%d, m=%d, clk[%d]=%s, div[%d]=%d\n",
__func__, (unsigned)period_us, n, best_m,
best_clk, clks[best_clk], best_div, pre_div[best_div]);
}
static int pm8058_pwm_configure(struct pwm_device *pwm,
struct pw8058_pwm_config *pwm_conf)
{
int i, rc, len;
u8 reg, ramp_enabled = 0;
reg = (pwm_conf->pwm_size > 6) ? PM8058_PWM_SIZE_9_BIT : 0;
pwm->pwm_ctl[5] = reg;
reg = ((pwm_conf->clk + 1) << PM8058_PWM_CLK_SEL_SHIFT)
& PM8058_PWM_CLK_SEL_MASK;
reg |= (pwm_conf->pre_div << PM8058_PWM_PREDIVIDE_SHIFT)
& PM8058_PWM_PREDIVIDE_MASK;
reg |= pwm_conf->pre_div_exp & PM8058_PWM_M_MASK;
pwm->pwm_ctl[4] = reg;
if (pwm_conf->bypass_lut) {
pwm->pwm_ctl[0] &= PM8058_PWM_PWM_START; /* keep enabled */
pwm->pwm_ctl[1] = PM8058_PWM_BYPASS_LUT;
pwm->pwm_ctl[2] = 0;
if (pwm_conf->pwm_size > 6) {
pwm->pwm_ctl[3] = pwm_conf->pwm_value
& PM8058_PWM_VALUE_BIT7_0;
pwm->pwm_ctl[4] |= (pwm_conf->pwm_value >> 1)
& PM8058_PWM_VALUE_BIT8;
} else {
pwm->pwm_ctl[3] = pwm_conf->pwm_value
& PM8058_PWM_VALUE_BIT5_0;
}
len = 6;
} else {
int pause_cnt, j;
/* Linear search for duty time */
for (i = 0; i < PM8058_PWM_1KHZ_COUNT_MAX; i++) {
if (duty_msec[i] >= pwm_conf->lut_duty_ms)
break;
}
ramp_enabled = pwm->pwm_ctl[0] & PM8058_PWM_RAMP_GEN_START;
pwm->pwm_ctl[0] &= PM8058_PWM_PWM_START; /* keep enabled */
pwm->pwm_ctl[0] |= (i << PM8058_PWM_1KHZ_COUNT_SHIFT) &
PM8058_PWM_1KHZ_COUNT_MASK;
pwm->pwm_ctl[1] = pwm_conf->lut_hi_index &
PM8058_PWM_HIGH_INDEX_MASK;
pwm->pwm_ctl[2] = pwm_conf->lut_lo_index &
PM8058_PWM_LOW_INDEX_MASK;
if (pwm_conf->flags & PM_PWM_LUT_REVERSE)
pwm->pwm_ctl[1] |= PM8058_PWM_REVERSE_EN;
if (pwm_conf->flags & PM_PWM_LUT_RAMP_UP)
pwm->pwm_ctl[2] |= PM8058_PWM_RAMP_UP;
if (pwm_conf->flags & PM_PWM_LUT_LOOP)
pwm->pwm_ctl[2] |= PM8058_PWM_LOOP_EN;
/* Pause time */
if (pwm_conf->flags & PM_PWM_LUT_PAUSE_HI_EN) {
/* Linear search for pause time */
pause_cnt = (pwm_conf->lut_pause_hi + duty_msec[i] / 2)
/ duty_msec[i];
for (j = 0; j < PM8058_PWM_PAUSE_COUNT_MAX; j++) {
if (pause_count[j] >= pause_cnt)
break;
}
pwm->pwm_ctl[5] = (j <<
PM8058_PWM_PAUSE_COUNT_HI_SHIFT) &
PM8058_PWM_PAUSE_COUNT_HI_MASK;
pwm->pwm_ctl[5] |= PM8058_PWM_PAUSE_ENABLE_HIGH;
} else
pwm->pwm_ctl[5] = 0;
if (pwm_conf->flags & PM_PWM_LUT_PAUSE_LO_EN) {
/* Linear search for pause time */
pause_cnt = (pwm_conf->lut_pause_lo + duty_msec[i] / 2)
/ duty_msec[i];
for (j = 0; j < PM8058_PWM_PAUSE_COUNT_MAX; j++) {
if (pause_count[j] >= pause_cnt)
break;
}
pwm->pwm_ctl[6] = (j <<
PM8058_PWM_PAUSE_COUNT_LO_SHIFT) &
PM8058_PWM_PAUSE_COUNT_LO_MASK;
pwm->pwm_ctl[6] |= PM8058_PWM_PAUSE_ENABLE_LOW;
} else
pwm->pwm_ctl[6] = 0;
len = 7;
}
pm8058_pwm_bank_sel(pwm);
for (i = 0; i < len; i++) {
rc = pm8058_write(pwm->chip->pm_chip,
SSBI_REG_ADDR_LPG_CTL(i),
&pwm->pwm_ctl[i], 1);
if (rc) {
pr_err("%s: pm8058_write(): rc=%d (PWM Ctl[%d])\n",
__func__, rc, i);
break;
}
}
if (ramp_enabled) {
pwm->pwm_ctl[0] |= ramp_enabled;
pm8058_write(pwm->chip->pm_chip, SSBI_REG_ADDR_LPG_CTL(0),
&pwm->pwm_ctl[0], 1);
}
return rc;
}
/* APIs */
/*
* pwm_request - request a PWM device
*/
struct pwm_device *pwm_request(int pwm_id, const char *label)
{
struct pwm_device *pwm;
if (pwm_id > PM8058_PWM_CHANNELS || pwm_id < 0)
return ERR_PTR(-EINVAL);
if (pwm_chip == NULL)
return ERR_PTR(-ENODEV);
mutex_lock(&pwm_chip->pwm_mutex);
pwm = &pwm_chip->pwm_dev[pwm_id];
if (!pwm->in_use) {
pwm->in_use = 1;
pwm->label = label;
if (pwm_chip->pdata && pwm_chip->pdata->config)
pwm_chip->pdata->config(pwm, pwm_id, 1);
} else
pwm = ERR_PTR(-EBUSY);
mutex_unlock(&pwm_chip->pwm_mutex);
return pwm;
}
EXPORT_SYMBOL(pwm_request);
/*
* pwm_free - free a PWM device
*/
void pwm_free(struct pwm_device *pwm)
{
if (pwm == NULL || IS_ERR(pwm) || pwm->chip == NULL)
return;
mutex_lock(&pwm->chip->pwm_mutex);
if (pwm->in_use) {
pm8058_pwm_bank_sel(pwm);
pm8058_pwm_start(pwm, 0, 0);
if (pwm->chip->pdata && pwm->chip->pdata->config)
pwm->chip->pdata->config(pwm, pwm->pwm_id, 0);
pwm->in_use = 0;
pwm->label = NULL;
}
pm8058_pwm_bank_enable(pwm, 0);
mutex_unlock(&pwm->chip->pwm_mutex);
}
EXPORT_SYMBOL(pwm_free);
/*
* pwm_config - change a PWM device configuration
*
* @pwm: the PWM device
* @period_us: period in micro second
* @duty_us: duty cycle in micro second
*/
int pwm_config(struct pwm_device *pwm, int duty_us, int period_us)
{
struct pw8058_pwm_config pwm_conf;
unsigned int max_pwm_value, tmp;
int rc;
if (pwm == NULL || IS_ERR(pwm) ||
(unsigned)duty_us > (unsigned)period_us ||
(unsigned)period_us > PM_PWM_PERIOD_MAX ||
(unsigned)period_us < PM_PWM_PERIOD_MIN)
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
mutex_lock(&pwm->chip->pwm_mutex);
if (!pwm->in_use) {
rc = -EINVAL;
goto out_unlock;
}
pm8058_pwm_calc_period(period_us, &pwm_conf);
/* Figure out pwm_value with overflow handling */
if ((unsigned)period_us > (1 << pwm_conf.pwm_size)) {
tmp = period_us;
tmp >>= pwm_conf.pwm_size;
pwm_conf.pwm_value = (unsigned)duty_us / tmp;
} else {
tmp = duty_us;
tmp <<= pwm_conf.pwm_size;
pwm_conf.pwm_value = tmp / (unsigned)period_us;
}
max_pwm_value = (1 << pwm_conf.pwm_size) - 1;
if (pwm_conf.pwm_value > max_pwm_value)
pwm_conf.pwm_value = max_pwm_value;
pwm_conf.bypass_lut = 1;
pr_debug("%s: duty/period=%u/%u usec: pwm_value=%d (of %d)\n",
__func__, (unsigned)duty_us, (unsigned)period_us,
pwm_conf.pwm_value, 1 << pwm_conf.pwm_size);
rc = pm8058_pwm_configure(pwm, &pwm_conf);
out_unlock:
mutex_unlock(&pwm->chip->pwm_mutex);
return rc;
}
EXPORT_SYMBOL(pwm_config);
/*
* pwm_enable - start a PWM output toggling
*/
int pwm_enable(struct pwm_device *pwm)
{
int rc;
if (pwm == NULL || IS_ERR(pwm))
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
mutex_lock(&pwm->chip->pwm_mutex);
if (!pwm->in_use)
rc = -EINVAL;
else {
if (pwm->chip->pdata && pwm->chip->pdata->enable)
pwm->chip->pdata->enable(pwm, pwm->pwm_id, 1);
rc = pm8058_pwm_bank_enable(pwm, 1);
pm8058_pwm_bank_sel(pwm);
pm8058_pwm_start(pwm, 1, 0);
}
mutex_unlock(&pwm->chip->pwm_mutex);
return rc;
}
EXPORT_SYMBOL(pwm_enable);
/*
* pwm_disable - stop a PWM output toggling
*/
void pwm_disable(struct pwm_device *pwm)
{
if (pwm == NULL || IS_ERR(pwm) || pwm->chip == NULL)
return;
mutex_lock(&pwm->chip->pwm_mutex);
if (pwm->in_use) {
pm8058_pwm_bank_sel(pwm);
pm8058_pwm_start(pwm, 0, 0);
pm8058_pwm_bank_enable(pwm, 0);
if (pwm->chip->pdata && pwm->chip->pdata->enable)
pwm->chip->pdata->enable(pwm, pwm->pwm_id, 0);
}
mutex_unlock(&pwm->chip->pwm_mutex);
}
EXPORT_SYMBOL(pwm_disable);
/*
* pm8058_pwm_lut_config - change a PWM device configuration to use LUT
*
* @pwm: the PWM device
* @period_us: period in micro second
* @duty_pct: arrary of duty cycles in percent, like 20, 50.
* @duty_time_ms: time for each duty cycle in millisecond
* @start_idx: start index in lookup table from 0 to MAX-1
* @idx_len: number of index
* @pause_lo: pause time in millisecond at low index
* @pause_hi: pause time in millisecond at high index
* @flags: control flags
*
*/
int pm8058_pwm_lut_config(struct pwm_device *pwm, int period_us,
int duty_pct[], int duty_time_ms, int start_idx,
int idx_len, int pause_lo, int pause_hi, int flags)
{
struct pw8058_pwm_config pwm_conf;
unsigned int pwm_value, max_pwm_value;
u8 cfg0, cfg1;
int i, len;
int rc;
if (pwm == NULL || IS_ERR(pwm) || !idx_len)
return -EINVAL;
if (duty_pct == NULL && !(flags & PM_PWM_LUT_NO_TABLE))
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
if (idx_len >= PM_PWM_LUT_SIZE && start_idx)
return -EINVAL;
if ((start_idx + idx_len) > PM_PWM_LUT_SIZE)
return -EINVAL;
if ((unsigned)period_us > PM_PWM_PERIOD_MAX ||
(unsigned)period_us < PM_PWM_PERIOD_MIN)
return -EINVAL;
mutex_lock(&pwm->chip->pwm_mutex);
if (!pwm->in_use) {
rc = -EINVAL;
goto out_unlock;
}
pm8058_pwm_calc_period(period_us, &pwm_conf);
len = (idx_len > PM_PWM_LUT_SIZE) ? PM_PWM_LUT_SIZE : idx_len;
if (flags & PM_PWM_LUT_NO_TABLE)
goto after_table_write;
max_pwm_value = (1 << pwm_conf.pwm_size) - 1;
for (i = 0; i < len; i++) {
pwm_value = (duty_pct[i] << pwm_conf.pwm_size) / 100;
/* Avoid overflow */
if (pwm_value > max_pwm_value)
pwm_value = max_pwm_value;
cfg0 = pwm_value & 0xff;
cfg1 = (pwm_value >> 1) & 0x80;
cfg1 |= start_idx + i;
pr_debug("%s: %d: pwm=%d\n", __func__, i, pwm_value);
pm8058_write(pwm->chip->pm_chip,
SSBI_REG_ADDR_LPG_LUT_CFG0,
&cfg0, 1);
pm8058_write(pwm->chip->pm_chip,
SSBI_REG_ADDR_LPG_LUT_CFG1,
&cfg1, 1);
}
after_table_write:
pwm_conf.lut_duty_ms = duty_time_ms;
pwm_conf.lut_lo_index = start_idx;
pwm_conf.lut_hi_index = start_idx + len - 1;
pwm_conf.lut_pause_lo = pause_lo;
pwm_conf.lut_pause_hi = pause_hi;
pwm_conf.flags = flags;
pwm_conf.bypass_lut = 0;
rc = pm8058_pwm_configure(pwm, &pwm_conf);
out_unlock:
mutex_unlock(&pwm->chip->pwm_mutex);
return rc;
}
EXPORT_SYMBOL(pm8058_pwm_lut_config);
/*
* pm8058_pwm_lut_enable - control a PWM device to start/stop LUT ramp
*
* @pwm: the PWM device
* @start: to start (1), or stop (0)
*/
int pm8058_pwm_lut_enable(struct pwm_device *pwm, int start)
{
if (pwm == NULL || IS_ERR(pwm))
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
mutex_lock(&pwm->chip->pwm_mutex);
if (start) {
pm8058_pwm_bank_enable(pwm, 1);
pm8058_pwm_bank_sel(pwm);
pm8058_pwm_start(pwm, 1, 1);
} else {
pm8058_pwm_bank_sel(pwm);
pm8058_pwm_start(pwm, 0, 0);
pm8058_pwm_bank_enable(pwm, 0);
}
mutex_unlock(&pwm->chip->pwm_mutex);
return 0;
}
EXPORT_SYMBOL(pm8058_pwm_lut_enable);
#define SSBI_REG_ADDR_LED_BASE 0x131
#define SSBI_REG_ADDR_LED(n) (SSBI_REG_ADDR_LED_BASE + (n))
#define SSBI_REG_ADDR_FLASH_BASE 0x48
#define SSBI_REG_ADDR_FLASH_DRV_1 0xFB
#define SSBI_REG_ADDR_FLASH(n) (((n) < 2 ? \
SSBI_REG_ADDR_FLASH_BASE + (n) : \
SSBI_REG_ADDR_FLASH_DRV_1))
#define PM8058_LED_CURRENT_SHIFT 3
#define PM8058_LED_MODE_MASK 0x07
#define PM8058_FLASH_CURRENT_SHIFT 4
#define PM8058_FLASH_MODE_MASK 0x03
#define PM8058_FLASH_MODE_NONE 0
#define PM8058_FLASH_MODE_DTEST1 1
#define PM8058_FLASH_MODE_DTEST2 2
#define PM8058_FLASH_MODE_PWM 3
int pm8058_pwm_config_led(struct pwm_device *pwm, int id,
int mode, int max_current)
{
int rc;
u8 conf;
switch (id) {
case PM_PWM_LED_0:
case PM_PWM_LED_1:
case PM_PWM_LED_2:
conf = mode & PM8058_LED_MODE_MASK;
conf |= (max_current / 2) << PM8058_LED_CURRENT_SHIFT;
rc = pm8058_write(pwm->chip->pm_chip,
SSBI_REG_ADDR_LED(id), &conf, 1);
break;
case PM_PWM_LED_KPD:
case PM_PWM_LED_FLASH:
case PM_PWM_LED_FLASH1:
switch (mode) {
case PM_PWM_CONF_PWM1:
case PM_PWM_CONF_PWM2:
case PM_PWM_CONF_PWM3:
conf = PM8058_FLASH_MODE_PWM;
break;
case PM_PWM_CONF_DTEST1:
conf = PM8058_FLASH_MODE_DTEST1;
break;
case PM_PWM_CONF_DTEST2:
conf = PM8058_FLASH_MODE_DTEST2;
break;
default:
conf = PM8058_FLASH_MODE_NONE;
break;
}
conf |= (max_current / 20) << PM8058_FLASH_CURRENT_SHIFT;
id -= PM_PWM_LED_KPD;
rc = pm8058_write(pwm->chip->pm_chip,
SSBI_REG_ADDR_FLASH(id), &conf, 1);
break;
default:
rc = -EINVAL;
break;
}
return rc;
}
EXPORT_SYMBOL(pm8058_pwm_config_led);
int pm8058_pwm_set_dtest(struct pwm_device *pwm, int enable)
{
int rc;
u8 reg;
if (pwm == NULL || IS_ERR(pwm))
return -EINVAL;
if (pwm->chip == NULL)
return -ENODEV;
if (!pwm->in_use)
rc = -EINVAL;
else {
reg = pwm->pwm_id & PM8058_PWM_DTEST_BANK_MASK;
if (enable)
/* Only Test 1 available */
reg |= (1 << PM8058_PWM_DTEST_SHIFT) &
PM8058_PWM_DTEST_MASK;
rc = pm8058_write(pwm->chip->pm_chip, SSBI_REG_ADDR_LPG_TEST,
&reg, 1);
if (rc)
pr_err("%s: pm8058_write(DTEST=0x%x): rc=%d\n",
__func__, reg, rc);
}
return rc;
}
EXPORT_SYMBOL(pm8058_pwm_set_dtest);
static int __devinit pmic8058_pwm_probe(struct platform_device *pdev)
{
struct pm8058_chip *pm_chip;
struct pm8058_pwm_chip *chip;
int i;
pm_chip = dev_get_drvdata(pdev->dev.parent);
if (pm_chip == NULL) {
pr_err("%s: no parent data passed in.\n", __func__);
return -EFAULT;
}
chip = kzalloc(sizeof *chip, GFP_KERNEL);
if (chip == NULL) {
pr_err("%s: kzalloc() failed.\n", __func__);
return -ENOMEM;
}
for (i = 0; i < PM8058_PWM_CHANNELS; i++) {
chip->pwm_dev[i].pwm_id = i;
chip->pwm_dev[i].chip = chip;
}
mutex_init(&chip->pwm_mutex);
chip->pdata = pdev->dev.platform_data;
chip->pm_chip = pm_chip;
pwm_chip = chip;
platform_set_drvdata(pdev, chip);
pr_notice("%s: OK\n", __func__);
return 0;
}
static int __devexit pmic8058_pwm_remove(struct platform_device *pdev)
{
struct pm8058_pwm_chip *chip = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
kfree(chip);
return 0;
}
static struct platform_driver pmic8058_pwm_driver = {
.probe = pmic8058_pwm_probe,
.remove = __devexit_p(pmic8058_pwm_remove),
.driver = {
.name = "pm8058-pwm",
.owner = THIS_MODULE,
},
};
static int __init pm8058_pwm_init(void)
{
return platform_driver_register(&pmic8058_pwm_driver);
}
static void __exit pm8058_pwm_exit(void)
{
platform_driver_unregister(&pmic8058_pwm_driver);
}
subsys_initcall(pm8058_pwm_init);
module_exit(pm8058_pwm_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("PMIC8058 PWM driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:pmic8058_pwm");