| /* Copyright (c) 2011, Code Aurora Forum. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <asm/page.h> |
| #include <linux/io.h> |
| #include <linux/memory_alloc.h> |
| #include <linux/mm.h> |
| #include <linux/vmalloc.h> |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/err.h> |
| #include <linux/log2.h> |
| |
| #define MAX_MEMPOOLS 8 |
| |
| struct mem_pool mpools[MAX_MEMPOOLS]; |
| |
| /* The tree contains all allocations over all memory pools */ |
| static struct rb_root alloc_root; |
| static struct mutex alloc_mutex; |
| |
| static struct alloc *find_alloc(void *addr) |
| { |
| struct rb_root *root = &alloc_root; |
| struct rb_node *p = root->rb_node; |
| |
| mutex_lock(&alloc_mutex); |
| |
| while (p) { |
| struct alloc *node; |
| |
| node = rb_entry(p, struct alloc, rb_node); |
| if (addr < node->vaddr) |
| p = p->rb_left; |
| else if (addr > node->vaddr) |
| p = p->rb_right; |
| else { |
| mutex_unlock(&alloc_mutex); |
| return node; |
| } |
| } |
| mutex_unlock(&alloc_mutex); |
| return NULL; |
| } |
| |
| static int add_alloc(struct alloc *node) |
| { |
| struct rb_root *root = &alloc_root; |
| struct rb_node **p = &root->rb_node; |
| struct rb_node *parent = NULL; |
| |
| mutex_lock(&alloc_mutex); |
| while (*p) { |
| struct alloc *tmp; |
| parent = *p; |
| |
| tmp = rb_entry(parent, struct alloc, rb_node); |
| |
| if (node->vaddr < tmp->vaddr) |
| p = &(*p)->rb_left; |
| else if (node->vaddr > tmp->vaddr) |
| p = &(*p)->rb_right; |
| else { |
| WARN(1, "memory at %p already allocated", tmp->vaddr); |
| mutex_unlock(&alloc_mutex); |
| return -EINVAL; |
| } |
| } |
| rb_link_node(&node->rb_node, parent, p); |
| rb_insert_color(&node->rb_node, root); |
| mutex_unlock(&alloc_mutex); |
| return 0; |
| } |
| |
| static int remove_alloc(struct alloc *victim_node) |
| { |
| struct rb_root *root = &alloc_root; |
| if (!victim_node) |
| return -EINVAL; |
| |
| mutex_lock(&alloc_mutex); |
| rb_erase(&victim_node->rb_node, root); |
| mutex_unlock(&alloc_mutex); |
| return 0; |
| } |
| |
| static struct gen_pool *initialize_gpool(unsigned long start, |
| unsigned long size) |
| { |
| struct gen_pool *gpool; |
| |
| gpool = gen_pool_create(PAGE_SHIFT, -1); |
| |
| if (!gpool) |
| return NULL; |
| if (gen_pool_add(gpool, start, size, -1)) { |
| gen_pool_destroy(gpool); |
| return NULL; |
| } |
| |
| return gpool; |
| } |
| |
| static void *__alloc(struct mem_pool *mpool, unsigned long size, |
| unsigned long align, int cached) |
| { |
| unsigned long paddr; |
| void __iomem *vaddr; |
| |
| unsigned long aligned_size; |
| int log_align = ilog2(align); |
| |
| struct alloc *node; |
| |
| aligned_size = PFN_ALIGN(size); |
| paddr = gen_pool_alloc_aligned(mpool->gpool, aligned_size, log_align); |
| if (!paddr) |
| return NULL; |
| |
| node = kmalloc(sizeof(struct alloc), GFP_KERNEL); |
| if (!node) |
| goto out; |
| |
| if (cached) |
| vaddr = ioremap_cached(paddr, aligned_size); |
| else |
| vaddr = ioremap(paddr, aligned_size); |
| |
| if (!vaddr) |
| goto out_kfree; |
| |
| node->vaddr = vaddr; |
| node->paddr = paddr; |
| node->len = aligned_size; |
| node->mpool = mpool; |
| if (add_alloc(node)) |
| goto out_kfree; |
| |
| mpool->free -= aligned_size; |
| |
| return vaddr; |
| out_kfree: |
| if (vaddr) |
| iounmap(vaddr); |
| kfree(node); |
| out: |
| gen_pool_free(mpool->gpool, paddr, aligned_size); |
| return NULL; |
| } |
| |
| static void __free(void *vaddr, bool unmap) |
| { |
| struct alloc *node = find_alloc(vaddr); |
| |
| if (!node) |
| return; |
| |
| if (unmap) |
| iounmap(node->vaddr); |
| |
| gen_pool_free(node->mpool->gpool, node->paddr, node->len); |
| node->mpool->free += node->len; |
| |
| remove_alloc(node); |
| kfree(node); |
| } |
| |
| static struct mem_pool *mem_type_to_memory_pool(int mem_type) |
| { |
| struct mem_pool *mpool = &mpools[mem_type]; |
| |
| if (!mpool->size) |
| return NULL; |
| |
| mutex_lock(&mpool->pool_mutex); |
| if (!mpool->gpool) |
| mpool->gpool = initialize_gpool(mpool->paddr, mpool->size); |
| mutex_unlock(&mpool->pool_mutex); |
| if (!mpool->gpool) |
| return NULL; |
| |
| return mpool; |
| } |
| |
| struct mem_pool *initialize_memory_pool(unsigned long start, |
| unsigned long size, int mem_type) |
| { |
| int id = mem_type; |
| |
| if (id >= MAX_MEMPOOLS || size <= PAGE_SIZE || size % PAGE_SIZE) |
| return NULL; |
| |
| mutex_lock(&mpools[id].pool_mutex); |
| |
| mpools[id].paddr = start; |
| mpools[id].size = size; |
| mpools[id].free = size; |
| mutex_unlock(&mpools[id].pool_mutex); |
| |
| pr_info("memory pool %d (start %lx size %lx) initialized\n", |
| id, start, size); |
| return &mpools[id]; |
| } |
| EXPORT_SYMBOL_GPL(initialize_memory_pool); |
| |
| void *allocate_contiguous_memory(unsigned long size, |
| int mem_type, unsigned long align, int cached) |
| { |
| unsigned long aligned_size = PFN_ALIGN(size); |
| struct mem_pool *mpool; |
| |
| mpool = mem_type_to_memory_pool(mem_type); |
| if (!mpool) |
| return NULL; |
| return __alloc(mpool, aligned_size, align, cached); |
| |
| } |
| EXPORT_SYMBOL_GPL(allocate_contiguous_memory); |
| |
| unsigned long allocate_contiguous_memory_nomap(unsigned long size, |
| int mem_type, unsigned long align) |
| { |
| unsigned long paddr; |
| unsigned long aligned_size; |
| |
| struct alloc *node; |
| struct mem_pool *mpool; |
| int log_align = ilog2(align); |
| |
| mpool = mem_type_to_memory_pool(mem_type); |
| if (!mpool || !mpool->gpool) |
| return 0; |
| |
| aligned_size = PFN_ALIGN(size); |
| paddr = gen_pool_alloc_aligned(mpool->gpool, aligned_size, log_align); |
| if (!paddr) |
| return 0; |
| |
| node = kmalloc(sizeof(struct alloc), GFP_KERNEL); |
| if (!node) |
| goto out; |
| |
| node->paddr = paddr; |
| |
| /* We search the tree using node->vaddr, so set |
| * it to something unique even though we don't |
| * use it for physical allocation nodes. |
| * The virtual and physical address ranges |
| * are disjoint, so there won't be any chance of |
| * a duplicate node->vaddr value. |
| */ |
| node->vaddr = (void *)paddr; |
| node->len = aligned_size; |
| node->mpool = mpool; |
| if (add_alloc(node)) |
| goto out_kfree; |
| |
| mpool->free -= aligned_size; |
| return paddr; |
| out_kfree: |
| kfree(node); |
| out: |
| gen_pool_free(mpool->gpool, paddr, aligned_size); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(allocate_contiguous_memory_nomap); |
| |
| void free_contiguous_memory(void *addr) |
| { |
| if (!addr) |
| return; |
| __free(addr, true); |
| return; |
| } |
| EXPORT_SYMBOL_GPL(free_contiguous_memory); |
| |
| void free_contiguous_memory_by_paddr(unsigned long paddr) |
| { |
| if (!paddr) |
| return; |
| __free((void *)paddr, false); |
| return; |
| } |
| EXPORT_SYMBOL_GPL(free_contiguous_memory_by_paddr); |
| |
| unsigned long memory_pool_node_paddr(void *vaddr) |
| { |
| struct alloc *node = find_alloc(vaddr); |
| |
| if (!node) |
| return -EINVAL; |
| |
| return node->paddr; |
| } |
| EXPORT_SYMBOL_GPL(memory_pool_node_paddr); |
| |
| unsigned long memory_pool_node_len(void *vaddr) |
| { |
| struct alloc *node = find_alloc(vaddr); |
| |
| if (!node) |
| return -EINVAL; |
| |
| return node->len; |
| } |
| EXPORT_SYMBOL_GPL(memory_pool_node_len); |
| |
| int __init memory_pool_init(void) |
| { |
| int i; |
| |
| alloc_root = RB_ROOT; |
| mutex_init(&alloc_mutex); |
| for (i = 0; i < ARRAY_SIZE(mpools); i++) { |
| mutex_init(&mpools[i].pool_mutex); |
| mpools[i].gpool = NULL; |
| } |
| return 0; |
| } |