[MIPS] Cleanup hazard handling.
Mostly based on patch by Chris Dearman and cleanups from Yoichi.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
diff --git a/include/asm-mips/hazards.h b/include/asm-mips/hazards.h
index 25f5e8a..bf0b804 100644
--- a/include/asm-mips/hazards.h
+++ b/include/asm-mips/hazards.h
@@ -11,253 +11,54 @@
#define _ASM_HAZARDS_H
-#ifdef __ASSEMBLY__
-
- .macro _ssnop
- sll $0, $0, 1
- .endm
-
- .macro _ehb
- sll $0, $0, 3
- .endm
-
-/*
- * RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
- * use of the JTLB for instructions should not occur for 4 cpu cycles and use
- * for data translations should not occur for 3 cpu cycles.
- */
-#ifdef CONFIG_CPU_RM9000
-
- .macro mtc0_tlbw_hazard
- .set push
- .set mips32
- _ssnop; _ssnop; _ssnop; _ssnop
- .set pop
- .endm
-
- .macro tlbw_eret_hazard
- .set push
- .set mips32
- _ssnop; _ssnop; _ssnop; _ssnop
- .set pop
- .endm
-
+#ifdef __ASSEMBLER__
+#define ASMMACRO(name, code...) .macro name; code; .endm
#else
-/*
- * The taken branch will result in a two cycle penalty for the two killed
- * instructions on R4000 / R4400. Other processors only have a single cycle
- * hazard so this is nice trick to have an optimal code for a range of
- * processors.
- */
- .macro mtc0_tlbw_hazard
- b . + 8
- .endm
+#define ASMMACRO(name, code...) \
+__asm__(".macro " #name "; " #code "; .endm"); \
+ \
+static inline void name(void) \
+{ \
+ __asm__ __volatile__ (#name); \
+}
- .macro tlbw_eret_hazard
- .endm
#endif
+ASMMACRO(_ssnop,
+ sll $0, $0, 1
+ )
+
+ASMMACRO(_ehb,
+ sll $0, $0, 3
+ )
+
/*
- * mtc0->mfc0 hazard
- * The 24K has a 2 cycle mtc0/mfc0 execution hazard.
- * It is a MIPS32R2 processor so ehb will clear the hazard.
+ * TLB hazards
+ */
+#if defined(CONFIG_CPU_MIPSR2)
+
+/*
+ * MIPSR2 defines ehb for hazard avoidance
*/
-#ifdef CONFIG_CPU_MIPSR2
-/*
- * Use a macro for ehb unless explicit support for MIPSR2 is enabled
- */
-
-#define irq_enable_hazard \
+ASMMACRO(mtc0_tlbw_hazard,
+ _ehb
+ )
+ASMMACRO(tlbw_use_hazard,
+ _ehb
+ )
+ASMMACRO(tlb_probe_hazard,
+ _ehb
+ )
+ASMMACRO(irq_enable_hazard,
+ )
+ASMMACRO(irq_disable_hazard,
_ehb
-
-#define irq_disable_hazard \
- _ehb
-
-#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000)
-
-/*
- * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
- */
-
-#define irq_enable_hazard
-
-#define irq_disable_hazard
-
-#else
-
-/*
- * Classic MIPS needs 1 - 3 nops or ssnops
- */
-#define irq_enable_hazard
-#define irq_disable_hazard \
- _ssnop; _ssnop; _ssnop
-
-#endif
-
-#else /* __ASSEMBLY__ */
-
-__asm__(
- " .macro _ssnop \n"
- " sll $0, $0, 1 \n"
- " .endm \n"
- " \n"
- " .macro _ehb \n"
- " sll $0, $0, 3 \n"
- " .endm \n");
-
-#ifdef CONFIG_CPU_RM9000
-
-/*
- * RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
- * use of the JTLB for instructions should not occur for 4 cpu cycles and use
- * for data translations should not occur for 3 cpu cycles.
- */
-
-#define mtc0_tlbw_hazard() \
- __asm__ __volatile__( \
- " .set mips32 \n" \
- " _ssnop \n" \
- " _ssnop \n" \
- " _ssnop \n" \
- " _ssnop \n" \
- " .set mips0 \n")
-
-#define tlbw_use_hazard() \
- __asm__ __volatile__( \
- " .set mips32 \n" \
- " _ssnop \n" \
- " _ssnop \n" \
- " _ssnop \n" \
- " _ssnop \n" \
- " .set mips0 \n")
-
-#else
-
-/*
- * Overkill warning ...
- */
-#define mtc0_tlbw_hazard() \
- __asm__ __volatile__( \
- " .set noreorder \n" \
- " nop \n" \
- " nop \n" \
- " nop \n" \
- " nop \n" \
- " nop \n" \
- " nop \n" \
- " .set reorder \n")
-
-#define tlbw_use_hazard() \
- __asm__ __volatile__( \
- " .set noreorder \n" \
- " nop \n" \
- " nop \n" \
- " nop \n" \
- " nop \n" \
- " nop \n" \
- " nop \n" \
- " .set reorder \n")
-
-#endif
-
-/*
- * Interrupt enable/disable hazards
- * Some processors have hazards when modifying
- * the status register to change the interrupt state
- */
-
-#ifdef CONFIG_CPU_MIPSR2
-
-__asm__(" .macro irq_enable_hazard \n"
- " _ehb \n"
- " .endm \n"
- " \n"
- " .macro irq_disable_hazard \n"
- " _ehb \n"
- " .endm \n");
-
-#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000)
-
-/*
- * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
- */
-
-__asm__(
- " .macro irq_enable_hazard \n"
- " .endm \n"
- " \n"
- " .macro irq_disable_hazard \n"
- " .endm \n");
-
-#else
-
-/*
- * Default for classic MIPS processors. Assume worst case hazards but don't
- * care about the irq_enable_hazard - sooner or later the hardware will
- * enable it and we don't care when exactly.
- */
-
-__asm__(
- " # \n"
- " # There is a hazard but we do not care \n"
- " # \n"
- " .macro\tirq_enable_hazard \n"
- " .endm \n"
- " \n"
- " .macro\tirq_disable_hazard \n"
- " _ssnop \n"
- " _ssnop \n"
- " _ssnop \n"
- " .endm \n");
-
-#endif
-
-#define irq_enable_hazard() \
- __asm__ __volatile__("irq_enable_hazard")
-#define irq_disable_hazard() \
- __asm__ __volatile__("irq_disable_hazard")
-
-
-/*
- * Back-to-back hazards -
- *
- * What is needed to separate a move to cp0 from a subsequent read from the
- * same cp0 register?
- */
-#ifdef CONFIG_CPU_MIPSR2
-
-__asm__(" .macro back_to_back_c0_hazard \n"
- " _ehb \n"
- " .endm \n");
-
-#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000) || \
- defined(CONFIG_CPU_SB1)
-
-__asm__(" .macro back_to_back_c0_hazard \n"
- " .endm \n");
-
-#else
-
-__asm__(" .macro back_to_back_c0_hazard \n"
- " .set noreorder \n"
- " _ssnop \n"
- " _ssnop \n"
- " _ssnop \n"
- " .set reorder \n"
- " .endm");
-
-#endif
-
-#define back_to_back_c0_hazard() \
- __asm__ __volatile__("back_to_back_c0_hazard")
-
-
-/*
- * Instruction execution hazard
- */
-#ifdef CONFIG_CPU_MIPSR2
+ )
+ASMMACRO(back_to_back_c0_hazard,
+ _ehb
+ )
/*
* gcc has a tradition of misscompiling the previous construct using the
* address of a label as argument to inline assembler. Gas otoh has the
@@ -279,12 +80,101 @@
: "=r" (tmp)); \
} while (0)
-#else
+#elif defined(CONFIG_CPU_R10000)
+
+/*
+ * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
+ */
+
+ASMMACRO(mtc0_tlbw_hazard,
+ )
+ASMMACRO(tlbw_use_hazard,
+ )
+ASMMACRO(tlb_probe_hazard,
+ )
+ASMMACRO(irq_enable_hazard,
+ )
+ASMMACRO(irq_disable_hazard,
+ )
+ASMMACRO(back_to_back_c0_hazard,
+ )
#define instruction_hazard() do { } while (0)
+
+#elif defined(CONFIG_CPU_RM9000)
+
+/*
+ * RM9000 hazards. When the JTLB is updated by tlbwi or tlbwr, a subsequent
+ * use of the JTLB for instructions should not occur for 4 cpu cycles and use
+ * for data translations should not occur for 3 cpu cycles.
+ */
+
+ASMMACRO(mtc0_tlbw_hazard,
+ _ssnop; _ssnop; _ssnop; _ssnop
+ )
+ASMMACRO(tlbw_use_hazard,
+ _ssnop; _ssnop; _ssnop; _ssnop
+ )
+ASMMACRO(tlb_probe_hazard,
+ _ssnop; _ssnop; _ssnop; _ssnop
+ )
+ASMMACRO(irq_enable_hazard,
+ )
+ASMMACRO(irq_disable_hazard,
+ )
+ASMMACRO(back_to_back_c0_hazard,
+ )
+#define instruction_hazard() do { } while (0)
+
+#elif defined(CONFIG_CPU_SB1)
+
+/*
+ * Mostly like R4000 for historic reasons
+ */
+ASMMACRO(mtc0_tlbw_hazard,
+ )
+ASMMACRO(tlbw_use_hazard,
+ )
+ASMMACRO(tlb_probe_hazard,
+ )
+ASMMACRO(irq_enable_hazard,
+ )
+ASMMACRO(irq_disable_hazard,
+ _ssnop; _ssnop; _ssnop
+ )
+ASMMACRO(back_to_back_c0_hazard,
+ )
+#define instruction_hazard() do { } while (0)
+
+#else
+
+/*
+ * Finally the catchall case for all other processors including R4000, R4400,
+ * R4600, R4700, R5000, RM7000, NEC VR41xx etc.
+ *
+ * The taken branch will result in a two cycle penalty for the two killed
+ * instructions on R4000 / R4400. Other processors only have a single cycle
+ * hazard so this is nice trick to have an optimal code for a range of
+ * processors.
+ */
+ASMMACRO(mtc0_tlbw_hazard,
+ nop
+ )
+ASMMACRO(tlbw_use_hazard,
+ nop; nop; nop
+ )
+ASMMACRO(tlb_probe_hazard,
+ nop; nop; nop
+ )
+ASMMACRO(irq_enable_hazard,
+ )
+ASMMACRO(irq_disable_hazard,
+ nop; nop; nop
+ )
+ASMMACRO(back_to_back_c0_hazard,
+ _ssnop; _ssnop; _ssnop;
+ )
+#define instruction_hazard() do { } while (0)
+
#endif
-extern void mips_ihb(void);
-
-#endif /* __ASSEMBLY__ */
-
#endif /* _ASM_HAZARDS_H */