blob: eeeea90cd5a96f1b08a12acc6b1d00d68a588c4f [file] [log] [blame]
/*
* linux/include/asm-arm/arch-ixp4xx/io.h
*
* Author: Deepak Saxena <dsaxena@plexity.net>
*
* Copyright (C) 2002-2005 MontaVista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __ASM_ARM_ARCH_IO_H
#define __ASM_ARM_ARCH_IO_H
#include <asm/hardware.h>
#define IO_SPACE_LIMIT 0xffff0000
extern int (*ixp4xx_pci_read)(u32 addr, u32 cmd, u32* data);
extern int ixp4xx_pci_write(u32 addr, u32 cmd, u32 data);
/*
* IXP4xx provides two methods of accessing PCI memory space:
*
* 1) A direct mapped window from 0x48000000 to 0x4bffffff (64MB).
* To access PCI via this space, we simply ioremap() the BAR
* into the kernel and we can use the standard read[bwl]/write[bwl]
* macros. This is the preffered method due to speed but it
* limits the system to just 64MB of PCI memory. This can be
* problamatic if using video cards and other memory-heavy
* targets.
*
* 2) If > 64MB of memory space is required, the IXP4xx can be configured
* to use indirect registers to access PCI (as we do below for I/O
* transactions). This allows for up to 128MB (0x48000000 to 0x4fffffff)
* of memory on the bus. The disadvantage of this is that every
* PCI access requires three local register accesses plus a spinlock,
* but in some cases the performance hit is acceptable. In addition,
* you cannot mmap() PCI devices in this case.
*
*/
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
#define __mem_pci(a) (a)
#else
#include <linux/mm.h>
/*
* In the case of using indirect PCI, we simply return the actual PCI
* address and our read/write implementation use that to drive the
* access registers. If something outside of PCI is ioremap'd, we
* fallback to the default.
*/
static inline void __iomem *
__ixp4xx_ioremap(unsigned long addr, size_t size, unsigned int mtype)
{
if((addr < PCIBIOS_MIN_MEM) || (addr > 0x4fffffff))
return __arm_ioremap(addr, size, mtype);
return (void *)addr;
}
static inline void
__ixp4xx_iounmap(void __iomem *addr)
{
if ((u32)addr >= VMALLOC_START)
__iounmap(addr);
}
#define __arch_ioremap(a, s, f) __ixp4xx_ioremap(a, s, f)
#define __arch_iounmap(a) __ixp4xx_iounmap(a)
#define writeb(v, p) __ixp4xx_writeb(v, p)
#define writew(v, p) __ixp4xx_writew(v, p)
#define writel(v, p) __ixp4xx_writel(v, p)
#define writesb(p, v, l) __ixp4xx_writesb(p, v, l)
#define writesw(p, v, l) __ixp4xx_writesw(p, v, l)
#define writesl(p, v, l) __ixp4xx_writesl(p, v, l)
#define readb(p) __ixp4xx_readb(p)
#define readw(p) __ixp4xx_readw(p)
#define readl(p) __ixp4xx_readl(p)
#define readsb(p, v, l) __ixp4xx_readsb(p, v, l)
#define readsw(p, v, l) __ixp4xx_readsw(p, v, l)
#define readsl(p, v, l) __ixp4xx_readsl(p, v, l)
static inline void
__ixp4xx_writeb(u8 value, volatile void __iomem *p)
{
u32 addr = (u32)p;
u32 n, byte_enables, data;
if (addr >= VMALLOC_START) {
__raw_writeb(value, addr);
return;
}
n = addr % 4;
byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL;
data = value << (8*n);
ixp4xx_pci_write(addr, byte_enables | NP_CMD_MEMWRITE, data);
}
static inline void
__ixp4xx_writesb(volatile void __iomem *bus_addr, const u8 *vaddr, int count)
{
while (count--)
writeb(*vaddr++, bus_addr);
}
static inline void
__ixp4xx_writew(u16 value, volatile void __iomem *p)
{
u32 addr = (u32)p;
u32 n, byte_enables, data;
if (addr >= VMALLOC_START) {
__raw_writew(value, addr);
return;
}
n = addr % 4;
byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL;
data = value << (8*n);
ixp4xx_pci_write(addr, byte_enables | NP_CMD_MEMWRITE, data);
}
static inline void
__ixp4xx_writesw(volatile void __iomem *bus_addr, const u16 *vaddr, int count)
{
while (count--)
writew(*vaddr++, bus_addr);
}
static inline void
__ixp4xx_writel(u32 value, volatile void __iomem *p)
{
u32 addr = (u32)p;
if (addr >= VMALLOC_START) {
__raw_writel(value, addr);
return;
}
ixp4xx_pci_write(addr, NP_CMD_MEMWRITE, value);
}
static inline void
__ixp4xx_writesl(volatile void __iomem *bus_addr, const u32 *vaddr, int count)
{
while (count--)
writel(*vaddr++, bus_addr);
}
static inline unsigned char
__ixp4xx_readb(const volatile void __iomem *p)
{
u32 addr = (u32)p;
u32 n, byte_enables, data;
if (addr >= VMALLOC_START)
return __raw_readb(addr);
n = addr % 4;
byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL;
if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_MEMREAD, &data))
return 0xff;
return data >> (8*n);
}
static inline void
__ixp4xx_readsb(const volatile void __iomem *bus_addr, u8 *vaddr, u32 count)
{
while (count--)
*vaddr++ = readb(bus_addr);
}
static inline unsigned short
__ixp4xx_readw(const volatile void __iomem *p)
{
u32 addr = (u32)p;
u32 n, byte_enables, data;
if (addr >= VMALLOC_START)
return __raw_readw(addr);
n = addr % 4;
byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL;
if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_MEMREAD, &data))
return 0xffff;
return data>>(8*n);
}
static inline void
__ixp4xx_readsw(const volatile void __iomem *bus_addr, u16 *vaddr, u32 count)
{
while (count--)
*vaddr++ = readw(bus_addr);
}
static inline unsigned long
__ixp4xx_readl(const volatile void __iomem *p)
{
u32 addr = (u32)p;
u32 data;
if (addr >= VMALLOC_START)
return __raw_readl(addr);
if (ixp4xx_pci_read(addr, NP_CMD_MEMREAD, &data))
return 0xffffffff;
return data;
}
static inline void
__ixp4xx_readsl(const volatile void __iomem *bus_addr, u32 *vaddr, u32 count)
{
while (count--)
*vaddr++ = readl(bus_addr);
}
/*
* We can use the built-in functions b/c they end up calling writeb/readb
*/
#define memset_io(c,v,l) _memset_io((c),(v),(l))
#define memcpy_fromio(a,c,l) _memcpy_fromio((a),(c),(l))
#define memcpy_toio(c,a,l) _memcpy_toio((c),(a),(l))
#endif
#ifndef CONFIG_PCI
#define __io(v) v
#else
/*
* IXP4xx does not have a transparent cpu -> PCI I/O translation
* window. Instead, it has a set of registers that must be tweaked
* with the proper byte lanes, command types, and address for the
* transaction. This means that we need to override the default
* I/O functions.
*/
#define outb(p, v) __ixp4xx_outb(p, v)
#define outw(p, v) __ixp4xx_outw(p, v)
#define outl(p, v) __ixp4xx_outl(p, v)
#define outsb(p, v, l) __ixp4xx_outsb(p, v, l)
#define outsw(p, v, l) __ixp4xx_outsw(p, v, l)
#define outsl(p, v, l) __ixp4xx_outsl(p, v, l)
#define inb(p) __ixp4xx_inb(p)
#define inw(p) __ixp4xx_inw(p)
#define inl(p) __ixp4xx_inl(p)
#define insb(p, v, l) __ixp4xx_insb(p, v, l)
#define insw(p, v, l) __ixp4xx_insw(p, v, l)
#define insl(p, v, l) __ixp4xx_insl(p, v, l)
static inline void
__ixp4xx_outb(u8 value, u32 addr)
{
u32 n, byte_enables, data;
n = addr % 4;
byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL;
data = value << (8*n);
ixp4xx_pci_write(addr, byte_enables | NP_CMD_IOWRITE, data);
}
static inline void
__ixp4xx_outsb(u32 io_addr, const u8 *vaddr, u32 count)
{
while (count--)
outb(*vaddr++, io_addr);
}
static inline void
__ixp4xx_outw(u16 value, u32 addr)
{
u32 n, byte_enables, data;
n = addr % 4;
byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL;
data = value << (8*n);
ixp4xx_pci_write(addr, byte_enables | NP_CMD_IOWRITE, data);
}
static inline void
__ixp4xx_outsw(u32 io_addr, const u16 *vaddr, u32 count)
{
while (count--)
outw(cpu_to_le16(*vaddr++), io_addr);
}
static inline void
__ixp4xx_outl(u32 value, u32 addr)
{
ixp4xx_pci_write(addr, NP_CMD_IOWRITE, value);
}
static inline void
__ixp4xx_outsl(u32 io_addr, const u32 *vaddr, u32 count)
{
while (count--)
outl(*vaddr++, io_addr);
}
static inline u8
__ixp4xx_inb(u32 addr)
{
u32 n, byte_enables, data;
n = addr % 4;
byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL;
if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_IOREAD, &data))
return 0xff;
return data >> (8*n);
}
static inline void
__ixp4xx_insb(u32 io_addr, u8 *vaddr, u32 count)
{
while (count--)
*vaddr++ = inb(io_addr);
}
static inline u16
__ixp4xx_inw(u32 addr)
{
u32 n, byte_enables, data;
n = addr % 4;
byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL;
if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_IOREAD, &data))
return 0xffff;
return data>>(8*n);
}
static inline void
__ixp4xx_insw(u32 io_addr, u16 *vaddr, u32 count)
{
while (count--)
*vaddr++ = le16_to_cpu(inw(io_addr));
}
static inline u32
__ixp4xx_inl(u32 addr)
{
u32 data;
if (ixp4xx_pci_read(addr, NP_CMD_IOREAD, &data))
return 0xffffffff;
return data;
}
static inline void
__ixp4xx_insl(u32 io_addr, u32 *vaddr, u32 count)
{
while (count--)
*vaddr++ = inl(io_addr);
}
#define PIO_OFFSET 0x10000UL
#define PIO_MASK 0x0ffffUL
#define __is_io_address(p) (((unsigned long)p >= PIO_OFFSET) && \
((unsigned long)p <= (PIO_MASK + PIO_OFFSET)))
static inline unsigned int
__ixp4xx_ioread8(const void __iomem *addr)
{
unsigned long port = (unsigned long __force)addr;
if (__is_io_address(port))
return (unsigned int)__ixp4xx_inb(port & PIO_MASK);
else
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
return (unsigned int)__raw_readb(port);
#else
return (unsigned int)__ixp4xx_readb(addr);
#endif
}
static inline void
__ixp4xx_ioread8_rep(const void __iomem *addr, void *vaddr, u32 count)
{
unsigned long port = (unsigned long __force)addr;
if (__is_io_address(port))
__ixp4xx_insb(port & PIO_MASK, vaddr, count);
else
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
__raw_readsb(addr, vaddr, count);
#else
__ixp4xx_readsb(addr, vaddr, count);
#endif
}
static inline unsigned int
__ixp4xx_ioread16(const void __iomem *addr)
{
unsigned long port = (unsigned long __force)addr;
if (__is_io_address(port))
return (unsigned int)__ixp4xx_inw(port & PIO_MASK);
else
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
return le16_to_cpu(__raw_readw((u32)port));
#else
return (unsigned int)__ixp4xx_readw(addr);
#endif
}
static inline void
__ixp4xx_ioread16_rep(const void __iomem *addr, void *vaddr, u32 count)
{
unsigned long port = (unsigned long __force)addr;
if (__is_io_address(port))
__ixp4xx_insw(port & PIO_MASK, vaddr, count);
else
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
__raw_readsw(addr, vaddr, count);
#else
__ixp4xx_readsw(addr, vaddr, count);
#endif
}
static inline unsigned int
__ixp4xx_ioread32(const void __iomem *addr)
{
unsigned long port = (unsigned long __force)addr;
if (__is_io_address(port))
return (unsigned int)__ixp4xx_inl(port & PIO_MASK);
else {
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
return le32_to_cpu(__raw_readl((u32)port));
#else
return (unsigned int)__ixp4xx_readl(addr);
#endif
}
}
static inline void
__ixp4xx_ioread32_rep(const void __iomem *addr, void *vaddr, u32 count)
{
unsigned long port = (unsigned long __force)addr;
if (__is_io_address(port))
__ixp4xx_insl(port & PIO_MASK, vaddr, count);
else
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
__raw_readsl(addr, vaddr, count);
#else
__ixp4xx_readsl(addr, vaddr, count);
#endif
}
static inline void
__ixp4xx_iowrite8(u8 value, void __iomem *addr)
{
unsigned long port = (unsigned long __force)addr;
if (__is_io_address(port))
__ixp4xx_outb(value, port & PIO_MASK);
else
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
__raw_writeb(value, port);
#else
__ixp4xx_writeb(value, addr);
#endif
}
static inline void
__ixp4xx_iowrite8_rep(void __iomem *addr, const void *vaddr, u32 count)
{
unsigned long port = (unsigned long __force)addr;
if (__is_io_address(port))
__ixp4xx_outsb(port & PIO_MASK, vaddr, count);
else
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
__raw_writesb(addr, vaddr, count);
#else
__ixp4xx_writesb(addr, vaddr, count);
#endif
}
static inline void
__ixp4xx_iowrite16(u16 value, void __iomem *addr)
{
unsigned long port = (unsigned long __force)addr;
if (__is_io_address(port))
__ixp4xx_outw(value, port & PIO_MASK);
else
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
__raw_writew(cpu_to_le16(value), addr);
#else
__ixp4xx_writew(value, addr);
#endif
}
static inline void
__ixp4xx_iowrite16_rep(void __iomem *addr, const void *vaddr, u32 count)
{
unsigned long port = (unsigned long __force)addr;
if (__is_io_address(port))
__ixp4xx_outsw(port & PIO_MASK, vaddr, count);
else
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
__raw_writesw(addr, vaddr, count);
#else
__ixp4xx_writesw(addr, vaddr, count);
#endif
}
static inline void
__ixp4xx_iowrite32(u32 value, void __iomem *addr)
{
unsigned long port = (unsigned long __force)addr;
if (__is_io_address(port))
__ixp4xx_outl(value, port & PIO_MASK);
else
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
__raw_writel(cpu_to_le32(value), port);
#else
__ixp4xx_writel(value, addr);
#endif
}
static inline void
__ixp4xx_iowrite32_rep(void __iomem *addr, const void *vaddr, u32 count)
{
unsigned long port = (unsigned long __force)addr;
if (__is_io_address(port))
__ixp4xx_outsl(port & PIO_MASK, vaddr, count);
else
#ifndef CONFIG_IXP4XX_INDIRECT_PCI
__raw_writesl(addr, vaddr, count);
#else
__ixp4xx_writesl(addr, vaddr, count);
#endif
}
#define ioread8(p) __ixp4xx_ioread8(p)
#define ioread16(p) __ixp4xx_ioread16(p)
#define ioread32(p) __ixp4xx_ioread32(p)
#define ioread8_rep(p, v, c) __ixp4xx_ioread8_rep(p, v, c)
#define ioread16_rep(p, v, c) __ixp4xx_ioread16_rep(p, v, c)
#define ioread32_rep(p, v, c) __ixp4xx_ioread32_rep(p, v, c)
#define iowrite8(v,p) __ixp4xx_iowrite8(v,p)
#define iowrite16(v,p) __ixp4xx_iowrite16(v,p)
#define iowrite32(v,p) __ixp4xx_iowrite32(v,p)
#define iowrite8_rep(p, v, c) __ixp4xx_iowrite8_rep(p, v, c)
#define iowrite16_rep(p, v, c) __ixp4xx_iowrite16_rep(p, v, c)
#define iowrite32_rep(p, v, c) __ixp4xx_iowrite32_rep(p, v, c)
#define ioport_map(port, nr) ((void __iomem*)(port + PIO_OFFSET))
#define ioport_unmap(addr)
#endif // !CONFIG_PCI
#endif // __ASM_ARM_ARCH_IO_H