| /* |
| * Mu-Law conversion Plug-In Interface |
| * Copyright (c) 1999 by Jaroslav Kysela <perex@suse.cz> |
| * Uros Bizjak <uros@kss-loka.si> |
| * |
| * Based on reference implementation by Sun Microsystems, Inc. |
| * |
| * This library is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU Library General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| */ |
| |
| #include <sound/driver.h> |
| #include <linux/time.h> |
| #include <sound/core.h> |
| #include <sound/pcm.h> |
| #include "pcm_plugin.h" |
| |
| #define SIGN_BIT (0x80) /* Sign bit for a u-law byte. */ |
| #define QUANT_MASK (0xf) /* Quantization field mask. */ |
| #define NSEGS (8) /* Number of u-law segments. */ |
| #define SEG_SHIFT (4) /* Left shift for segment number. */ |
| #define SEG_MASK (0x70) /* Segment field mask. */ |
| |
| static inline int val_seg(int val) |
| { |
| int r = 0; |
| val >>= 7; |
| if (val & 0xf0) { |
| val >>= 4; |
| r += 4; |
| } |
| if (val & 0x0c) { |
| val >>= 2; |
| r += 2; |
| } |
| if (val & 0x02) |
| r += 1; |
| return r; |
| } |
| |
| #define BIAS (0x84) /* Bias for linear code. */ |
| |
| /* |
| * linear2ulaw() - Convert a linear PCM value to u-law |
| * |
| * In order to simplify the encoding process, the original linear magnitude |
| * is biased by adding 33 which shifts the encoding range from (0 - 8158) to |
| * (33 - 8191). The result can be seen in the following encoding table: |
| * |
| * Biased Linear Input Code Compressed Code |
| * ------------------------ --------------- |
| * 00000001wxyza 000wxyz |
| * 0000001wxyzab 001wxyz |
| * 000001wxyzabc 010wxyz |
| * 00001wxyzabcd 011wxyz |
| * 0001wxyzabcde 100wxyz |
| * 001wxyzabcdef 101wxyz |
| * 01wxyzabcdefg 110wxyz |
| * 1wxyzabcdefgh 111wxyz |
| * |
| * Each biased linear code has a leading 1 which identifies the segment |
| * number. The value of the segment number is equal to 7 minus the number |
| * of leading 0's. The quantization interval is directly available as the |
| * four bits wxyz. * The trailing bits (a - h) are ignored. |
| * |
| * Ordinarily the complement of the resulting code word is used for |
| * transmission, and so the code word is complemented before it is returned. |
| * |
| * For further information see John C. Bellamy's Digital Telephony, 1982, |
| * John Wiley & Sons, pps 98-111 and 472-476. |
| */ |
| static unsigned char linear2ulaw(int pcm_val) /* 2's complement (16-bit range) */ |
| { |
| int mask; |
| int seg; |
| unsigned char uval; |
| |
| /* Get the sign and the magnitude of the value. */ |
| if (pcm_val < 0) { |
| pcm_val = BIAS - pcm_val; |
| mask = 0x7F; |
| } else { |
| pcm_val += BIAS; |
| mask = 0xFF; |
| } |
| if (pcm_val > 0x7FFF) |
| pcm_val = 0x7FFF; |
| |
| /* Convert the scaled magnitude to segment number. */ |
| seg = val_seg(pcm_val); |
| |
| /* |
| * Combine the sign, segment, quantization bits; |
| * and complement the code word. |
| */ |
| uval = (seg << 4) | ((pcm_val >> (seg + 3)) & 0xF); |
| return uval ^ mask; |
| } |
| |
| /* |
| * ulaw2linear() - Convert a u-law value to 16-bit linear PCM |
| * |
| * First, a biased linear code is derived from the code word. An unbiased |
| * output can then be obtained by subtracting 33 from the biased code. |
| * |
| * Note that this function expects to be passed the complement of the |
| * original code word. This is in keeping with ISDN conventions. |
| */ |
| static int ulaw2linear(unsigned char u_val) |
| { |
| int t; |
| |
| /* Complement to obtain normal u-law value. */ |
| u_val = ~u_val; |
| |
| /* |
| * Extract and bias the quantization bits. Then |
| * shift up by the segment number and subtract out the bias. |
| */ |
| t = ((u_val & QUANT_MASK) << 3) + BIAS; |
| t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT; |
| |
| return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS)); |
| } |
| |
| /* |
| * Basic Mu-Law plugin |
| */ |
| |
| typedef void (*mulaw_f)(struct snd_pcm_plugin *plugin, |
| const struct snd_pcm_plugin_channel *src_channels, |
| struct snd_pcm_plugin_channel *dst_channels, |
| snd_pcm_uframes_t frames); |
| |
| struct mulaw_priv { |
| mulaw_f func; |
| int conv; |
| }; |
| |
| static void mulaw_decode(struct snd_pcm_plugin *plugin, |
| const struct snd_pcm_plugin_channel *src_channels, |
| struct snd_pcm_plugin_channel *dst_channels, |
| snd_pcm_uframes_t frames) |
| { |
| #define PUT_S16_LABELS |
| #include "plugin_ops.h" |
| #undef PUT_S16_LABELS |
| struct mulaw_priv *data = (struct mulaw_priv *)plugin->extra_data; |
| void *put = put_s16_labels[data->conv]; |
| int channel; |
| int nchannels = plugin->src_format.channels; |
| for (channel = 0; channel < nchannels; ++channel) { |
| char *src; |
| char *dst; |
| int src_step, dst_step; |
| snd_pcm_uframes_t frames1; |
| if (!src_channels[channel].enabled) { |
| if (dst_channels[channel].wanted) |
| snd_pcm_area_silence(&dst_channels[channel].area, 0, frames, plugin->dst_format.format); |
| dst_channels[channel].enabled = 0; |
| continue; |
| } |
| dst_channels[channel].enabled = 1; |
| src = src_channels[channel].area.addr + src_channels[channel].area.first / 8; |
| dst = dst_channels[channel].area.addr + dst_channels[channel].area.first / 8; |
| src_step = src_channels[channel].area.step / 8; |
| dst_step = dst_channels[channel].area.step / 8; |
| frames1 = frames; |
| while (frames1-- > 0) { |
| signed short sample = ulaw2linear(*src); |
| goto *put; |
| #define PUT_S16_END after |
| #include "plugin_ops.h" |
| #undef PUT_S16_END |
| after: |
| src += src_step; |
| dst += dst_step; |
| } |
| } |
| } |
| |
| static void mulaw_encode(struct snd_pcm_plugin *plugin, |
| const struct snd_pcm_plugin_channel *src_channels, |
| struct snd_pcm_plugin_channel *dst_channels, |
| snd_pcm_uframes_t frames) |
| { |
| #define GET_S16_LABELS |
| #include "plugin_ops.h" |
| #undef GET_S16_LABELS |
| struct mulaw_priv *data = (struct mulaw_priv *)plugin->extra_data; |
| void *get = get_s16_labels[data->conv]; |
| int channel; |
| int nchannels = plugin->src_format.channels; |
| signed short sample = 0; |
| for (channel = 0; channel < nchannels; ++channel) { |
| char *src; |
| char *dst; |
| int src_step, dst_step; |
| snd_pcm_uframes_t frames1; |
| if (!src_channels[channel].enabled) { |
| if (dst_channels[channel].wanted) |
| snd_pcm_area_silence(&dst_channels[channel].area, 0, frames, plugin->dst_format.format); |
| dst_channels[channel].enabled = 0; |
| continue; |
| } |
| dst_channels[channel].enabled = 1; |
| src = src_channels[channel].area.addr + src_channels[channel].area.first / 8; |
| dst = dst_channels[channel].area.addr + dst_channels[channel].area.first / 8; |
| src_step = src_channels[channel].area.step / 8; |
| dst_step = dst_channels[channel].area.step / 8; |
| frames1 = frames; |
| while (frames1-- > 0) { |
| goto *get; |
| #define GET_S16_END after |
| #include "plugin_ops.h" |
| #undef GET_S16_END |
| after: |
| *dst = linear2ulaw(sample); |
| src += src_step; |
| dst += dst_step; |
| } |
| } |
| } |
| |
| static snd_pcm_sframes_t mulaw_transfer(struct snd_pcm_plugin *plugin, |
| const struct snd_pcm_plugin_channel *src_channels, |
| struct snd_pcm_plugin_channel *dst_channels, |
| snd_pcm_uframes_t frames) |
| { |
| struct mulaw_priv *data; |
| |
| snd_assert(plugin != NULL && src_channels != NULL && dst_channels != NULL, return -ENXIO); |
| if (frames == 0) |
| return 0; |
| #ifdef CONFIG_SND_DEBUG |
| { |
| unsigned int channel; |
| for (channel = 0; channel < plugin->src_format.channels; channel++) { |
| snd_assert(src_channels[channel].area.first % 8 == 0 && |
| src_channels[channel].area.step % 8 == 0, |
| return -ENXIO); |
| snd_assert(dst_channels[channel].area.first % 8 == 0 && |
| dst_channels[channel].area.step % 8 == 0, |
| return -ENXIO); |
| } |
| } |
| #endif |
| data = (struct mulaw_priv *)plugin->extra_data; |
| data->func(plugin, src_channels, dst_channels, frames); |
| return frames; |
| } |
| |
| int snd_pcm_plugin_build_mulaw(struct snd_pcm_substream *plug, |
| struct snd_pcm_plugin_format *src_format, |
| struct snd_pcm_plugin_format *dst_format, |
| struct snd_pcm_plugin **r_plugin) |
| { |
| int err; |
| struct mulaw_priv *data; |
| struct snd_pcm_plugin *plugin; |
| struct snd_pcm_plugin_format *format; |
| mulaw_f func; |
| |
| snd_assert(r_plugin != NULL, return -ENXIO); |
| *r_plugin = NULL; |
| |
| snd_assert(src_format->rate == dst_format->rate, return -ENXIO); |
| snd_assert(src_format->channels == dst_format->channels, return -ENXIO); |
| |
| if (dst_format->format == SNDRV_PCM_FORMAT_MU_LAW) { |
| format = src_format; |
| func = mulaw_encode; |
| } |
| else if (src_format->format == SNDRV_PCM_FORMAT_MU_LAW) { |
| format = dst_format; |
| func = mulaw_decode; |
| } |
| else { |
| snd_BUG(); |
| return -EINVAL; |
| } |
| snd_assert(snd_pcm_format_linear(format->format) != 0, return -ENXIO); |
| |
| err = snd_pcm_plugin_build(plug, "Mu-Law<->linear conversion", |
| src_format, dst_format, |
| sizeof(struct mulaw_priv), &plugin); |
| if (err < 0) |
| return err; |
| data = (struct mulaw_priv *)plugin->extra_data; |
| data->func = func; |
| data->conv = getput_index(format->format); |
| snd_assert(data->conv >= 0 && data->conv < 4*2*2, return -EINVAL); |
| plugin->transfer = mulaw_transfer; |
| *r_plugin = plugin; |
| return 0; |
| } |