blob: 3f4d87bfae372c249069ee626edffd9e721dea3d [file] [log] [blame]
/* drivers/serial/msm_serial_hs.c
*
* MSM 7k High speed uart driver
*
* Copyright (c) 2008 Google Inc.
* Copyright (c) 2007-2012, Code Aurora Forum. All rights reserved.
* Modified: Nick Pelly <npelly@google.com>
*
* All source code in this file is licensed under the following license
* except where indicated.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* Has optional support for uart power management independent of linux
* suspend/resume:
*
* RX wakeup.
* UART wakeup can be triggered by RX activity (using a wakeup GPIO on the
* UART RX pin). This should only be used if there is not a wakeup
* GPIO on the UART CTS, and the first RX byte is known (for example, with the
* Bluetooth Texas Instruments HCILL protocol), since the first RX byte will
* always be lost. RTS will be asserted even while the UART is off in this mode
* of operation. See msm_serial_hs_platform_data.rx_wakeup_irq.
*/
#include <linux/module.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/tty_flip.h>
#include <linux/wait.h>
#include <linux/sysfs.h>
#include <linux/stat.h>
#include <linux/device.h>
#include <linux/wakelock.h>
#include <linux/debugfs.h>
#include <asm/atomic.h>
#include <asm/irq.h>
#include <mach/hardware.h>
#include <mach/dma.h>
#include <mach/msm_serial_hs.h>
#include "msm_serial_hs_hwreg.h"
static int hs_serial_debug_mask = 1;
module_param_named(debug_mask, hs_serial_debug_mask,
int, S_IRUGO | S_IWUSR | S_IWGRP);
enum flush_reason {
FLUSH_NONE,
FLUSH_DATA_READY,
FLUSH_DATA_INVALID, /* values after this indicate invalid data */
FLUSH_IGNORE = FLUSH_DATA_INVALID,
FLUSH_STOP,
FLUSH_SHUTDOWN,
};
enum msm_hs_clk_states_e {
MSM_HS_CLK_PORT_OFF, /* port not in use */
MSM_HS_CLK_OFF, /* clock disabled */
MSM_HS_CLK_REQUEST_OFF, /* disable after TX and RX flushed */
MSM_HS_CLK_ON, /* clock enabled */
};
/* Track the forced RXSTALE flush during clock off sequence.
* These states are only valid during MSM_HS_CLK_REQUEST_OFF */
enum msm_hs_clk_req_off_state_e {
CLK_REQ_OFF_START,
CLK_REQ_OFF_RXSTALE_ISSUED,
CLK_REQ_OFF_FLUSH_ISSUED,
CLK_REQ_OFF_RXSTALE_FLUSHED,
};
struct msm_hs_tx {
unsigned int tx_ready_int_en; /* ok to dma more tx */
unsigned int dma_in_flight; /* tx dma in progress */
enum flush_reason flush;
wait_queue_head_t wait;
struct msm_dmov_cmd xfer;
dmov_box *command_ptr;
u32 *command_ptr_ptr;
dma_addr_t mapped_cmd_ptr;
dma_addr_t mapped_cmd_ptr_ptr;
int tx_count;
dma_addr_t dma_base;
struct tasklet_struct tlet;
};
struct msm_hs_rx {
enum flush_reason flush;
struct msm_dmov_cmd xfer;
dma_addr_t cmdptr_dmaaddr;
dmov_box *command_ptr;
u32 *command_ptr_ptr;
dma_addr_t mapped_cmd_ptr;
wait_queue_head_t wait;
dma_addr_t rbuffer;
unsigned char *buffer;
unsigned int buffer_pending;
struct dma_pool *pool;
struct wake_lock wake_lock;
struct delayed_work flip_insert_work;
struct tasklet_struct tlet;
};
enum buffer_states {
NONE_PENDING = 0x0,
FIFO_OVERRUN = 0x1,
PARITY_ERROR = 0x2,
CHARS_NORMAL = 0x4,
};
/* optional low power wakeup, typically on a GPIO RX irq */
struct msm_hs_wakeup {
int irq; /* < 0 indicates low power wakeup disabled */
unsigned char ignore; /* bool */
/* bool: inject char into rx tty on wakeup */
unsigned char inject_rx;
char rx_to_inject;
};
struct msm_hs_port {
struct uart_port uport;
unsigned long imr_reg; /* shadow value of UARTDM_IMR */
struct clk *clk;
struct clk *pclk;
struct msm_hs_tx tx;
struct msm_hs_rx rx;
/* gsbi uarts have to do additional writes to gsbi memory */
/* block and top control status block. The following pointers */
/* keep a handle to these blocks. */
unsigned char __iomem *mapped_gsbi;
int dma_tx_channel;
int dma_rx_channel;
int dma_tx_crci;
int dma_rx_crci;
struct hrtimer clk_off_timer; /* to poll TXEMT before clock off */
ktime_t clk_off_delay;
enum msm_hs_clk_states_e clk_state;
enum msm_hs_clk_req_off_state_e clk_req_off_state;
struct msm_hs_wakeup wakeup;
struct wake_lock dma_wake_lock; /* held while any DMA active */
struct dentry *loopback_dir;
struct work_struct clock_off_w; /* work for actual clock off */
struct workqueue_struct *hsuart_wq; /* hsuart workqueue */
struct mutex clk_mutex; /* mutex to guard against clock off/clock on */
};
#define MSM_UARTDM_BURST_SIZE 16 /* DM burst size (in bytes) */
#define UARTDM_TX_BUF_SIZE UART_XMIT_SIZE
#define UARTDM_RX_BUF_SIZE 512
#define RETRY_TIMEOUT 5
#define UARTDM_NR 5
static struct dentry *debug_base;
static struct msm_hs_port q_uart_port[UARTDM_NR];
static struct platform_driver msm_serial_hs_platform_driver;
static struct uart_driver msm_hs_driver;
static struct uart_ops msm_hs_ops;
#define UARTDM_TO_MSM(uart_port) \
container_of((uart_port), struct msm_hs_port, uport)
static ssize_t show_clock(struct device *dev, struct device_attribute *attr,
char *buf)
{
int state = 1;
enum msm_hs_clk_states_e clk_state;
unsigned long flags;
struct platform_device *pdev = container_of(dev, struct
platform_device, dev);
struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
spin_lock_irqsave(&msm_uport->uport.lock, flags);
clk_state = msm_uport->clk_state;
spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
if (clk_state <= MSM_HS_CLK_OFF)
state = 0;
return snprintf(buf, PAGE_SIZE, "%d\n", state);
}
static ssize_t set_clock(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int state;
struct platform_device *pdev = container_of(dev, struct
platform_device, dev);
struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
state = buf[0] - '0';
switch (state) {
case 0: {
msm_hs_request_clock_off(&msm_uport->uport);
break;
}
case 1: {
msm_hs_request_clock_on(&msm_uport->uport);
break;
}
default: {
return -EINVAL;
}
}
return count;
}
static DEVICE_ATTR(clock, S_IWUSR | S_IRUGO, show_clock, set_clock);
static inline unsigned int use_low_power_wakeup(struct msm_hs_port *msm_uport)
{
return (msm_uport->wakeup.irq > 0);
}
static inline int is_gsbi_uart(struct msm_hs_port *msm_uport)
{
/* assume gsbi uart if gsbi resource found in pdata */
return ((msm_uport->mapped_gsbi != NULL));
}
static inline unsigned int msm_hs_read(struct uart_port *uport,
unsigned int offset)
{
return readl_relaxed(uport->membase + offset);
}
static inline void msm_hs_write(struct uart_port *uport, unsigned int offset,
unsigned int value)
{
writel_relaxed(value, uport->membase + offset);
}
static void msm_hs_release_port(struct uart_port *port)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(port);
struct platform_device *pdev = to_platform_device(port->dev);
struct resource *gsbi_resource;
resource_size_t size;
if (is_gsbi_uart(msm_uport)) {
iowrite32(GSBI_PROTOCOL_IDLE, msm_uport->mapped_gsbi +
GSBI_CONTROL_ADDR);
gsbi_resource = platform_get_resource_byname(pdev,
IORESOURCE_MEM,
"gsbi_resource");
if (unlikely(!gsbi_resource))
return;
size = resource_size(gsbi_resource);
release_mem_region(gsbi_resource->start, size);
iounmap(msm_uport->mapped_gsbi);
msm_uport->mapped_gsbi = NULL;
}
}
static int msm_hs_request_port(struct uart_port *port)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(port);
struct platform_device *pdev = to_platform_device(port->dev);
struct resource *gsbi_resource;
resource_size_t size;
gsbi_resource = platform_get_resource_byname(pdev,
IORESOURCE_MEM,
"gsbi_resource");
if (gsbi_resource) {
size = resource_size(gsbi_resource);
if (unlikely(!request_mem_region(gsbi_resource->start, size,
"msm_serial_hs")))
return -EBUSY;
msm_uport->mapped_gsbi = ioremap(gsbi_resource->start,
size);
if (!msm_uport->mapped_gsbi) {
release_mem_region(gsbi_resource->start, size);
return -EBUSY;
}
}
/* no gsbi uart */
return 0;
}
static int msm_serial_loopback_enable_set(void *data, u64 val)
{
struct msm_hs_port *msm_uport = data;
struct uart_port *uport = &(msm_uport->uport);
unsigned long flags;
int ret = 0;
clk_prepare_enable(msm_uport->clk);
if (msm_uport->pclk)
clk_prepare_enable(msm_uport->pclk);
if (val) {
spin_lock_irqsave(&uport->lock, flags);
ret = msm_hs_read(uport, UARTDM_MR2_ADDR);
ret |= UARTDM_MR2_LOOP_MODE_BMSK;
msm_hs_write(uport, UARTDM_MR2_ADDR, ret);
spin_unlock_irqrestore(&uport->lock, flags);
} else {
spin_lock_irqsave(&uport->lock, flags);
ret = msm_hs_read(uport, UARTDM_MR2_ADDR);
ret &= ~UARTDM_MR2_LOOP_MODE_BMSK;
msm_hs_write(uport, UARTDM_MR2_ADDR, ret);
spin_unlock_irqrestore(&uport->lock, flags);
}
/* Calling CLOCK API. Hence mb() requires here. */
mb();
clk_disable_unprepare(msm_uport->clk);
if (msm_uport->pclk)
clk_disable_unprepare(msm_uport->pclk);
return 0;
}
static int msm_serial_loopback_enable_get(void *data, u64 *val)
{
struct msm_hs_port *msm_uport = data;
struct uart_port *uport = &(msm_uport->uport);
unsigned long flags;
int ret = 0;
clk_prepare_enable(msm_uport->clk);
if (msm_uport->pclk)
clk_prepare_enable(msm_uport->pclk);
spin_lock_irqsave(&uport->lock, flags);
ret = msm_hs_read(&msm_uport->uport, UARTDM_MR2_ADDR);
spin_unlock_irqrestore(&uport->lock, flags);
clk_disable_unprepare(msm_uport->clk);
if (msm_uport->pclk)
clk_disable_unprepare(msm_uport->pclk);
*val = (ret & UARTDM_MR2_LOOP_MODE_BMSK) ? 1 : 0;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(loopback_enable_fops, msm_serial_loopback_enable_get,
msm_serial_loopback_enable_set, "%llu\n");
/*
* msm_serial_hs debugfs node: <debugfs_root>/msm_serial_hs/loopback.<id>
* writing 1 turns on internal loopback mode in HW. Useful for automation
* test scripts.
* writing 0 disables the internal loopback mode. Default is disabled.
*/
static void __devinit msm_serial_debugfs_init(struct msm_hs_port *msm_uport,
int id)
{
char node_name[15];
snprintf(node_name, sizeof(node_name), "loopback.%d", id);
msm_uport->loopback_dir = debugfs_create_file(node_name,
S_IRUGO | S_IWUSR,
debug_base,
msm_uport,
&loopback_enable_fops);
if (IS_ERR_OR_NULL(msm_uport->loopback_dir))
pr_err("%s(): Cannot create loopback.%d debug entry",
__func__, id);
}
static int __devexit msm_hs_remove(struct platform_device *pdev)
{
struct msm_hs_port *msm_uport;
struct device *dev;
struct msm_serial_hs_platform_data *pdata = pdev->dev.platform_data;
if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id);
return -EINVAL;
}
msm_uport = &q_uart_port[pdev->id];
dev = msm_uport->uport.dev;
if (pdata && pdata->gpio_config)
if (pdata->gpio_config(0))
dev_err(dev, "GPIO config error\n");
sysfs_remove_file(&pdev->dev.kobj, &dev_attr_clock.attr);
debugfs_remove(msm_uport->loopback_dir);
dma_unmap_single(dev, msm_uport->rx.mapped_cmd_ptr, sizeof(dmov_box),
DMA_TO_DEVICE);
dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
msm_uport->rx.rbuffer);
dma_pool_destroy(msm_uport->rx.pool);
dma_unmap_single(dev, msm_uport->rx.cmdptr_dmaaddr, sizeof(u32),
DMA_TO_DEVICE);
dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr_ptr, sizeof(u32),
DMA_TO_DEVICE);
dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr, sizeof(dmov_box),
DMA_TO_DEVICE);
wake_lock_destroy(&msm_uport->rx.wake_lock);
wake_lock_destroy(&msm_uport->dma_wake_lock);
destroy_workqueue(msm_uport->hsuart_wq);
mutex_destroy(&msm_uport->clk_mutex);
uart_remove_one_port(&msm_hs_driver, &msm_uport->uport);
clk_put(msm_uport->clk);
if (msm_uport->pclk)
clk_put(msm_uport->pclk);
/* Free the tx resources */
kfree(msm_uport->tx.command_ptr);
kfree(msm_uport->tx.command_ptr_ptr);
/* Free the rx resources */
kfree(msm_uport->rx.command_ptr);
kfree(msm_uport->rx.command_ptr_ptr);
iounmap(msm_uport->uport.membase);
return 0;
}
static int msm_hs_init_clk(struct uart_port *uport)
{
int ret;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
/* Set up the MREG/NREG/DREG/MNDREG */
ret = clk_set_rate(msm_uport->clk, uport->uartclk);
if (ret) {
printk(KERN_WARNING "Error setting clock rate on UART\n");
return ret;
}
ret = clk_prepare_enable(msm_uport->clk);
if (ret) {
printk(KERN_ERR "Error could not turn on UART clk\n");
return ret;
}
if (msm_uport->pclk) {
ret = clk_prepare_enable(msm_uport->pclk);
if (ret) {
clk_disable_unprepare(msm_uport->clk);
dev_err(uport->dev,
"Error could not turn on UART pclk\n");
return ret;
}
}
msm_uport->clk_state = MSM_HS_CLK_ON;
return 0;
}
/*
* programs the UARTDM_CSR register with correct bit rates
*
* Interrupts should be disabled before we are called, as
* we modify Set Baud rate
* Set receive stale interrupt level, dependant on Bit Rate
* Goal is to have around 8 ms before indicate stale.
* roundup (((Bit Rate * .008) / 10) + 1
*/
static unsigned long msm_hs_set_bps_locked(struct uart_port *uport,
unsigned int bps,
unsigned long flags)
{
unsigned long rxstale;
unsigned long data;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
switch (bps) {
case 300:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0x00);
rxstale = 1;
break;
case 600:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0x11);
rxstale = 1;
break;
case 1200:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0x22);
rxstale = 1;
break;
case 2400:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0x33);
rxstale = 1;
break;
case 4800:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0x44);
rxstale = 1;
break;
case 9600:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0x55);
rxstale = 2;
break;
case 14400:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0x66);
rxstale = 3;
break;
case 19200:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0x77);
rxstale = 4;
break;
case 28800:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0x88);
rxstale = 6;
break;
case 38400:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0x99);
rxstale = 8;
break;
case 57600:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0xaa);
rxstale = 16;
break;
case 76800:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0xbb);
rxstale = 16;
break;
case 115200:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0xcc);
rxstale = 31;
break;
case 230400:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0xee);
rxstale = 31;
break;
case 460800:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0xff);
rxstale = 31;
break;
case 4000000:
case 3686400:
case 3200000:
case 3500000:
case 3000000:
case 2500000:
case 1500000:
case 1152000:
case 1000000:
case 921600:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0xff);
rxstale = 31;
break;
default:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0xff);
/* default to 9600 */
bps = 9600;
rxstale = 2;
break;
}
/*
* uart baud rate depends on CSR and MND Values
* we are updating CSR before and then calling
* clk_set_rate which updates MND Values. Hence
* dsb requires here.
*/
mb();
if (bps > 460800) {
uport->uartclk = bps * 16;
} else {
uport->uartclk = 7372800;
}
spin_unlock_irqrestore(&uport->lock, flags);
if (clk_set_rate(msm_uport->clk, uport->uartclk)) {
printk(KERN_WARNING "Error setting clock rate on UART\n");
WARN_ON(1);
spin_lock_irqsave(&uport->lock, flags);
return flags;
}
spin_lock_irqsave(&uport->lock, flags);
data = rxstale & UARTDM_IPR_STALE_LSB_BMSK;
data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2);
msm_hs_write(uport, UARTDM_IPR_ADDR, data);
/*
* It is suggested to do reset of transmitter and receiver after
* changing any protocol configuration. Here Baud rate and stale
* timeout are getting updated. Hence reset transmitter and receiver.
*/
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
return flags;
}
static void msm_hs_set_std_bps_locked(struct uart_port *uport,
unsigned int bps)
{
unsigned long rxstale;
unsigned long data;
switch (bps) {
case 9600:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0x99);
rxstale = 2;
break;
case 14400:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0xaa);
rxstale = 3;
break;
case 19200:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0xbb);
rxstale = 4;
break;
case 28800:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0xcc);
rxstale = 6;
break;
case 38400:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0xdd);
rxstale = 8;
break;
case 57600:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0xee);
rxstale = 16;
break;
case 115200:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0xff);
rxstale = 31;
break;
default:
msm_hs_write(uport, UARTDM_CSR_ADDR, 0x99);
/* default to 9600 */
bps = 9600;
rxstale = 2;
break;
}
data = rxstale & UARTDM_IPR_STALE_LSB_BMSK;
data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2);
msm_hs_write(uport, UARTDM_IPR_ADDR, data);
}
/*
* termios : new ktermios
* oldtermios: old ktermios previous setting
*
* Configure the serial port
*/
static void msm_hs_set_termios(struct uart_port *uport,
struct ktermios *termios,
struct ktermios *oldtermios)
{
unsigned int bps;
unsigned long data;
unsigned long flags;
unsigned int c_cflag = termios->c_cflag;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
mutex_lock(&msm_uport->clk_mutex);
spin_lock_irqsave(&uport->lock, flags);
/*
* Disable Rx channel of UARTDM
* DMA Rx Stall happens if enqueue and flush of Rx command happens
* concurrently. Hence before changing the baud rate/protocol
* configuration and sending flush command to ADM, disable the Rx
* channel of UARTDM.
* Note: should not reset the receiver here immediately as it is not
* suggested to do disable/reset or reset/disable at the same time.
*/
data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
data &= ~UARTDM_RX_DM_EN_BMSK;
msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
/* 300 is the minimum baud support by the driver */
bps = uart_get_baud_rate(uport, termios, oldtermios, 200, 4000000);
/* Temporary remapping 200 BAUD to 3.2 mbps */
if (bps == 200)
bps = 3200000;
uport->uartclk = clk_get_rate(msm_uport->clk);
if (!uport->uartclk)
msm_hs_set_std_bps_locked(uport, bps);
else
flags = msm_hs_set_bps_locked(uport, bps, flags);
data = msm_hs_read(uport, UARTDM_MR2_ADDR);
data &= ~UARTDM_MR2_PARITY_MODE_BMSK;
/* set parity */
if (PARENB == (c_cflag & PARENB)) {
if (PARODD == (c_cflag & PARODD)) {
data |= ODD_PARITY;
} else if (CMSPAR == (c_cflag & CMSPAR)) {
data |= SPACE_PARITY;
} else {
data |= EVEN_PARITY;
}
}
/* Set bits per char */
data &= ~UARTDM_MR2_BITS_PER_CHAR_BMSK;
switch (c_cflag & CSIZE) {
case CS5:
data |= FIVE_BPC;
break;
case CS6:
data |= SIX_BPC;
break;
case CS7:
data |= SEVEN_BPC;
break;
default:
data |= EIGHT_BPC;
break;
}
/* stop bits */
if (c_cflag & CSTOPB) {
data |= STOP_BIT_TWO;
} else {
/* otherwise 1 stop bit */
data |= STOP_BIT_ONE;
}
data |= UARTDM_MR2_ERROR_MODE_BMSK;
/* write parity/bits per char/stop bit configuration */
msm_hs_write(uport, UARTDM_MR2_ADDR, data);
/* Configure HW flow control */
data = msm_hs_read(uport, UARTDM_MR1_ADDR);
data &= ~(UARTDM_MR1_CTS_CTL_BMSK | UARTDM_MR1_RX_RDY_CTL_BMSK);
if (c_cflag & CRTSCTS) {
data |= UARTDM_MR1_CTS_CTL_BMSK;
data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
}
msm_hs_write(uport, UARTDM_MR1_ADDR, data);
uport->ignore_status_mask = termios->c_iflag & INPCK;
uport->ignore_status_mask |= termios->c_iflag & IGNPAR;
uport->read_status_mask = (termios->c_cflag & CREAD);
msm_hs_write(uport, UARTDM_IMR_ADDR, 0);
/* Set Transmit software time out */
uart_update_timeout(uport, c_cflag, bps);
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
if (msm_uport->rx.flush == FLUSH_NONE) {
wake_lock(&msm_uport->rx.wake_lock);
msm_uport->rx.flush = FLUSH_IGNORE;
/*
* Before using dmov APIs make sure that
* previous writel are completed. Hence
* dsb requires here.
*/
mb();
/* do discard flush */
msm_dmov_flush(msm_uport->dma_rx_channel, 0);
}
msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
mb();
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
}
/*
* Standard API, Transmitter
* Any character in the transmit shift register is sent
*/
unsigned int msm_hs_tx_empty(struct uart_port *uport)
{
unsigned int data;
unsigned int ret = 0;
data = msm_hs_read(uport, UARTDM_SR_ADDR);
if (data & UARTDM_SR_TXEMT_BMSK)
ret = TIOCSER_TEMT;
return ret;
}
EXPORT_SYMBOL(msm_hs_tx_empty);
/*
* Standard API, Stop transmitter.
* Any character in the transmit shift register is sent as
* well as the current data mover transfer .
*/
static void msm_hs_stop_tx_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
msm_uport->tx.tx_ready_int_en = 0;
}
/*
* Standard API, Stop receiver as soon as possible.
*
* Function immediately terminates the operation of the
* channel receiver and any incoming characters are lost. None
* of the receiver status bits are affected by this command and
* characters that are already in the receive FIFO there.
*/
static void msm_hs_stop_rx_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
unsigned int data;
/* disable dlink */
data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
data &= ~UARTDM_RX_DM_EN_BMSK;
msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
/* calling DMOV or CLOCK API. Hence mb() */
mb();
/* Disable the receiver */
if (msm_uport->rx.flush == FLUSH_NONE) {
wake_lock(&msm_uport->rx.wake_lock);
/* do discard flush */
msm_dmov_flush(msm_uport->dma_rx_channel, 0);
}
if (msm_uport->rx.flush != FLUSH_SHUTDOWN)
msm_uport->rx.flush = FLUSH_STOP;
}
/* Transmit the next chunk of data */
static void msm_hs_submit_tx_locked(struct uart_port *uport)
{
int left;
int tx_count;
int aligned_tx_count;
dma_addr_t src_addr;
dma_addr_t aligned_src_addr;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct msm_hs_tx *tx = &msm_uport->tx;
struct circ_buf *tx_buf = &msm_uport->uport.state->xmit;
if (uart_circ_empty(tx_buf) || uport->state->port.tty->stopped) {
msm_hs_stop_tx_locked(uport);
return;
}
tx->dma_in_flight = 1;
tx_count = uart_circ_chars_pending(tx_buf);
if (UARTDM_TX_BUF_SIZE < tx_count)
tx_count = UARTDM_TX_BUF_SIZE;
left = UART_XMIT_SIZE - tx_buf->tail;
if (tx_count > left)
tx_count = left;
src_addr = tx->dma_base + tx_buf->tail;
/* Mask the src_addr to align on a cache
* and add those bytes to tx_count */
aligned_src_addr = src_addr & ~(dma_get_cache_alignment() - 1);
aligned_tx_count = tx_count + src_addr - aligned_src_addr;
dma_sync_single_for_device(uport->dev, aligned_src_addr,
aligned_tx_count, DMA_TO_DEVICE);
tx->command_ptr->num_rows = (((tx_count + 15) >> 4) << 16) |
((tx_count + 15) >> 4);
tx->command_ptr->src_row_addr = src_addr;
dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr,
sizeof(dmov_box), DMA_TO_DEVICE);
*tx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(tx->mapped_cmd_ptr);
/* Save tx_count to use in Callback */
tx->tx_count = tx_count;
msm_hs_write(uport, UARTDM_NCF_TX_ADDR, tx_count);
/* Disable the tx_ready interrupt */
msm_uport->imr_reg &= ~UARTDM_ISR_TX_READY_BMSK;
msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
/* Calling next DMOV API. Hence mb() here. */
mb();
dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr_ptr,
sizeof(u32), DMA_TO_DEVICE);
msm_uport->tx.flush = FLUSH_NONE;
msm_dmov_enqueue_cmd(msm_uport->dma_tx_channel, &tx->xfer);
}
/* Start to receive the next chunk of data */
static void msm_hs_start_rx_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
unsigned int buffer_pending = msm_uport->rx.buffer_pending;
unsigned int data;
msm_uport->rx.buffer_pending = 0;
if (buffer_pending && hs_serial_debug_mask)
printk(KERN_ERR "Error: rx started in buffer state = %x",
buffer_pending);
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
msm_hs_write(uport, UARTDM_DMRX_ADDR, UARTDM_RX_BUF_SIZE);
msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_ENABLE);
msm_uport->imr_reg |= UARTDM_ISR_RXLEV_BMSK;
/*
* Enable UARTDM Rx Interface as previously it has been
* disable in set_termios before configuring baud rate.
*/
data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
data |= UARTDM_RX_DM_EN_BMSK;
msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
/* Calling next DMOV API. Hence mb() here. */
mb();
msm_uport->rx.flush = FLUSH_NONE;
msm_dmov_enqueue_cmd(msm_uport->dma_rx_channel, &msm_uport->rx.xfer);
}
static void flip_insert_work(struct work_struct *work)
{
unsigned long flags;
int retval;
struct msm_hs_port *msm_uport =
container_of(work, struct msm_hs_port,
rx.flip_insert_work.work);
struct tty_struct *tty = msm_uport->uport.state->port.tty;
spin_lock_irqsave(&msm_uport->uport.lock, flags);
if (msm_uport->rx.buffer_pending == NONE_PENDING) {
if (hs_serial_debug_mask)
printk(KERN_ERR "Error: No buffer pending in %s",
__func__);
return;
}
if (msm_uport->rx.buffer_pending & FIFO_OVERRUN) {
retval = tty_insert_flip_char(tty, 0, TTY_OVERRUN);
if (retval)
msm_uport->rx.buffer_pending &= ~FIFO_OVERRUN;
}
if (msm_uport->rx.buffer_pending & PARITY_ERROR) {
retval = tty_insert_flip_char(tty, 0, TTY_PARITY);
if (retval)
msm_uport->rx.buffer_pending &= ~PARITY_ERROR;
}
if (msm_uport->rx.buffer_pending & CHARS_NORMAL) {
int rx_count, rx_offset;
rx_count = (msm_uport->rx.buffer_pending & 0xFFFF0000) >> 16;
rx_offset = (msm_uport->rx.buffer_pending & 0xFFD0) >> 5;
retval = tty_insert_flip_string(tty, msm_uport->rx.buffer +
rx_offset, rx_count);
msm_uport->rx.buffer_pending &= (FIFO_OVERRUN |
PARITY_ERROR);
if (retval != rx_count)
msm_uport->rx.buffer_pending |= CHARS_NORMAL |
retval << 8 | (rx_count - retval) << 16;
}
if (msm_uport->rx.buffer_pending)
schedule_delayed_work(&msm_uport->rx.flip_insert_work,
msecs_to_jiffies(RETRY_TIMEOUT));
else
if ((msm_uport->clk_state == MSM_HS_CLK_ON) &&
(msm_uport->rx.flush <= FLUSH_IGNORE)) {
if (hs_serial_debug_mask)
printk(KERN_WARNING
"msm_serial_hs: "
"Pending buffers cleared. "
"Restarting\n");
msm_hs_start_rx_locked(&msm_uport->uport);
}
spin_unlock_irqrestore(&msm_uport->uport.lock, flags);
tty_flip_buffer_push(tty);
}
static void msm_serial_hs_rx_tlet(unsigned long tlet_ptr)
{
int retval;
int rx_count;
unsigned long status;
unsigned long flags;
unsigned int error_f = 0;
struct uart_port *uport;
struct msm_hs_port *msm_uport;
unsigned int flush;
struct tty_struct *tty;
msm_uport = container_of((struct tasklet_struct *)tlet_ptr,
struct msm_hs_port, rx.tlet);
uport = &msm_uport->uport;
tty = uport->state->port.tty;
status = msm_hs_read(uport, UARTDM_SR_ADDR);
spin_lock_irqsave(&uport->lock, flags);
msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE);
/* overflow is not connect to data in a FIFO */
if (unlikely((status & UARTDM_SR_OVERRUN_BMSK) &&
(uport->read_status_mask & CREAD))) {
retval = tty_insert_flip_char(tty, 0, TTY_OVERRUN);
if (!retval)
msm_uport->rx.buffer_pending |= TTY_OVERRUN;
uport->icount.buf_overrun++;
error_f = 1;
}
if (!(uport->ignore_status_mask & INPCK))
status = status & ~(UARTDM_SR_PAR_FRAME_BMSK);
if (unlikely(status & UARTDM_SR_PAR_FRAME_BMSK)) {
/* Can not tell difference between parity & frame error */
uport->icount.parity++;
error_f = 1;
if (uport->ignore_status_mask & IGNPAR) {
retval = tty_insert_flip_char(tty, 0, TTY_PARITY);
if (!retval)
msm_uport->rx.buffer_pending |= TTY_PARITY;
}
}
if (error_f)
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS);
if (msm_uport->clk_req_off_state == CLK_REQ_OFF_FLUSH_ISSUED)
msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_FLUSHED;
flush = msm_uport->rx.flush;
if (flush == FLUSH_IGNORE)
if (!msm_uport->rx.buffer_pending)
msm_hs_start_rx_locked(uport);
if (flush == FLUSH_STOP) {
msm_uport->rx.flush = FLUSH_SHUTDOWN;
wake_up(&msm_uport->rx.wait);
}
if (flush >= FLUSH_DATA_INVALID)
goto out;
rx_count = msm_hs_read(uport, UARTDM_RX_TOTAL_SNAP_ADDR);
/* order the read of rx.buffer */
rmb();
if (0 != (uport->read_status_mask & CREAD)) {
retval = tty_insert_flip_string(tty, msm_uport->rx.buffer,
rx_count);
if (retval != rx_count) {
msm_uport->rx.buffer_pending |= CHARS_NORMAL |
retval << 5 | (rx_count - retval) << 16;
}
}
/* order the read of rx.buffer and the start of next rx xfer */
wmb();
if (!msm_uport->rx.buffer_pending)
msm_hs_start_rx_locked(uport);
out:
if (msm_uport->rx.buffer_pending) {
if (hs_serial_debug_mask)
printk(KERN_WARNING
"msm_serial_hs: "
"tty buffer exhausted. "
"Stalling\n");
schedule_delayed_work(&msm_uport->rx.flip_insert_work
, msecs_to_jiffies(RETRY_TIMEOUT));
}
/* release wakelock in 500ms, not immediately, because higher layers
* don't always take wakelocks when they should */
wake_lock_timeout(&msm_uport->rx.wake_lock, HZ / 2);
/* tty_flip_buffer_push() might call msm_hs_start(), so unlock */
spin_unlock_irqrestore(&uport->lock, flags);
if (flush < FLUSH_DATA_INVALID)
tty_flip_buffer_push(tty);
}
/* Enable the transmitter Interrupt */
static void msm_hs_start_tx_locked(struct uart_port *uport )
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
if (msm_uport->tx.tx_ready_int_en == 0) {
msm_uport->tx.tx_ready_int_en = 1;
if (msm_uport->tx.dma_in_flight == 0)
msm_hs_submit_tx_locked(uport);
}
}
/*
* This routine is called when we are done with a DMA transfer
*
* This routine is registered with Data mover when we set
* up a Data Mover transfer. It is called from Data mover ISR
* when the DMA transfer is done.
*/
static void msm_hs_dmov_tx_callback(struct msm_dmov_cmd *cmd_ptr,
unsigned int result,
struct msm_dmov_errdata *err)
{
struct msm_hs_port *msm_uport;
msm_uport = container_of(cmd_ptr, struct msm_hs_port, tx.xfer);
if (msm_uport->tx.flush == FLUSH_STOP)
/* DMA FLUSH unsuccesfful */
WARN_ON(!(result & DMOV_RSLT_FLUSH));
else
/* DMA did not finish properly */
WARN_ON(!(result & DMOV_RSLT_DONE));
tasklet_schedule(&msm_uport->tx.tlet);
}
static void msm_serial_hs_tx_tlet(unsigned long tlet_ptr)
{
unsigned long flags;
struct msm_hs_port *msm_uport = container_of((struct tasklet_struct *)
tlet_ptr, struct msm_hs_port, tx.tlet);
spin_lock_irqsave(&(msm_uport->uport.lock), flags);
if (msm_uport->tx.flush == FLUSH_STOP) {
msm_uport->tx.flush = FLUSH_SHUTDOWN;
wake_up(&msm_uport->tx.wait);
spin_unlock_irqrestore(&(msm_uport->uport.lock), flags);
return;
}
msm_uport->imr_reg |= UARTDM_ISR_TX_READY_BMSK;
msm_hs_write(&(msm_uport->uport), UARTDM_IMR_ADDR, msm_uport->imr_reg);
/* Calling clk API. Hence mb() requires. */
mb();
spin_unlock_irqrestore(&(msm_uport->uport.lock), flags);
}
/*
* This routine is called when we are done with a DMA transfer or the
* a flush has been sent to the data mover driver.
*
* This routine is registered with Data mover when we set up a Data Mover
* transfer. It is called from Data mover ISR when the DMA transfer is done.
*/
static void msm_hs_dmov_rx_callback(struct msm_dmov_cmd *cmd_ptr,
unsigned int result,
struct msm_dmov_errdata *err)
{
struct msm_hs_port *msm_uport;
msm_uport = container_of(cmd_ptr, struct msm_hs_port, rx.xfer);
tasklet_schedule(&msm_uport->rx.tlet);
}
/*
* Standard API, Current states of modem control inputs
*
* Since CTS can be handled entirely by HARDWARE we always
* indicate clear to send and count on the TX FIFO to block when
* it fills up.
*
* - TIOCM_DCD
* - TIOCM_CTS
* - TIOCM_DSR
* - TIOCM_RI
* (Unsupported) DCD and DSR will return them high. RI will return low.
*/
static unsigned int msm_hs_get_mctrl_locked(struct uart_port *uport)
{
return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS;
}
/*
* Standard API, Set or clear RFR_signal
*
* Set RFR high, (Indicate we are not ready for data), we disable auto
* ready for receiving and then set RFR_N high. To set RFR to low we just turn
* back auto ready for receiving and it should lower RFR signal
* when hardware is ready
*/
void msm_hs_set_mctrl_locked(struct uart_port *uport,
unsigned int mctrl)
{
unsigned int set_rts;
unsigned int data;
/* RTS is active low */
set_rts = TIOCM_RTS & mctrl ? 0 : 1;
data = msm_hs_read(uport, UARTDM_MR1_ADDR);
if (set_rts) {
/*disable auto ready-for-receiving */
data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK;
msm_hs_write(uport, UARTDM_MR1_ADDR, data);
/* set RFR_N to high */
msm_hs_write(uport, UARTDM_CR_ADDR, RFR_HIGH);
} else {
/* Enable auto ready-for-receiving */
data |= UARTDM_MR1_RX_RDY_CTL_BMSK;
msm_hs_write(uport, UARTDM_MR1_ADDR, data);
}
mb();
}
void msm_hs_set_mctrl(struct uart_port *uport,
unsigned int mctrl)
{
unsigned long flags;
spin_lock_irqsave(&uport->lock, flags);
msm_hs_set_mctrl_locked(uport, mctrl);
spin_unlock_irqrestore(&uport->lock, flags);
}
EXPORT_SYMBOL(msm_hs_set_mctrl);
/* Standard API, Enable modem status (CTS) interrupt */
static void msm_hs_enable_ms_locked(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
/* Enable DELTA_CTS Interrupt */
msm_uport->imr_reg |= UARTDM_ISR_DELTA_CTS_BMSK;
msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
mb();
}
/*
* Standard API, Break Signal
*
* Control the transmission of a break signal. ctl eq 0 => break
* signal terminate ctl ne 0 => start break signal
*/
static void msm_hs_break_ctl(struct uart_port *uport, int ctl)
{
unsigned long flags;
spin_lock_irqsave(&uport->lock, flags);
msm_hs_write(uport, UARTDM_CR_ADDR, ctl ? START_BREAK : STOP_BREAK);
mb();
spin_unlock_irqrestore(&uport->lock, flags);
}
static void msm_hs_config_port(struct uart_port *uport, int cfg_flags)
{
unsigned long flags;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
if (cfg_flags & UART_CONFIG_TYPE) {
uport->type = PORT_MSM;
msm_hs_request_port(uport);
}
if (is_gsbi_uart(msm_uport)) {
if (msm_uport->pclk)
clk_prepare_enable(msm_uport->pclk);
spin_lock_irqsave(&uport->lock, flags);
iowrite32(GSBI_PROTOCOL_UART, msm_uport->mapped_gsbi +
GSBI_CONTROL_ADDR);
spin_unlock_irqrestore(&uport->lock, flags);
if (msm_uport->pclk)
clk_disable_unprepare(msm_uport->pclk);
}
}
/* Handle CTS changes (Called from interrupt handler) */
static void msm_hs_handle_delta_cts_locked(struct uart_port *uport)
{
/* clear interrupt */
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS);
/* Calling CLOCK API. Hence mb() requires here. */
mb();
uport->icount.cts++;
/* clear the IOCTL TIOCMIWAIT if called */
wake_up_interruptible(&uport->state->port.delta_msr_wait);
}
/* check if the TX path is flushed, and if so clock off
* returns 0 did not clock off, need to retry (still sending final byte)
* -1 did not clock off, do not retry
* 1 if we clocked off
*/
static int msm_hs_check_clock_off(struct uart_port *uport)
{
unsigned long sr_status;
unsigned long flags;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct circ_buf *tx_buf = &uport->state->xmit;
mutex_lock(&msm_uport->clk_mutex);
spin_lock_irqsave(&uport->lock, flags);
/* Cancel if tx tty buffer is not empty, dma is in flight,
* or tx fifo is not empty */
if (msm_uport->clk_state != MSM_HS_CLK_REQUEST_OFF ||
!uart_circ_empty(tx_buf) || msm_uport->tx.dma_in_flight ||
msm_uport->imr_reg & UARTDM_ISR_TXLEV_BMSK) {
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
return -1;
}
/* Make sure the uart is finished with the last byte */
sr_status = msm_hs_read(uport, UARTDM_SR_ADDR);
if (!(sr_status & UARTDM_SR_TXEMT_BMSK)) {
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
return 0; /* retry */
}
/* Make sure forced RXSTALE flush complete */
switch (msm_uport->clk_req_off_state) {
case CLK_REQ_OFF_START:
msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_ISSUED;
msm_hs_write(uport, UARTDM_CR_ADDR, FORCE_STALE_EVENT);
/*
* Before returning make sure that device writel completed.
* Hence mb() requires here.
*/
mb();
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
return 0; /* RXSTALE flush not complete - retry */
case CLK_REQ_OFF_RXSTALE_ISSUED:
case CLK_REQ_OFF_FLUSH_ISSUED:
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
return 0; /* RXSTALE flush not complete - retry */
case CLK_REQ_OFF_RXSTALE_FLUSHED:
break; /* continue */
}
if (msm_uport->rx.flush != FLUSH_SHUTDOWN) {
if (msm_uport->rx.flush == FLUSH_NONE)
msm_hs_stop_rx_locked(uport);
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
return 0; /* come back later to really clock off */
}
spin_unlock_irqrestore(&uport->lock, flags);
/* we really want to clock off */
clk_disable_unprepare(msm_uport->clk);
if (msm_uport->pclk)
clk_disable_unprepare(msm_uport->pclk);
msm_uport->clk_state = MSM_HS_CLK_OFF;
spin_lock_irqsave(&uport->lock, flags);
if (use_low_power_wakeup(msm_uport)) {
msm_uport->wakeup.ignore = 1;
enable_irq(msm_uport->wakeup.irq);
}
wake_unlock(&msm_uport->dma_wake_lock);
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
return 1;
}
static void hsuart_clock_off_work(struct work_struct *w)
{
struct msm_hs_port *msm_uport = container_of(w, struct msm_hs_port,
clock_off_w);
struct uart_port *uport = &msm_uport->uport;
if (!msm_hs_check_clock_off(uport)) {
hrtimer_start(&msm_uport->clk_off_timer,
msm_uport->clk_off_delay,
HRTIMER_MODE_REL);
}
}
static enum hrtimer_restart msm_hs_clk_off_retry(struct hrtimer *timer)
{
struct msm_hs_port *msm_uport = container_of(timer, struct msm_hs_port,
clk_off_timer);
queue_work(msm_uport->hsuart_wq, &msm_uport->clock_off_w);
return HRTIMER_NORESTART;
}
static irqreturn_t msm_hs_isr(int irq, void *dev)
{
unsigned long flags;
unsigned long isr_status;
struct msm_hs_port *msm_uport = (struct msm_hs_port *)dev;
struct uart_port *uport = &msm_uport->uport;
struct circ_buf *tx_buf = &uport->state->xmit;
struct msm_hs_tx *tx = &msm_uport->tx;
struct msm_hs_rx *rx = &msm_uport->rx;
spin_lock_irqsave(&uport->lock, flags);
isr_status = msm_hs_read(uport, UARTDM_MISR_ADDR);
/* Uart RX starting */
if (isr_status & UARTDM_ISR_RXLEV_BMSK) {
wake_lock(&rx->wake_lock); /* hold wakelock while rx dma */
msm_uport->imr_reg &= ~UARTDM_ISR_RXLEV_BMSK;
msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
/* Complete device write for IMR. Hence mb() requires. */
mb();
}
/* Stale rx interrupt */
if (isr_status & UARTDM_ISR_RXSTALE_BMSK) {
msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE);
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
/*
* Complete device write before calling DMOV API. Hence
* mb() requires here.
*/
mb();
if (msm_uport->clk_req_off_state == CLK_REQ_OFF_RXSTALE_ISSUED)
msm_uport->clk_req_off_state =
CLK_REQ_OFF_FLUSH_ISSUED;
if (rx->flush == FLUSH_NONE) {
rx->flush = FLUSH_DATA_READY;
msm_dmov_flush(msm_uport->dma_rx_channel, 1);
}
}
/* tx ready interrupt */
if (isr_status & UARTDM_ISR_TX_READY_BMSK) {
/* Clear TX Ready */
msm_hs_write(uport, UARTDM_CR_ADDR, CLEAR_TX_READY);
if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF) {
msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
msm_hs_write(uport, UARTDM_IMR_ADDR,
msm_uport->imr_reg);
}
/*
* Complete both writes before starting new TX.
* Hence mb() requires here.
*/
mb();
/* Complete DMA TX transactions and submit new transactions */
tx_buf->tail = (tx_buf->tail + tx->tx_count) & ~UART_XMIT_SIZE;
tx->dma_in_flight = 0;
uport->icount.tx += tx->tx_count;
if (tx->tx_ready_int_en)
msm_hs_submit_tx_locked(uport);
if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS)
uart_write_wakeup(uport);
}
if (isr_status & UARTDM_ISR_TXLEV_BMSK) {
/* TX FIFO is empty */
msm_uport->imr_reg &= ~UARTDM_ISR_TXLEV_BMSK;
msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
/*
* Complete device write before starting clock_off request.
* Hence mb() requires here.
*/
mb();
queue_work(msm_uport->hsuart_wq, &msm_uport->clock_off_w);
}
/* Change in CTS interrupt */
if (isr_status & UARTDM_ISR_DELTA_CTS_BMSK)
msm_hs_handle_delta_cts_locked(uport);
spin_unlock_irqrestore(&uport->lock, flags);
return IRQ_HANDLED;
}
/* request to turn off uart clock once pending TX is flushed */
void msm_hs_request_clock_off(struct uart_port *uport) {
unsigned long flags;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
spin_lock_irqsave(&uport->lock, flags);
if (msm_uport->clk_state == MSM_HS_CLK_ON) {
msm_uport->clk_state = MSM_HS_CLK_REQUEST_OFF;
msm_uport->clk_req_off_state = CLK_REQ_OFF_START;
msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK;
msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
/*
* Complete device write before retuning back.
* Hence mb() requires here.
*/
mb();
}
spin_unlock_irqrestore(&uport->lock, flags);
}
EXPORT_SYMBOL(msm_hs_request_clock_off);
void msm_hs_request_clock_on(struct uart_port *uport)
{
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
unsigned long flags;
unsigned int data;
int ret = 0;
mutex_lock(&msm_uport->clk_mutex);
spin_lock_irqsave(&uport->lock, flags);
switch (msm_uport->clk_state) {
case MSM_HS_CLK_OFF:
wake_lock(&msm_uport->dma_wake_lock);
disable_irq_nosync(msm_uport->wakeup.irq);
spin_unlock_irqrestore(&uport->lock, flags);
ret = clk_prepare_enable(msm_uport->clk);
if (ret) {
dev_err(uport->dev, "Clock ON Failure"
"For UART CLK Stalling HSUART\n");
break;
}
if (msm_uport->pclk) {
ret = clk_prepare_enable(msm_uport->pclk);
if (unlikely(ret)) {
clk_disable_unprepare(msm_uport->clk);
dev_err(uport->dev, "Clock ON Failure"
"For UART Pclk Stalling HSUART\n");
break;
}
}
spin_lock_irqsave(&uport->lock, flags);
/* else fall-through */
case MSM_HS_CLK_REQUEST_OFF:
if (msm_uport->rx.flush == FLUSH_STOP ||
msm_uport->rx.flush == FLUSH_SHUTDOWN) {
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
data |= UARTDM_RX_DM_EN_BMSK;
msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
/* Complete above device write. Hence mb() here. */
mb();
}
hrtimer_try_to_cancel(&msm_uport->clk_off_timer);
if (msm_uport->rx.flush == FLUSH_SHUTDOWN)
msm_hs_start_rx_locked(uport);
if (msm_uport->rx.flush == FLUSH_STOP)
msm_uport->rx.flush = FLUSH_IGNORE;
msm_uport->clk_state = MSM_HS_CLK_ON;
break;
case MSM_HS_CLK_ON:
break;
case MSM_HS_CLK_PORT_OFF:
break;
}
spin_unlock_irqrestore(&uport->lock, flags);
mutex_unlock(&msm_uport->clk_mutex);
}
EXPORT_SYMBOL(msm_hs_request_clock_on);
static irqreturn_t msm_hs_wakeup_isr(int irq, void *dev)
{
unsigned int wakeup = 0;
unsigned long flags;
struct msm_hs_port *msm_uport = (struct msm_hs_port *)dev;
struct uart_port *uport = &msm_uport->uport;
struct tty_struct *tty = NULL;
spin_lock_irqsave(&uport->lock, flags);
if (msm_uport->clk_state == MSM_HS_CLK_OFF) {
/* ignore the first irq - it is a pending irq that occured
* before enable_irq() */
if (msm_uport->wakeup.ignore)
msm_uport->wakeup.ignore = 0;
else
wakeup = 1;
}
if (wakeup) {
/* the uart was clocked off during an rx, wake up and
* optionally inject char into tty rx */
spin_unlock_irqrestore(&uport->lock, flags);
msm_hs_request_clock_on(uport);
spin_lock_irqsave(&uport->lock, flags);
if (msm_uport->wakeup.inject_rx) {
tty = uport->state->port.tty;
tty_insert_flip_char(tty,
msm_uport->wakeup.rx_to_inject,
TTY_NORMAL);
}
}
spin_unlock_irqrestore(&uport->lock, flags);
if (wakeup && msm_uport->wakeup.inject_rx)
tty_flip_buffer_push(tty);
return IRQ_HANDLED;
}
static const char *msm_hs_type(struct uart_port *port)
{
return ("MSM HS UART");
}
/* Called when port is opened */
static int msm_hs_startup(struct uart_port *uport)
{
int ret;
int rfr_level;
unsigned long flags;
unsigned int data;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct circ_buf *tx_buf = &uport->state->xmit;
struct msm_hs_tx *tx = &msm_uport->tx;
rfr_level = uport->fifosize;
if (rfr_level > 16)
rfr_level -= 16;
tx->dma_base = dma_map_single(uport->dev, tx_buf->buf, UART_XMIT_SIZE,
DMA_TO_DEVICE);
wake_lock(&msm_uport->dma_wake_lock);
/* turn on uart clk */
ret = msm_hs_init_clk(uport);
if (unlikely(ret)) {
pr_err("Turning ON uartclk error\n");
wake_unlock(&msm_uport->dma_wake_lock);
return ret;
}
/* Set auto RFR Level */
data = msm_hs_read(uport, UARTDM_MR1_ADDR);
data &= ~UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK;
data &= ~UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK;
data |= (UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK & (rfr_level << 2));
data |= (UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK & rfr_level);
msm_hs_write(uport, UARTDM_MR1_ADDR, data);
/* Make sure RXSTALE count is non-zero */
data = msm_hs_read(uport, UARTDM_IPR_ADDR);
if (!data) {
data |= 0x1f & UARTDM_IPR_STALE_LSB_BMSK;
msm_hs_write(uport, UARTDM_IPR_ADDR, data);
}
/* Enable Data Mover Mode */
data = UARTDM_TX_DM_EN_BMSK | UARTDM_RX_DM_EN_BMSK;
msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
/* Reset TX */
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX);
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS);
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_BREAK_INT);
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT);
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS);
msm_hs_write(uport, UARTDM_CR_ADDR, RFR_LOW);
/* Turn on Uart Receiver */
msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_EN_BMSK);
/* Turn on Uart Transmitter */
msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_EN_BMSK);
/* Initialize the tx */
tx->tx_ready_int_en = 0;
tx->dma_in_flight = 0;
tx->xfer.complete_func = msm_hs_dmov_tx_callback;
tx->command_ptr->cmd = CMD_LC |
CMD_DST_CRCI(msm_uport->dma_tx_crci) | CMD_MODE_BOX;
tx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16)
| (MSM_UARTDM_BURST_SIZE);
tx->command_ptr->row_offset = (MSM_UARTDM_BURST_SIZE << 16);
tx->command_ptr->dst_row_addr =
msm_uport->uport.mapbase + UARTDM_TF_ADDR;
msm_uport->imr_reg |= UARTDM_ISR_RXSTALE_BMSK;
/* Enable reading the current CTS, no harm even if CTS is ignored */
msm_uport->imr_reg |= UARTDM_ISR_CURRENT_CTS_BMSK;
msm_hs_write(uport, UARTDM_TFWR_ADDR, 0); /* TXLEV on empty TX fifo */
/*
* Complete all device write related configuration before
* queuing RX request. Hence mb() requires here.
*/
mb();
if (use_low_power_wakeup(msm_uport)) {
ret = irq_set_irq_wake(msm_uport->wakeup.irq, 1);
if (unlikely(ret)) {
pr_err("%s():Err setting wakeup irq\n", __func__);
goto deinit_uart_clk;
}
}
ret = request_irq(uport->irq, msm_hs_isr, IRQF_TRIGGER_HIGH,
"msm_hs_uart", msm_uport);
if (unlikely(ret)) {
pr_err("%s():Error getting uart irq\n", __func__);
goto free_wake_irq;
}
if (use_low_power_wakeup(msm_uport)) {
ret = request_threaded_irq(msm_uport->wakeup.irq, NULL,
msm_hs_wakeup_isr,
IRQF_TRIGGER_FALLING,
"msm_hs_wakeup", msm_uport);
if (unlikely(ret)) {
pr_err("%s():Err getting uart wakeup_irq\n", __func__);
goto free_uart_irq;
}
disable_irq(msm_uport->wakeup.irq);
}
spin_lock_irqsave(&uport->lock, flags);
msm_hs_start_rx_locked(uport);
spin_unlock_irqrestore(&uport->lock, flags);
ret = pm_runtime_set_active(uport->dev);
if (ret)
dev_err(uport->dev, "set active error:%d\n", ret);
pm_runtime_enable(uport->dev);
return 0;
free_uart_irq:
free_irq(uport->irq, msm_uport);
free_wake_irq:
irq_set_irq_wake(msm_uport->wakeup.irq, 0);
deinit_uart_clk:
clk_disable_unprepare(msm_uport->clk);
if (msm_uport->pclk)
clk_disable_unprepare(msm_uport->pclk);
wake_unlock(&msm_uport->dma_wake_lock);
return ret;
}
/* Initialize tx and rx data structures */
static int uartdm_init_port(struct uart_port *uport)
{
int ret = 0;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
struct msm_hs_tx *tx = &msm_uport->tx;
struct msm_hs_rx *rx = &msm_uport->rx;
/* Allocate the command pointer. Needs to be 64 bit aligned */
tx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA);
if (!tx->command_ptr)
return -ENOMEM;
tx->command_ptr_ptr = kmalloc(sizeof(u32), GFP_KERNEL | __GFP_DMA);
if (!tx->command_ptr_ptr) {
ret = -ENOMEM;
goto free_tx_command_ptr;
}
tx->mapped_cmd_ptr = dma_map_single(uport->dev, tx->command_ptr,
sizeof(dmov_box), DMA_TO_DEVICE);
tx->mapped_cmd_ptr_ptr = dma_map_single(uport->dev,
tx->command_ptr_ptr,
sizeof(u32), DMA_TO_DEVICE);
tx->xfer.cmdptr = DMOV_CMD_ADDR(tx->mapped_cmd_ptr_ptr);
init_waitqueue_head(&rx->wait);
init_waitqueue_head(&tx->wait);
wake_lock_init(&rx->wake_lock, WAKE_LOCK_SUSPEND, "msm_serial_hs_rx");
wake_lock_init(&msm_uport->dma_wake_lock, WAKE_LOCK_SUSPEND,
"msm_serial_hs_dma");
tasklet_init(&rx->tlet, msm_serial_hs_rx_tlet,
(unsigned long) &rx->tlet);
tasklet_init(&tx->tlet, msm_serial_hs_tx_tlet,
(unsigned long) &tx->tlet);
rx->pool = dma_pool_create("rx_buffer_pool", uport->dev,
UARTDM_RX_BUF_SIZE, 16, 0);
if (!rx->pool) {
pr_err("%s(): cannot allocate rx_buffer_pool", __func__);
ret = -ENOMEM;
goto exit_tasket_init;
}
rx->buffer = dma_pool_alloc(rx->pool, GFP_KERNEL, &rx->rbuffer);
if (!rx->buffer) {
pr_err("%s(): cannot allocate rx->buffer", __func__);
ret = -ENOMEM;
goto free_pool;
}
/* Allocate the command pointer. Needs to be 64 bit aligned */
rx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA);
if (!rx->command_ptr) {
pr_err("%s(): cannot allocate rx->command_ptr", __func__);
ret = -ENOMEM;
goto free_rx_buffer;
}
rx->command_ptr_ptr = kmalloc(sizeof(u32), GFP_KERNEL | __GFP_DMA);
if (!rx->command_ptr_ptr) {
pr_err("%s(): cannot allocate rx->command_ptr_ptr", __func__);
ret = -ENOMEM;
goto free_rx_command_ptr;
}
rx->command_ptr->num_rows = ((UARTDM_RX_BUF_SIZE >> 4) << 16) |
(UARTDM_RX_BUF_SIZE >> 4);
rx->command_ptr->dst_row_addr = rx->rbuffer;
/* Set up Uart Receive */
msm_hs_write(uport, UARTDM_RFWR_ADDR, 0);
rx->xfer.complete_func = msm_hs_dmov_rx_callback;
rx->command_ptr->cmd = CMD_LC |
CMD_SRC_CRCI(msm_uport->dma_rx_crci) | CMD_MODE_BOX;
rx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16)
| (MSM_UARTDM_BURST_SIZE);
rx->command_ptr->row_offset = MSM_UARTDM_BURST_SIZE;
rx->command_ptr->src_row_addr = uport->mapbase + UARTDM_RF_ADDR;
rx->mapped_cmd_ptr = dma_map_single(uport->dev, rx->command_ptr,
sizeof(dmov_box), DMA_TO_DEVICE);
*rx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(rx->mapped_cmd_ptr);
rx->cmdptr_dmaaddr = dma_map_single(uport->dev, rx->command_ptr_ptr,
sizeof(u32), DMA_TO_DEVICE);
rx->xfer.cmdptr = DMOV_CMD_ADDR(rx->cmdptr_dmaaddr);
INIT_DELAYED_WORK(&rx->flip_insert_work, flip_insert_work);
return ret;
free_rx_command_ptr:
kfree(rx->command_ptr);
free_rx_buffer:
dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer,
msm_uport->rx.rbuffer);
free_pool:
dma_pool_destroy(msm_uport->rx.pool);
exit_tasket_init:
wake_lock_destroy(&msm_uport->rx.wake_lock);
wake_lock_destroy(&msm_uport->dma_wake_lock);
tasklet_kill(&msm_uport->tx.tlet);
tasklet_kill(&msm_uport->rx.tlet);
dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr_ptr,
sizeof(u32), DMA_TO_DEVICE);
dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr,
sizeof(dmov_box), DMA_TO_DEVICE);
kfree(msm_uport->tx.command_ptr_ptr);
free_tx_command_ptr:
kfree(msm_uport->tx.command_ptr);
return ret;
}
static int __devinit msm_hs_probe(struct platform_device *pdev)
{
int ret;
struct uart_port *uport;
struct msm_hs_port *msm_uport;
struct resource *resource;
struct msm_serial_hs_platform_data *pdata = pdev->dev.platform_data;
if (pdev->id < 0 || pdev->id >= UARTDM_NR) {
printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id);
return -EINVAL;
}
msm_uport = &q_uart_port[pdev->id];
uport = &msm_uport->uport;
uport->dev = &pdev->dev;
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (unlikely(!resource))
return -ENXIO;
uport->mapbase = resource->start; /* virtual address */
uport->membase = ioremap(uport->mapbase, PAGE_SIZE);
if (unlikely(!uport->membase))
return -ENOMEM;
uport->irq = platform_get_irq(pdev, 0);
if (unlikely((int)uport->irq < 0))
return -ENXIO;
if (pdata == NULL)
msm_uport->wakeup.irq = -1;
else {
msm_uport->wakeup.irq = pdata->wakeup_irq;
msm_uport->wakeup.ignore = 1;
msm_uport->wakeup.inject_rx = pdata->inject_rx_on_wakeup;
msm_uport->wakeup.rx_to_inject = pdata->rx_to_inject;
if (unlikely(msm_uport->wakeup.irq < 0))
return -ENXIO;
if (pdata->gpio_config)
if (unlikely(pdata->gpio_config(1)))
dev_err(uport->dev, "Cannot configure"
"gpios\n");
}
resource = platform_get_resource_byname(pdev, IORESOURCE_DMA,
"uartdm_channels");
if (unlikely(!resource))
return -ENXIO;
msm_uport->dma_tx_channel = resource->start;
msm_uport->dma_rx_channel = resource->end;
resource = platform_get_resource_byname(pdev, IORESOURCE_DMA,
"uartdm_crci");
if (unlikely(!resource))
return -ENXIO;
msm_uport->dma_tx_crci = resource->start;
msm_uport->dma_rx_crci = resource->end;
uport->iotype = UPIO_MEM;
uport->fifosize = 64;
uport->ops = &msm_hs_ops;
uport->flags = UPF_BOOT_AUTOCONF;
uport->uartclk = 7372800;
msm_uport->imr_reg = 0x0;
msm_uport->clk = clk_get(&pdev->dev, "core_clk");
if (IS_ERR(msm_uport->clk))
return PTR_ERR(msm_uport->clk);
msm_uport->pclk = clk_get(&pdev->dev, "iface_clk");
/*
* Some configurations do not require explicit pclk control so
* do not flag error on pclk get failure.
*/
if (IS_ERR(msm_uport->pclk))
msm_uport->pclk = NULL;
ret = clk_set_rate(msm_uport->clk, uport->uartclk);
if (ret) {
printk(KERN_WARNING "Error setting clock rate on UART\n");
return ret;
}
msm_uport->hsuart_wq = alloc_workqueue("k_hsuart",
WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
if (!msm_uport->hsuart_wq) {
pr_err("%s(): Unable to create workqueue hsuart_wq\n",
__func__);
return -ENOMEM;
}
INIT_WORK(&msm_uport->clock_off_w, hsuart_clock_off_work);
mutex_init(&msm_uport->clk_mutex);
clk_prepare_enable(msm_uport->clk);
if (msm_uport->pclk)
clk_prepare_enable(msm_uport->pclk);
ret = uartdm_init_port(uport);
if (unlikely(ret)) {
clk_disable_unprepare(msm_uport->clk);
if (msm_uport->pclk)
clk_disable_unprepare(msm_uport->pclk);
return ret;
}
/* configure the CR Protection to Enable */
msm_hs_write(uport, UARTDM_CR_ADDR, CR_PROTECTION_EN);
clk_disable_unprepare(msm_uport->clk);
if (msm_uport->pclk)
clk_disable_unprepare(msm_uport->pclk);
/*
* Enable Command register protection before going ahead as this hw
* configuration makes sure that issued cmd to CR register gets complete
* before next issued cmd start. Hence mb() requires here.
*/
mb();
msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
hrtimer_init(&msm_uport->clk_off_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL);
msm_uport->clk_off_timer.function = msm_hs_clk_off_retry;
msm_uport->clk_off_delay = ktime_set(0, 1000000); /* 1ms */
ret = sysfs_create_file(&pdev->dev.kobj, &dev_attr_clock.attr);
if (unlikely(ret))
return ret;
msm_serial_debugfs_init(msm_uport, pdev->id);
uport->line = pdev->id;
return uart_add_one_port(&msm_hs_driver, uport);
}
static int __init msm_serial_hs_init(void)
{
int ret;
int i;
/* Init all UARTS as non-configured */
for (i = 0; i < UARTDM_NR; i++)
q_uart_port[i].uport.type = PORT_UNKNOWN;
ret = uart_register_driver(&msm_hs_driver);
if (unlikely(ret)) {
printk(KERN_ERR "%s failed to load\n", __FUNCTION__);
return ret;
}
debug_base = debugfs_create_dir("msm_serial_hs", NULL);
if (IS_ERR_OR_NULL(debug_base))
pr_info("msm_serial_hs: Cannot create debugfs dir\n");
ret = platform_driver_register(&msm_serial_hs_platform_driver);
if (ret) {
printk(KERN_ERR "%s failed to load\n", __FUNCTION__);
debugfs_remove_recursive(debug_base);
uart_unregister_driver(&msm_hs_driver);
return ret;
}
printk(KERN_INFO "msm_serial_hs module loaded\n");
return ret;
}
/*
* Called by the upper layer when port is closed.
* - Disables the port
* - Unhook the ISR
*/
static void msm_hs_shutdown(struct uart_port *uport)
{
int ret;
unsigned int data;
unsigned long flags;
struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport);
if (msm_uport->tx.dma_in_flight) {
spin_lock_irqsave(&uport->lock, flags);
/* disable UART TX interface to DM */
data = msm_hs_read(uport, UARTDM_DMEN_ADDR);
data &= ~UARTDM_TX_DM_EN_BMSK;
msm_hs_write(uport, UARTDM_DMEN_ADDR, data);
/* turn OFF UART Transmitter */
msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_DISABLE_BMSK);
/* reset UART TX */
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX);
/* reset UART TX Error */
msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX_ERROR);
msm_uport->tx.flush = FLUSH_STOP;
spin_unlock_irqrestore(&uport->lock, flags);
/* discard flush */
msm_dmov_flush(msm_uport->dma_tx_channel, 0);
ret = wait_event_timeout(msm_uport->tx.wait,
msm_uport->tx.flush == FLUSH_SHUTDOWN, 100);
if (!ret)
pr_err("%s():HSUART TX Stalls.\n", __func__);
}
tasklet_kill(&msm_uport->tx.tlet);
BUG_ON(msm_uport->rx.flush < FLUSH_STOP);
wait_event(msm_uport->rx.wait, msm_uport->rx.flush == FLUSH_SHUTDOWN);
tasklet_kill(&msm_uport->rx.tlet);
cancel_delayed_work_sync(&msm_uport->rx.flip_insert_work);
flush_workqueue(msm_uport->hsuart_wq);
pm_runtime_disable(uport->dev);
pm_runtime_set_suspended(uport->dev);
/* Disable the transmitter */
msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_DISABLE_BMSK);
/* Disable the receiver */
msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_DISABLE_BMSK);
msm_uport->imr_reg = 0;
msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg);
/*
* Complete all device write before actually disabling uartclk.
* Hence mb() requires here.
*/
mb();
if (msm_uport->clk_state != MSM_HS_CLK_OFF) {
/* to balance clk_state */
clk_disable_unprepare(msm_uport->clk);
if (msm_uport->pclk)
clk_disable_unprepare(msm_uport->pclk);
wake_unlock(&msm_uport->dma_wake_lock);
}
msm_uport->clk_state = MSM_HS_CLK_PORT_OFF;
dma_unmap_single(uport->dev, msm_uport->tx.dma_base,
UART_XMIT_SIZE, DMA_TO_DEVICE);
if (use_low_power_wakeup(msm_uport))
irq_set_irq_wake(msm_uport->wakeup.irq, 0);
/* Free the interrupt */
free_irq(uport->irq, msm_uport);
if (use_low_power_wakeup(msm_uport))
free_irq(msm_uport->wakeup.irq, msm_uport);
}
static void __exit msm_serial_hs_exit(void)
{
printk(KERN_INFO "msm_serial_hs module removed\n");
debugfs_remove_recursive(debug_base);
platform_driver_unregister(&msm_serial_hs_platform_driver);
uart_unregister_driver(&msm_hs_driver);
}
static int msm_hs_runtime_idle(struct device *dev)
{
/*
* returning success from idle results in runtime suspend to be
* called
*/
return 0;
}
static int msm_hs_runtime_resume(struct device *dev)
{
struct platform_device *pdev = container_of(dev, struct
platform_device, dev);
struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
msm_hs_request_clock_on(&msm_uport->uport);
return 0;
}
static int msm_hs_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = container_of(dev, struct
platform_device, dev);
struct msm_hs_port *msm_uport = &q_uart_port[pdev->id];
msm_hs_request_clock_off(&msm_uport->uport);
return 0;
}
static const struct dev_pm_ops msm_hs_dev_pm_ops = {
.runtime_suspend = msm_hs_runtime_suspend,
.runtime_resume = msm_hs_runtime_resume,
.runtime_idle = msm_hs_runtime_idle,
};
static struct platform_driver msm_serial_hs_platform_driver = {
.probe = msm_hs_probe,
.remove = __devexit_p(msm_hs_remove),
.driver = {
.name = "msm_serial_hs",
.pm = &msm_hs_dev_pm_ops,
},
};
static struct uart_driver msm_hs_driver = {
.owner = THIS_MODULE,
.driver_name = "msm_serial_hs",
.dev_name = "ttyHS",
.nr = UARTDM_NR,
.cons = 0,
};
static struct uart_ops msm_hs_ops = {
.tx_empty = msm_hs_tx_empty,
.set_mctrl = msm_hs_set_mctrl_locked,
.get_mctrl = msm_hs_get_mctrl_locked,
.stop_tx = msm_hs_stop_tx_locked,
.start_tx = msm_hs_start_tx_locked,
.stop_rx = msm_hs_stop_rx_locked,
.enable_ms = msm_hs_enable_ms_locked,
.break_ctl = msm_hs_break_ctl,
.startup = msm_hs_startup,
.shutdown = msm_hs_shutdown,
.set_termios = msm_hs_set_termios,
.type = msm_hs_type,
.config_port = msm_hs_config_port,
.release_port = msm_hs_release_port,
.request_port = msm_hs_request_port,
};
module_init(msm_serial_hs_init);
module_exit(msm_serial_hs_exit);
MODULE_DESCRIPTION("High Speed UART Driver for the MSM chipset");
MODULE_VERSION("1.2");
MODULE_LICENSE("GPL v2");