blob: cb1da064cea3c2dd7f12dcb46f6361854a307ba2 [file] [log] [blame]
/* Copyright (c) 2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/pm_runtime.h>
#include <linux/ratelimit.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/list.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/msm_hsusb.h>
#include <linux/regulator/consumer.h>
#include <linux/power_supply.h>
#include <linux/qpnp/qpnp-adc.h>
#include <mach/rpm-regulator.h>
#include <mach/rpm-regulator-smd.h>
#include <mach/msm_xo.h>
#include <mach/msm_bus.h>
#include <mach/clk.h>
#include "dwc3_otg.h"
#include "core.h"
#include "gadget.h"
/* ADC threshold values */
static int adc_low_threshold = 700;
module_param(adc_low_threshold, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(adc_low_threshold, "ADC ID Low voltage threshold");
static int adc_high_threshold = 950;
module_param(adc_high_threshold, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(adc_high_threshold, "ADC ID High voltage threshold");
static int adc_meas_interval = ADC_MEAS1_INTERVAL_1S;
module_param(adc_meas_interval, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(adc_meas_interval, "ADC ID polling period");
/**
* USB DBM Hardware registers.
*
*/
#define DBM_BASE 0x000F8000
#define DBM_EP_CFG(n) (DBM_BASE + (0x00 + 4 * (n)))
#define DBM_DATA_FIFO(n) (DBM_BASE + (0x10 + 4 * (n)))
#define DBM_DATA_FIFO_SIZE(n) (DBM_BASE + (0x20 + 4 * (n)))
#define DBM_DATA_FIFO_EN (DBM_BASE + (0x30))
#define DBM_GEVNTADR (DBM_BASE + (0x34))
#define DBM_GEVNTSIZ (DBM_BASE + (0x38))
#define DBM_DBG_CNFG (DBM_BASE + (0x3C))
#define DBM_HW_TRB0_EP(n) (DBM_BASE + (0x40 + 4 * (n)))
#define DBM_HW_TRB1_EP(n) (DBM_BASE + (0x50 + 4 * (n)))
#define DBM_HW_TRB2_EP(n) (DBM_BASE + (0x60 + 4 * (n)))
#define DBM_HW_TRB3_EP(n) (DBM_BASE + (0x70 + 4 * (n)))
#define DBM_PIPE_CFG (DBM_BASE + (0x80))
#define DBM_SOFT_RESET (DBM_BASE + (0x84))
#define DBM_GEN_CFG (DBM_BASE + (0x88))
/**
* USB DBM Hardware registers bitmask.
*
*/
/* DBM_EP_CFG */
#define DBM_EN_EP 0x00000001
#define USB3_EPNUM 0x0000003E
#define DBM_BAM_PIPE_NUM 0x000000C0
#define DBM_PRODUCER 0x00000100
#define DBM_DISABLE_WB 0x00000200
#define DBM_INT_RAM_ACC 0x00000400
/* DBM_DATA_FIFO_SIZE */
#define DBM_DATA_FIFO_SIZE_MASK 0x0000ffff
/* DBM_GEVNTSIZ */
#define DBM_GEVNTSIZ_MASK 0x0000ffff
/* DBM_DBG_CNFG */
#define DBM_ENABLE_IOC_MASK 0x0000000f
/* DBM_SOFT_RESET */
#define DBM_SFT_RST_EP0 0x00000001
#define DBM_SFT_RST_EP1 0x00000002
#define DBM_SFT_RST_EP2 0x00000004
#define DBM_SFT_RST_EP3 0x00000008
#define DBM_SFT_RST_EPS_MASK 0x0000000F
#define DBM_SFT_RST_MASK 0x80000000
#define DBM_EN_MASK 0x00000002
#define DBM_MAX_EPS 4
/* DBM TRB configurations */
#define DBM_TRB_BIT 0x80000000
#define DBM_TRB_DATA_SRC 0x40000000
#define DBM_TRB_DMA 0x20000000
#define DBM_TRB_EP_NUM(ep) (ep<<24)
/**
* USB QSCRATCH Hardware registers
*
*/
#define QSCRATCH_REG_OFFSET (0x000F8800)
#define QSCRATCH_GENERAL_CFG (QSCRATCH_REG_OFFSET + 0x08)
#define HS_PHY_CTRL_REG (QSCRATCH_REG_OFFSET + 0x10)
#define CHARGING_DET_CTRL_REG (QSCRATCH_REG_OFFSET + 0x18)
#define CHARGING_DET_OUTPUT_REG (QSCRATCH_REG_OFFSET + 0x1C)
#define ALT_INTERRUPT_EN_REG (QSCRATCH_REG_OFFSET + 0x20)
#define HS_PHY_IRQ_STAT_REG (QSCRATCH_REG_OFFSET + 0x24)
#define SS_PHY_CTRL_REG (QSCRATCH_REG_OFFSET + 0x30)
#define SS_CR_PROTOCOL_DATA_IN_REG (QSCRATCH_REG_OFFSET + 0x3C)
#define SS_CR_PROTOCOL_DATA_OUT_REG (QSCRATCH_REG_OFFSET + 0x40)
#define SS_CR_PROTOCOL_CAP_ADDR_REG (QSCRATCH_REG_OFFSET + 0x44)
#define SS_CR_PROTOCOL_CAP_DATA_REG (QSCRATCH_REG_OFFSET + 0x48)
#define SS_CR_PROTOCOL_READ_REG (QSCRATCH_REG_OFFSET + 0x4C)
#define SS_CR_PROTOCOL_WRITE_REG (QSCRATCH_REG_OFFSET + 0x50)
struct dwc3_msm_req_complete {
struct list_head list_item;
struct usb_request *req;
void (*orig_complete)(struct usb_ep *ep,
struct usb_request *req);
};
struct dwc3_msm {
struct platform_device *dwc3;
struct device *dev;
void __iomem *base;
u32 resource_size;
int dbm_num_eps;
u8 ep_num_mapping[DBM_MAX_EPS];
const struct usb_ep_ops *original_ep_ops[DWC3_ENDPOINTS_NUM];
struct list_head req_complete_list;
struct msm_xo_voter *xo_handle;
struct clk *ref_clk;
struct clk *core_clk;
struct clk *iface_clk;
struct clk *sleep_clk;
struct clk *hsphy_sleep_clk;
struct regulator *hsusb_3p3;
struct regulator *hsusb_1p8;
struct regulator *hsusb_vddcx;
struct regulator *ssusb_1p8;
struct regulator *ssusb_vddcx;
struct dwc3_ext_xceiv ext_xceiv;
bool resume_pending;
atomic_t pm_suspended;
atomic_t in_lpm;
int hs_phy_irq;
bool lpm_irq_seen;
struct delayed_work resume_work;
struct wake_lock wlock;
struct dwc3_charger charger;
struct usb_phy *otg_xceiv;
struct delayed_work chg_work;
enum usb_chg_state chg_state;
struct qpnp_adc_tm_usbid_param adc_param;
struct delayed_work init_adc_work;
bool id_adc_detect;
u8 dcd_retries;
u32 bus_perf_client;
struct msm_bus_scale_pdata *bus_scale_table;
struct power_supply usb_psy;
unsigned int online;
unsigned int host_mode;
unsigned int current_max;
unsigned int vdd_no_vol_level;
unsigned int vdd_low_vol_level;
unsigned int vdd_high_vol_level;
bool vbus_active;
};
#define USB_HSPHY_3P3_VOL_MIN 3050000 /* uV */
#define USB_HSPHY_3P3_VOL_MAX 3300000 /* uV */
#define USB_HSPHY_3P3_HPM_LOAD 16000 /* uA */
#define USB_HSPHY_1P8_VOL_MIN 1800000 /* uV */
#define USB_HSPHY_1P8_VOL_MAX 1800000 /* uV */
#define USB_HSPHY_1P8_HPM_LOAD 19000 /* uA */
#define USB_SSPHY_1P8_VOL_MIN 1800000 /* uV */
#define USB_SSPHY_1P8_VOL_MAX 1800000 /* uV */
#define USB_SSPHY_1P8_HPM_LOAD 23000 /* uA */
static struct dwc3_msm *context;
static u64 dwc3_msm_dma_mask = DMA_BIT_MASK(64);
/**
*
* Read register with debug info.
*
* @base - DWC3 base virtual address.
* @offset - register offset.
*
* @return u32
*/
static inline u32 dwc3_msm_read_reg(void *base, u32 offset)
{
u32 val = ioread32(base + offset);
return val;
}
/**
* Read register masked field with debug info.
*
* @base - DWC3 base virtual address.
* @offset - register offset.
* @mask - register bitmask.
*
* @return u32
*/
static inline u32 dwc3_msm_read_reg_field(void *base,
u32 offset,
const u32 mask)
{
u32 shift = find_first_bit((void *)&mask, 32);
u32 val = ioread32(base + offset);
val &= mask; /* clear other bits */
val >>= shift;
return val;
}
/**
*
* Write register with debug info.
*
* @base - DWC3 base virtual address.
* @offset - register offset.
* @val - value to write.
*
*/
static inline void dwc3_msm_write_reg(void *base, u32 offset, u32 val)
{
iowrite32(val, base + offset);
}
/**
* Write register masked field with debug info.
*
* @base - DWC3 base virtual address.
* @offset - register offset.
* @mask - register bitmask.
* @val - value to write.
*
*/
static inline void dwc3_msm_write_reg_field(void *base, u32 offset,
const u32 mask, u32 val)
{
u32 shift = find_first_bit((void *)&mask, 32);
u32 tmp = ioread32(base + offset);
tmp &= ~mask; /* clear written bits */
val = tmp | (val << shift);
iowrite32(val, base + offset);
}
/**
* Write register and read back masked value to confirm it is written
*
* @base - DWC3 base virtual address.
* @offset - register offset.
* @mask - register bitmask specifying what should be updated
* @val - value to write.
*
*/
static inline void dwc3_msm_write_readback(void *base, u32 offset,
const u32 mask, u32 val)
{
u32 write_val, tmp = ioread32(base + offset);
tmp &= ~mask; /* retain other bits */
write_val = tmp | val;
iowrite32(write_val, base + offset);
/* Read back to see if val was written */
tmp = ioread32(base + offset);
tmp &= mask; /* clear other bits */
if (tmp != val)
dev_err(context->dev, "%s: write: %x to QSCRATCH: %x FAILED\n",
__func__, val, offset);
}
/**
*
* Write SSPHY register with debug info.
*
* @base - DWC3 base virtual address.
* @addr - SSPHY address to write.
* @val - value to write.
*
*/
static void dwc3_msm_ssusb_write_phycreg(void *base, u32 addr, u32 val)
{
iowrite32(addr, base + SS_CR_PROTOCOL_DATA_IN_REG);
iowrite32(0x1, base + SS_CR_PROTOCOL_CAP_ADDR_REG);
while (ioread32(base + SS_CR_PROTOCOL_CAP_ADDR_REG))
cpu_relax();
iowrite32(val, base + SS_CR_PROTOCOL_DATA_IN_REG);
iowrite32(0x1, base + SS_CR_PROTOCOL_CAP_DATA_REG);
while (ioread32(base + SS_CR_PROTOCOL_CAP_DATA_REG))
cpu_relax();
iowrite32(0x1, base + SS_CR_PROTOCOL_WRITE_REG);
while (ioread32(base + SS_CR_PROTOCOL_WRITE_REG))
cpu_relax();
}
/**
*
* Read SSPHY register with debug info.
*
* @base - DWC3 base virtual address.
* @addr - SSPHY address to read.
*
*/
static u32 dwc3_msm_ssusb_read_phycreg(void *base, u32 addr)
{
iowrite32(addr, base + SS_CR_PROTOCOL_DATA_IN_REG);
iowrite32(0x1, base + SS_CR_PROTOCOL_CAP_ADDR_REG);
while (ioread32(base + SS_CR_PROTOCOL_CAP_ADDR_REG))
cpu_relax();
iowrite32(0x1, base + SS_CR_PROTOCOL_READ_REG);
while (ioread32(base + SS_CR_PROTOCOL_READ_REG))
cpu_relax();
return ioread32(base + SS_CR_PROTOCOL_DATA_OUT_REG);
}
/**
* Return DBM EP number according to usb endpoint number.
*
*/
static int dwc3_msm_find_matching_dbm_ep(u8 usb_ep)
{
int i;
for (i = 0; i < context->dbm_num_eps; i++)
if (context->ep_num_mapping[i] == usb_ep)
return i;
return -ENODEV; /* Not found */
}
/**
* Return number of configured DBM endpoints.
*
*/
static int dwc3_msm_configured_dbm_ep_num(void)
{
int i;
int count = 0;
for (i = 0; i < context->dbm_num_eps; i++)
if (context->ep_num_mapping[i])
count++;
return count;
}
/**
* Configure the DBM with the USB3 core event buffer.
* This function is called by the SNPS UDC upon initialization.
*
* @addr - address of the event buffer.
* @size - size of the event buffer.
*
*/
static int dwc3_msm_event_buffer_config(u32 addr, u16 size)
{
dev_dbg(context->dev, "%s\n", __func__);
dwc3_msm_write_reg(context->base, DBM_GEVNTADR, addr);
dwc3_msm_write_reg_field(context->base, DBM_GEVNTSIZ,
DBM_GEVNTSIZ_MASK, size);
return 0;
}
/**
* Reset the DBM registers upon initialization.
*
*/
static int dwc3_msm_dbm_soft_reset(int enter_reset)
{
dev_dbg(context->dev, "%s\n", __func__);
if (enter_reset) {
dev_dbg(context->dev, "enter DBM reset\n");
dwc3_msm_write_reg_field(context->base, DBM_SOFT_RESET,
DBM_SFT_RST_MASK, 1);
} else {
dev_dbg(context->dev, "exit DBM reset\n");
dwc3_msm_write_reg_field(context->base, DBM_SOFT_RESET,
DBM_SFT_RST_MASK, 0);
/*enable DBM*/
dwc3_msm_write_reg_field(context->base, QSCRATCH_GENERAL_CFG,
DBM_EN_MASK, 0x1);
}
return 0;
}
/**
* Soft reset specific DBM ep.
* This function is called by the function driver upon events
* such as transfer aborting, USB re-enumeration and USB
* disconnection.
*
* @dbm_ep - DBM ep number.
* @enter_reset - should we enter a reset state or get out of it.
*
*/
static int dwc3_msm_dbm_ep_soft_reset(u8 dbm_ep, bool enter_reset)
{
dev_dbg(context->dev, "%s\n", __func__);
if (dbm_ep >= context->dbm_num_eps) {
dev_err(context->dev,
"%s: Invalid DBM ep index\n", __func__);
return -ENODEV;
}
if (enter_reset) {
dwc3_msm_write_reg_field(context->base, DBM_SOFT_RESET,
DBM_SFT_RST_EPS_MASK & 1 << dbm_ep, 1);
} else {
dwc3_msm_write_reg_field(context->base, DBM_SOFT_RESET,
DBM_SFT_RST_EPS_MASK & 1 << dbm_ep, 0);
}
return 0;
}
/**
* Configure a USB DBM ep to work in BAM mode.
*
*
* @usb_ep - USB physical EP number.
* @producer - producer/consumer.
* @disable_wb - disable write back to system memory.
* @internal_mem - use internal USB memory for data fifo.
* @ioc - enable interrupt on completion.
*
* @return int - DBM ep number.
*/
static int dwc3_msm_dbm_ep_config(u8 usb_ep, u8 bam_pipe,
bool producer, bool disable_wb,
bool internal_mem, bool ioc)
{
u8 dbm_ep;
u32 ep_cfg;
dev_dbg(context->dev, "%s\n", __func__);
dbm_ep = dwc3_msm_find_matching_dbm_ep(usb_ep);
if (dbm_ep < 0) {
dev_err(context->dev,
"%s: Invalid usb ep index\n", __func__);
return -ENODEV;
}
/* First, reset the dbm endpoint */
dwc3_msm_dbm_ep_soft_reset(dbm_ep, 0);
/* Set ioc bit for dbm_ep if needed */
dwc3_msm_write_reg_field(context->base, DBM_DBG_CNFG,
DBM_ENABLE_IOC_MASK & 1 << dbm_ep, ioc ? 1 : 0);
ep_cfg = (producer ? DBM_PRODUCER : 0) |
(disable_wb ? DBM_DISABLE_WB : 0) |
(internal_mem ? DBM_INT_RAM_ACC : 0);
dwc3_msm_write_reg_field(context->base, DBM_EP_CFG(dbm_ep),
DBM_PRODUCER | DBM_DISABLE_WB | DBM_INT_RAM_ACC, ep_cfg >> 8);
dwc3_msm_write_reg_field(context->base, DBM_EP_CFG(dbm_ep), USB3_EPNUM,
usb_ep);
dwc3_msm_write_reg_field(context->base, DBM_EP_CFG(dbm_ep),
DBM_BAM_PIPE_NUM, bam_pipe);
dwc3_msm_write_reg_field(context->base, DBM_PIPE_CFG, 0x000000ff,
0xe4);
dwc3_msm_write_reg_field(context->base, DBM_EP_CFG(dbm_ep), DBM_EN_EP,
1);
return dbm_ep;
}
/**
* Configure a USB DBM ep to work in normal mode.
*
* @usb_ep - USB ep number.
*
*/
static int dwc3_msm_dbm_ep_unconfig(u8 usb_ep)
{
u8 dbm_ep;
dev_dbg(context->dev, "%s\n", __func__);
dbm_ep = dwc3_msm_find_matching_dbm_ep(usb_ep);
if (dbm_ep < 0) {
dev_err(context->dev,
"%s: Invalid usb ep index\n", __func__);
return -ENODEV;
}
context->ep_num_mapping[dbm_ep] = 0;
dwc3_msm_write_reg(context->base, DBM_EP_CFG(dbm_ep), 0);
/* Reset the dbm endpoint */
dwc3_msm_dbm_ep_soft_reset(dbm_ep, true);
return 0;
}
/**
* Configure the DBM with the BAM's data fifo.
* This function is called by the USB BAM Driver
* upon initialization.
*
* @ep - pointer to usb endpoint.
* @addr - address of data fifo.
* @size - size of data fifo.
*
*/
int msm_data_fifo_config(struct usb_ep *ep, u32 addr, u32 size, u8 dst_pipe_idx)
{
u8 dbm_ep;
struct dwc3_ep *dep = to_dwc3_ep(ep);
u8 bam_pipe = dst_pipe_idx;
dev_dbg(context->dev, "%s\n", __func__);
dbm_ep = bam_pipe;
context->ep_num_mapping[dbm_ep] = dep->number;
dwc3_msm_write_reg(context->base, DBM_DATA_FIFO(dbm_ep), addr);
dwc3_msm_write_reg_field(context->base, DBM_DATA_FIFO_SIZE(dbm_ep),
DBM_DATA_FIFO_SIZE_MASK, size);
return 0;
}
/**
* Cleanups for msm endpoint on request complete.
*
* Also call original request complete.
*
* @usb_ep - pointer to usb_ep instance.
* @request - pointer to usb_request instance.
*
* @return int - 0 on success, negetive on error.
*/
static void dwc3_msm_req_complete_func(struct usb_ep *ep,
struct usb_request *request)
{
struct dwc3_request *req = to_dwc3_request(request);
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3_msm_req_complete *req_complete = NULL;
/* Find original request complete function and remove it from list */
list_for_each_entry(req_complete,
&context->req_complete_list,
list_item) {
if (req_complete->req == request)
break;
}
if (!req_complete || req_complete->req != request) {
dev_err(dep->dwc->dev, "%s: could not find the request\n",
__func__);
return;
}
list_del(&req_complete->list_item);
/*
* Release another one TRB to the pool since DBM queue took 2 TRBs
* (normal and link), and the dwc3/gadget.c :: dwc3_gadget_giveback
* released only one.
*/
if (req->queued)
dep->busy_slot++;
/* Unconfigure dbm ep */
dwc3_msm_dbm_ep_unconfig(dep->number);
/*
* If this is the last endpoint we unconfigured, than reset also
* the event buffers.
*/
if (0 == dwc3_msm_configured_dbm_ep_num())
dwc3_msm_event_buffer_config(0, 0);
/*
* Call original complete function, notice that dwc->lock is already
* taken by the caller of this function (dwc3_gadget_giveback()).
*/
request->complete = req_complete->orig_complete;
if (request->complete)
request->complete(ep, request);
kfree(req_complete);
}
/**
* Helper function.
* See the header of the dwc3_msm_ep_queue function.
*
* @dwc3_ep - pointer to dwc3_ep instance.
* @req - pointer to dwc3_request instance.
*
* @return int - 0 on success, negetive on error.
*/
static int __dwc3_msm_ep_queue(struct dwc3_ep *dep, struct dwc3_request *req)
{
struct dwc3_trb *trb;
struct dwc3_trb *trb_link;
struct dwc3_gadget_ep_cmd_params params;
u32 cmd;
int ret = 0;
/* We push the request to the dep->req_queued list to indicate that
* this request is issued with start transfer. The request will be out
* from this list in 2 cases. The first is that the transfer will be
* completed (not if the transfer is endless using a circular TRBs with
* with link TRB). The second case is an option to do stop stransfer,
* this can be initiated by the function driver when calling dequeue.
*/
req->queued = true;
list_add_tail(&req->list, &dep->req_queued);
/* First, prepare a normal TRB, point to the fake buffer */
trb = &dep->trb_pool[dep->free_slot & DWC3_TRB_MASK];
dep->free_slot++;
memset(trb, 0, sizeof(*trb));
req->trb = trb;
trb->bph = DBM_TRB_BIT | DBM_TRB_DMA | DBM_TRB_EP_NUM(dep->number);
trb->size = DWC3_TRB_SIZE_LENGTH(req->request.length);
trb->ctrl = DWC3_TRBCTL_NORMAL | DWC3_TRB_CTRL_HWO | DWC3_TRB_CTRL_CHN;
req->trb_dma = dwc3_trb_dma_offset(dep, trb);
/* Second, prepare a Link TRB that points to the first TRB*/
trb_link = &dep->trb_pool[dep->free_slot & DWC3_TRB_MASK];
dep->free_slot++;
memset(trb_link, 0, sizeof *trb_link);
trb_link->bpl = lower_32_bits(req->trb_dma);
trb_link->bph = DBM_TRB_BIT |
DBM_TRB_DMA | DBM_TRB_EP_NUM(dep->number);
trb_link->size = 0;
trb_link->ctrl = DWC3_TRBCTL_LINK_TRB | DWC3_TRB_CTRL_HWO;
/*
* Now start the transfer
*/
memset(&params, 0, sizeof(params));
params.param0 = 0; /* TDAddr High */
params.param1 = lower_32_bits(req->trb_dma); /* DAddr Low */
/* DBM requires IOC to be set */
cmd = DWC3_DEPCMD_STARTTRANSFER | DWC3_DEPCMD_CMDIOC;
ret = dwc3_send_gadget_ep_cmd(dep->dwc, dep->number, cmd, &params);
if (ret < 0) {
dev_dbg(dep->dwc->dev,
"%s: failed to send STARTTRANSFER command\n",
__func__);
list_del(&req->list);
return ret;
}
return ret;
}
/**
* Queue a usb request to the DBM endpoint.
* This function should be called after the endpoint
* was enabled by the ep_enable.
*
* This function prepares special structure of TRBs which
* is familier with the DBM HW, so it will possible to use
* this endpoint in DBM mode.
*
* The TRBs prepared by this function, is one normal TRB
* which point to a fake buffer, followed by a link TRB
* that points to the first TRB.
*
* The API of this function follow the regular API of
* usb_ep_queue (see usb_ep_ops in include/linuk/usb/gadget.h).
*
* @usb_ep - pointer to usb_ep instance.
* @request - pointer to usb_request instance.
* @gfp_flags - possible flags.
*
* @return int - 0 on success, negetive on error.
*/
static int dwc3_msm_ep_queue(struct usb_ep *ep,
struct usb_request *request, gfp_t gfp_flags)
{
struct dwc3_request *req = to_dwc3_request(request);
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_msm_req_complete *req_complete;
unsigned long flags;
int ret = 0;
u8 bam_pipe;
bool producer;
bool disable_wb;
bool internal_mem;
bool ioc;
u8 speed;
if (!(request->udc_priv & MSM_SPS_MODE)) {
/* Not SPS mode, call original queue */
dev_vdbg(dwc->dev, "%s: not sps mode, use regular queue\n",
__func__);
return (context->original_ep_ops[dep->number])->queue(ep,
request,
gfp_flags);
}
if (!dep->endpoint.desc) {
dev_err(dwc->dev,
"%s: trying to queue request %p to disabled ep %s\n",
__func__, request, ep->name);
return -EPERM;
}
if (dep->number == 0 || dep->number == 1) {
dev_err(dwc->dev,
"%s: trying to queue dbm request %p to control ep %s\n",
__func__, request, ep->name);
return -EPERM;
}
if (dep->free_slot > 0 || dep->busy_slot > 0 ||
!list_empty(&dep->request_list) ||
!list_empty(&dep->req_queued)) {
dev_err(dwc->dev,
"%s: trying to queue dbm request %p tp ep %s\n",
__func__, request, ep->name);
return -EPERM;
}
/*
* Override req->complete function, but before doing that,
* store it's original pointer in the req_complete_list.
*/
req_complete = kzalloc(sizeof(*req_complete), GFP_KERNEL);
if (!req_complete) {
dev_err(dep->dwc->dev, "%s: not enough memory\n", __func__);
return -ENOMEM;
}
req_complete->req = request;
req_complete->orig_complete = request->complete;
list_add_tail(&req_complete->list_item, &context->req_complete_list);
request->complete = dwc3_msm_req_complete_func;
/*
* Configure the DBM endpoint
*/
bam_pipe = request->udc_priv & MSM_PIPE_ID_MASK;
producer = ((request->udc_priv & MSM_PRODUCER) ? true : false);
disable_wb = ((request->udc_priv & MSM_DISABLE_WB) ? true : false);
internal_mem = ((request->udc_priv & MSM_INTERNAL_MEM) ? true : false);
ioc = ((request->udc_priv & MSM_ETD_IOC) ? true : false);
ret = dwc3_msm_dbm_ep_config(dep->number,
bam_pipe, producer,
disable_wb, internal_mem, ioc);
if (ret < 0) {
dev_err(context->dev,
"error %d after calling dwc3_msm_dbm_ep_config\n",
ret);
return ret;
}
dev_vdbg(dwc->dev, "%s: queing request %p to ep %s length %d\n",
__func__, request, ep->name, request->length);
/*
* We must obtain the lock of the dwc3 core driver,
* including disabling interrupts, so we will be sure
* that we are the only ones that configure the HW device
* core and ensure that we queuing the request will finish
* as soon as possible so we will release back the lock.
*/
spin_lock_irqsave(&dwc->lock, flags);
ret = __dwc3_msm_ep_queue(dep, req);
spin_unlock_irqrestore(&dwc->lock, flags);
if (ret < 0) {
dev_err(context->dev,
"error %d after calling __dwc3_msm_ep_queue\n", ret);
return ret;
}
speed = dwc3_readl(dwc->regs, DWC3_DSTS) & DWC3_DSTS_CONNECTSPD;
dwc3_msm_write_reg(context->base, DBM_GEN_CFG, speed >> 2);
return 0;
}
/**
* Configure MSM endpoint.
* This function do specific configurations
* to an endpoint which need specific implementaion
* in the MSM architecture.
*
* This function should be called by usb function/class
* layer which need a support from the specific MSM HW
* which wrap the USB3 core. (like DBM specific endpoints)
*
* @ep - a pointer to some usb_ep instance
*
* @return int - 0 on success, negetive on error.
*/
int msm_ep_config(struct usb_ep *ep)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct usb_ep_ops *new_ep_ops;
/* Save original ep ops for future restore*/
if (context->original_ep_ops[dep->number]) {
dev_err(context->dev,
"ep [%s,%d] already configured as msm endpoint\n",
ep->name, dep->number);
return -EPERM;
}
context->original_ep_ops[dep->number] = ep->ops;
/* Set new usb ops as we like */
new_ep_ops = kzalloc(sizeof(struct usb_ep_ops), GFP_KERNEL);
if (!new_ep_ops) {
dev_err(context->dev,
"%s: unable to allocate mem for new usb ep ops\n",
__func__);
return -ENOMEM;
}
(*new_ep_ops) = (*ep->ops);
new_ep_ops->queue = dwc3_msm_ep_queue;
ep->ops = new_ep_ops;
/*
* Do HERE more usb endpoint configurations
* which are specific to MSM.
*/
return 0;
}
EXPORT_SYMBOL(msm_ep_config);
/**
* Un-configure MSM endpoint.
* Tear down configurations done in the
* dwc3_msm_ep_config function.
*
* @ep - a pointer to some usb_ep instance
*
* @return int - 0 on success, negetive on error.
*/
int msm_ep_unconfig(struct usb_ep *ep)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct usb_ep_ops *old_ep_ops;
/* Restore original ep ops */
if (!context->original_ep_ops[dep->number]) {
dev_err(context->dev,
"ep [%s,%d] was not configured as msm endpoint\n",
ep->name, dep->number);
return -EINVAL;
}
old_ep_ops = (struct usb_ep_ops *)ep->ops;
ep->ops = context->original_ep_ops[dep->number];
context->original_ep_ops[dep->number] = NULL;
kfree(old_ep_ops);
/*
* Do HERE more usb endpoint un-configurations
* which are specific to MSM.
*/
return 0;
}
EXPORT_SYMBOL(msm_ep_unconfig);
/* HSPHY */
static int dwc3_hsusb_config_vddcx(int high)
{
int min_vol, max_vol, ret;
struct dwc3_msm *dwc = context;
max_vol = dwc->vdd_high_vol_level;
min_vol = high ? dwc->vdd_low_vol_level : dwc->vdd_no_vol_level;
ret = regulator_set_voltage(dwc->hsusb_vddcx, min_vol, max_vol);
if (ret) {
dev_err(dwc->dev, "unable to set voltage for HSUSB_VDDCX\n");
return ret;
}
dev_dbg(dwc->dev, "%s: min_vol:%d max_vol:%d\n", __func__,
min_vol, max_vol);
return ret;
}
static int dwc3_hsusb_ldo_init(int init)
{
int rc = 0;
struct dwc3_msm *dwc = context;
if (!init) {
regulator_set_voltage(dwc->hsusb_1p8, 0, USB_HSPHY_1P8_VOL_MAX);
regulator_set_voltage(dwc->hsusb_3p3, 0, USB_HSPHY_3P3_VOL_MAX);
return 0;
}
dwc->hsusb_3p3 = devm_regulator_get(dwc->dev, "HSUSB_3p3");
if (IS_ERR(dwc->hsusb_3p3)) {
dev_err(dwc->dev, "unable to get hsusb 3p3\n");
return PTR_ERR(dwc->hsusb_3p3);
}
rc = regulator_set_voltage(dwc->hsusb_3p3,
USB_HSPHY_3P3_VOL_MIN, USB_HSPHY_3P3_VOL_MAX);
if (rc) {
dev_err(dwc->dev, "unable to set voltage for hsusb 3p3\n");
return rc;
}
dwc->hsusb_1p8 = devm_regulator_get(dwc->dev, "HSUSB_1p8");
if (IS_ERR(dwc->hsusb_1p8)) {
dev_err(dwc->dev, "unable to get hsusb 1p8\n");
rc = PTR_ERR(dwc->hsusb_1p8);
goto devote_3p3;
}
rc = regulator_set_voltage(dwc->hsusb_1p8,
USB_HSPHY_1P8_VOL_MIN, USB_HSPHY_1P8_VOL_MAX);
if (rc) {
dev_err(dwc->dev, "unable to set voltage for hsusb 1p8\n");
goto devote_3p3;
}
return 0;
devote_3p3:
regulator_set_voltage(dwc->hsusb_3p3, 0, USB_HSPHY_3P3_VOL_MAX);
return rc;
}
static int dwc3_hsusb_ldo_enable(int on)
{
int rc = 0;
struct dwc3_msm *dwc = context;
dev_dbg(dwc->dev, "reg (%s)\n", on ? "HPM" : "LPM");
if (!on)
goto disable_regulators;
rc = regulator_set_optimum_mode(dwc->hsusb_1p8, USB_HSPHY_1P8_HPM_LOAD);
if (rc < 0) {
dev_err(dwc->dev, "Unable to set HPM of regulator HSUSB_1p8\n");
return rc;
}
rc = regulator_enable(dwc->hsusb_1p8);
if (rc) {
dev_err(dwc->dev, "Unable to enable HSUSB_1p8\n");
goto put_1p8_lpm;
}
rc = regulator_set_optimum_mode(dwc->hsusb_3p3, USB_HSPHY_3P3_HPM_LOAD);
if (rc < 0) {
dev_err(dwc->dev, "Unable to set HPM of regulator HSUSB_3p3\n");
goto disable_1p8;
}
rc = regulator_enable(dwc->hsusb_3p3);
if (rc) {
dev_err(dwc->dev, "Unable to enable HSUSB_3p3\n");
goto put_3p3_lpm;
}
return 0;
disable_regulators:
rc = regulator_disable(dwc->hsusb_3p3);
if (rc)
dev_err(dwc->dev, "Unable to disable HSUSB_3p3\n");
put_3p3_lpm:
rc = regulator_set_optimum_mode(dwc->hsusb_3p3, 0);
if (rc < 0)
dev_err(dwc->dev, "Unable to set LPM of regulator HSUSB_3p3\n");
disable_1p8:
rc = regulator_disable(dwc->hsusb_1p8);
if (rc)
dev_err(dwc->dev, "Unable to disable HSUSB_1p8\n");
put_1p8_lpm:
rc = regulator_set_optimum_mode(dwc->hsusb_1p8, 0);
if (rc < 0)
dev_err(dwc->dev, "Unable to set LPM of regulator HSUSB_1p8\n");
return rc < 0 ? rc : 0;
}
/* SSPHY */
static int dwc3_ssusb_config_vddcx(int high)
{
int min_vol, max_vol, ret;
struct dwc3_msm *dwc = context;
max_vol = dwc->vdd_high_vol_level;
min_vol = high ? dwc->vdd_low_vol_level : dwc->vdd_no_vol_level;
ret = regulator_set_voltage(dwc->ssusb_vddcx, min_vol, max_vol);
if (ret) {
dev_err(dwc->dev, "unable to set voltage for SSUSB_VDDCX\n");
return ret;
}
dev_dbg(dwc->dev, "%s: min_vol:%d max_vol:%d\n", __func__,
min_vol, max_vol);
return ret;
}
/* 3.3v supply not needed for SS PHY */
static int dwc3_ssusb_ldo_init(int init)
{
int rc = 0;
struct dwc3_msm *dwc = context;
if (!init) {
regulator_set_voltage(dwc->ssusb_1p8, 0, USB_SSPHY_1P8_VOL_MAX);
return 0;
}
dwc->ssusb_1p8 = devm_regulator_get(dwc->dev, "SSUSB_1p8");
if (IS_ERR(dwc->ssusb_1p8)) {
dev_err(dwc->dev, "unable to get ssusb 1p8\n");
return PTR_ERR(dwc->ssusb_1p8);
}
rc = regulator_set_voltage(dwc->ssusb_1p8,
USB_SSPHY_1P8_VOL_MIN, USB_SSPHY_1P8_VOL_MAX);
if (rc)
dev_err(dwc->dev, "unable to set voltage for ssusb 1p8\n");
return rc;
}
static int dwc3_ssusb_ldo_enable(int on)
{
int rc = 0;
struct dwc3_msm *dwc = context;
dev_dbg(context->dev, "reg (%s)\n", on ? "HPM" : "LPM");
if (!on)
goto disable_regulators;
rc = regulator_set_optimum_mode(dwc->ssusb_1p8, USB_SSPHY_1P8_HPM_LOAD);
if (rc < 0) {
dev_err(dwc->dev, "Unable to set HPM of SSUSB_1p8\n");
return rc;
}
rc = regulator_enable(dwc->ssusb_1p8);
if (rc) {
dev_err(dwc->dev, "Unable to enable SSUSB_1p8\n");
goto put_1p8_lpm;
}
return 0;
disable_regulators:
rc = regulator_disable(dwc->ssusb_1p8);
if (rc)
dev_err(dwc->dev, "Unable to disable SSUSB_1p8\n");
put_1p8_lpm:
rc = regulator_set_optimum_mode(dwc->ssusb_1p8, 0);
if (rc < 0)
dev_err(dwc->dev, "Unable to set LPM of SSUSB_1p8\n");
return rc < 0 ? rc : 0;
}
static int dwc3_msm_link_clk_reset(bool assert)
{
int ret = 0;
struct dwc3_msm *mdwc = context;
if (assert) {
/* Using asynchronous block reset to the hardware */
dev_dbg(mdwc->dev, "block_reset ASSERT\n");
clk_disable_unprepare(mdwc->ref_clk);
clk_disable_unprepare(mdwc->iface_clk);
clk_disable_unprepare(mdwc->core_clk);
ret = clk_reset(mdwc->core_clk, CLK_RESET_ASSERT);
if (ret)
dev_err(mdwc->dev, "dwc3 core_clk assert failed\n");
} else {
dev_dbg(mdwc->dev, "block_reset DEASSERT\n");
ret = clk_reset(mdwc->core_clk, CLK_RESET_DEASSERT);
ndelay(200);
clk_prepare_enable(mdwc->core_clk);
clk_prepare_enable(mdwc->ref_clk);
clk_prepare_enable(mdwc->iface_clk);
if (ret)
dev_err(mdwc->dev, "dwc3 core_clk deassert failed\n");
}
return ret;
}
/* Initialize QSCRATCH registers for HSPHY and SSPHY operation */
static void dwc3_msm_qscratch_reg_init(struct dwc3_msm *msm)
{
u32 data = 0;
/* SSPHY Initialization: Use ref_clk from pads and set its parameters */
dwc3_msm_write_reg(msm->base, SS_PHY_CTRL_REG, 0x10210002);
msleep(30);
/* Assert SSPHY reset */
dwc3_msm_write_reg(msm->base, SS_PHY_CTRL_REG, 0x10210082);
usleep_range(2000, 2200);
/* De-assert SSPHY reset - power and ref_clock must be ON */
dwc3_msm_write_reg(msm->base, SS_PHY_CTRL_REG, 0x10210002);
usleep_range(2000, 2200);
/* Ref clock must be stable now, enable ref clock for HS mode */
dwc3_msm_write_reg(msm->base, SS_PHY_CTRL_REG, 0x10210102);
usleep_range(2000, 2200);
/*
* HSPHY Initialization: Enable UTMI clock and clamp enable HVINTs,
* and disable RETENTION (power-on default is ENABLED)
*/
dwc3_msm_write_reg(msm->base, HS_PHY_CTRL_REG, 0x5220bb2);
usleep_range(2000, 2200);
/* Disable (bypass) VBUS and ID filters */
dwc3_msm_write_reg(msm->base, QSCRATCH_GENERAL_CFG, 0x78);
/*
* WORKAROUND: There is SSPHY suspend bug due to which USB enumerates
* in HS mode instead of SS mode. Workaround it by asserting
* LANE0.TX_ALT_BLOCK.EN_ALT_BUS to enable TX to use alt bus mode
*/
data = dwc3_msm_ssusb_read_phycreg(msm->base, 0x102D);
data |= (1 << 7);
dwc3_msm_ssusb_write_phycreg(msm->base, 0x102D, data);
data = dwc3_msm_ssusb_read_phycreg(msm->base, 0x1010);
data &= ~0xFF0;
data |= 0x40;
dwc3_msm_ssusb_write_phycreg(msm->base, 0x1010, data);
}
static void dwc3_msm_block_reset(void)
{
struct dwc3_msm *mdwc = context;
int ret = 0;
ret = dwc3_msm_link_clk_reset(1);
if (ret)
return;
usleep_range(1000, 1200);
ret = dwc3_msm_link_clk_reset(0);
if (ret)
return;
usleep_range(10000, 12000);
/* Reinitialize QSCRATCH registers after block reset */
dwc3_msm_qscratch_reg_init(mdwc);
}
static void dwc3_chg_enable_secondary_det(struct dwc3_msm *mdwc)
{
u32 chg_ctrl;
/* Turn off VDP_SRC */
dwc3_msm_write_reg(mdwc->base, CHARGING_DET_CTRL_REG, 0x0);
msleep(20);
/* Before proceeding make sure VDP_SRC is OFF */
chg_ctrl = dwc3_msm_read_reg(mdwc->base, CHARGING_DET_CTRL_REG);
if (chg_ctrl & 0x3F)
dev_err(mdwc->dev, "%s Unable to reset chg_det block: %x\n",
__func__, chg_ctrl);
/*
* Configure DM as current source, DP as current sink
* and enable battery charging comparators.
*/
dwc3_msm_write_readback(mdwc->base, CHARGING_DET_CTRL_REG, 0x3F, 0x34);
}
static bool dwc3_chg_det_check_output(struct dwc3_msm *mdwc)
{
u32 chg_det;
bool ret = false;
chg_det = dwc3_msm_read_reg(mdwc->base, CHARGING_DET_OUTPUT_REG);
ret = chg_det & 1;
return ret;
}
static void dwc3_chg_enable_primary_det(struct dwc3_msm *mdwc)
{
/*
* Configure DP as current source, DM as current sink
* and enable battery charging comparators.
*/
dwc3_msm_write_readback(mdwc->base, CHARGING_DET_CTRL_REG, 0x3F, 0x30);
}
static inline bool dwc3_chg_check_dcd(struct dwc3_msm *mdwc)
{
u32 chg_state;
bool ret = false;
chg_state = dwc3_msm_read_reg(mdwc->base, CHARGING_DET_OUTPUT_REG);
ret = chg_state & 2;
return ret;
}
static inline void dwc3_chg_disable_dcd(struct dwc3_msm *mdwc)
{
dwc3_msm_write_readback(mdwc->base, CHARGING_DET_CTRL_REG, 0x3F, 0x0);
}
static inline void dwc3_chg_enable_dcd(struct dwc3_msm *mdwc)
{
/* Data contact detection enable, DCDENB */
dwc3_msm_write_readback(mdwc->base, CHARGING_DET_CTRL_REG, 0x3F, 0x2);
}
static void dwc3_chg_block_reset(struct dwc3_msm *mdwc)
{
u32 chg_ctrl;
/* Clear charger detecting control bits */
dwc3_msm_write_reg(mdwc->base, CHARGING_DET_CTRL_REG, 0x0);
/* Clear alt interrupt latch and enable bits */
dwc3_msm_write_reg(mdwc->base, HS_PHY_IRQ_STAT_REG, 0xFFF);
dwc3_msm_write_reg(mdwc->base, ALT_INTERRUPT_EN_REG, 0x0);
udelay(100);
/* Before proceeding make sure charger block is RESET */
chg_ctrl = dwc3_msm_read_reg(mdwc->base, CHARGING_DET_CTRL_REG);
if (chg_ctrl & 0x3F)
dev_err(mdwc->dev, "%s Unable to reset chg_det block: %x\n",
__func__, chg_ctrl);
}
static const char *chg_to_string(enum dwc3_chg_type chg_type)
{
switch (chg_type) {
case USB_SDP_CHARGER: return "USB_SDP_CHARGER";
case USB_DCP_CHARGER: return "USB_DCP_CHARGER";
case USB_CDP_CHARGER: return "USB_CDP_CHARGER";
default: return "INVALID_CHARGER";
}
}
#define DWC3_CHG_DCD_POLL_TIME (100 * HZ/1000) /* 100 msec */
#define DWC3_CHG_DCD_MAX_RETRIES 6 /* Tdcd_tmout = 6 * 100 msec */
#define DWC3_CHG_PRIMARY_DET_TIME (50 * HZ/1000) /* TVDPSRC_ON */
#define DWC3_CHG_SECONDARY_DET_TIME (50 * HZ/1000) /* TVDMSRC_ON */
static void dwc3_chg_detect_work(struct work_struct *w)
{
struct dwc3_msm *mdwc = container_of(w, struct dwc3_msm, chg_work.work);
bool is_dcd = false, tmout, vout;
unsigned long delay;
dev_dbg(mdwc->dev, "chg detection work\n");
switch (mdwc->chg_state) {
case USB_CHG_STATE_UNDEFINED:
dwc3_chg_block_reset(mdwc);
dwc3_chg_enable_dcd(mdwc);
mdwc->chg_state = USB_CHG_STATE_WAIT_FOR_DCD;
mdwc->dcd_retries = 0;
delay = DWC3_CHG_DCD_POLL_TIME;
break;
case USB_CHG_STATE_WAIT_FOR_DCD:
is_dcd = dwc3_chg_check_dcd(mdwc);
tmout = ++mdwc->dcd_retries == DWC3_CHG_DCD_MAX_RETRIES;
if (is_dcd || tmout) {
dwc3_chg_disable_dcd(mdwc);
dwc3_chg_enable_primary_det(mdwc);
delay = DWC3_CHG_PRIMARY_DET_TIME;
mdwc->chg_state = USB_CHG_STATE_DCD_DONE;
} else {
delay = DWC3_CHG_DCD_POLL_TIME;
}
break;
case USB_CHG_STATE_DCD_DONE:
vout = dwc3_chg_det_check_output(mdwc);
if (vout) {
dwc3_chg_enable_secondary_det(mdwc);
delay = DWC3_CHG_SECONDARY_DET_TIME;
mdwc->chg_state = USB_CHG_STATE_PRIMARY_DONE;
} else {
mdwc->charger.chg_type = USB_SDP_CHARGER;
mdwc->chg_state = USB_CHG_STATE_DETECTED;
delay = 0;
}
break;
case USB_CHG_STATE_PRIMARY_DONE:
vout = dwc3_chg_det_check_output(mdwc);
if (vout)
mdwc->charger.chg_type = USB_DCP_CHARGER;
else
mdwc->charger.chg_type = USB_CDP_CHARGER;
mdwc->chg_state = USB_CHG_STATE_SECONDARY_DONE;
/* fall through */
case USB_CHG_STATE_SECONDARY_DONE:
mdwc->chg_state = USB_CHG_STATE_DETECTED;
/* fall through */
case USB_CHG_STATE_DETECTED:
dwc3_chg_block_reset(mdwc);
/* Enable VDP_SRC */
if (mdwc->charger.chg_type == DWC3_DCP_CHARGER)
dwc3_msm_write_readback(mdwc->base,
CHARGING_DET_CTRL_REG, 0x1F, 0x10);
dev_dbg(mdwc->dev, "chg_type = %s\n",
chg_to_string(mdwc->charger.chg_type));
mdwc->charger.notify_detection_complete(mdwc->otg_xceiv->otg,
&mdwc->charger);
return;
default:
return;
}
queue_delayed_work(system_nrt_wq, &mdwc->chg_work, delay);
}
static void dwc3_start_chg_det(struct dwc3_charger *charger, bool start)
{
struct dwc3_msm *mdwc = context;
if (start == false) {
cancel_delayed_work_sync(&mdwc->chg_work);
mdwc->chg_state = USB_CHG_STATE_UNDEFINED;
charger->chg_type = DWC3_INVALID_CHARGER;
return;
}
mdwc->chg_state = USB_CHG_STATE_UNDEFINED;
charger->chg_type = DWC3_INVALID_CHARGER;
queue_delayed_work(system_nrt_wq, &mdwc->chg_work, 0);
}
static int dwc3_msm_suspend(struct dwc3_msm *mdwc)
{
int ret;
bool dcp;
dev_dbg(mdwc->dev, "%s: entering lpm\n", __func__);
if (atomic_read(&mdwc->in_lpm)) {
dev_dbg(mdwc->dev, "%s: Already suspended\n", __func__);
return 0;
}
if (mdwc->hs_phy_irq)
disable_irq(mdwc->hs_phy_irq);
if (cancel_delayed_work_sync(&mdwc->chg_work))
dev_dbg(mdwc->dev, "%s: chg_work was pending\n", __func__);
if (mdwc->chg_state != USB_CHG_STATE_DETECTED) {
/* charger detection wasn't complete; re-init flags */
mdwc->chg_state = USB_CHG_STATE_UNDEFINED;
mdwc->charger.chg_type = DWC3_INVALID_CHARGER;
dwc3_msm_write_readback(mdwc->base, CHARGING_DET_CTRL_REG,
0x37, 0x0);
}
dcp = mdwc->charger.chg_type == DWC3_DCP_CHARGER;
/* Sequence to put hardware in low power state:
* 1. Set OTGDISABLE to disable OTG block in HSPHY (saves power)
* 2. Clear charger detection control fields (performed above)
* 3. SUSPEND PHY and turn OFF core clock after some delay
* 4. Clear interrupt latch register and enable BSV, ID HV interrupts
* 5. Enable PHY retention
*/
dwc3_msm_write_readback(mdwc->base, HS_PHY_CTRL_REG, 0x1000, 0x1000);
dwc3_msm_write_readback(mdwc->base, HS_PHY_CTRL_REG,
0xC00000, 0x800000);
/* Sequence to put SSPHY in low power state:
* 1. Clear REF_SS_PHY_EN in SS_PHY_CTRL_REG
* 2. Clear REF_USE_PAD in SS_PHY_CTRL_REG
* 3. Set TEST_POWERED_DOWN in SS_PHY_CTRL_REG to enable PHY retention
* 4. Disable SSPHY ref clk
*/
dwc3_msm_write_readback(mdwc->base, SS_PHY_CTRL_REG, (1 << 8), 0x0);
dwc3_msm_write_readback(mdwc->base, SS_PHY_CTRL_REG, (1 << 28), 0x0);
dwc3_msm_write_readback(mdwc->base, SS_PHY_CTRL_REG, (1 << 26),
(1 << 26));
usleep_range(1000, 1200);
clk_disable_unprepare(mdwc->ref_clk);
dwc3_msm_write_reg(mdwc->base, HS_PHY_IRQ_STAT_REG, 0xFFF);
dwc3_msm_write_readback(mdwc->base, HS_PHY_CTRL_REG, 0x18000, 0x18000);
if (!dcp)
dwc3_msm_write_readback(mdwc->base, HS_PHY_CTRL_REG, 0x2, 0x0);
/* make sure above writes are completed before turning off clocks */
wmb();
clk_disable_unprepare(mdwc->core_clk);
clk_disable_unprepare(mdwc->iface_clk);
/* USB PHY no more requires TCXO */
ret = msm_xo_mode_vote(mdwc->xo_handle, MSM_XO_MODE_OFF);
if (ret)
dev_err(mdwc->dev, "%s failed to devote for TCXO buffer%d\n",
__func__, ret);
if (mdwc->bus_perf_client) {
ret = msm_bus_scale_client_update_request(
mdwc->bus_perf_client, 0);
if (ret)
dev_err(mdwc->dev, "Failed to reset bus bw vote\n");
}
if (mdwc->otg_xceiv && mdwc->ext_xceiv.otg_capability && !dcp)
dwc3_hsusb_ldo_enable(0);
dwc3_ssusb_ldo_enable(0);
dwc3_ssusb_config_vddcx(0);
dwc3_hsusb_config_vddcx(0);
wake_unlock(&mdwc->wlock);
atomic_set(&mdwc->in_lpm, 1);
dev_info(mdwc->dev, "DWC3 in low power mode\n");
if (mdwc->hs_phy_irq)
enable_irq(mdwc->hs_phy_irq);
return 0;
}
static int dwc3_msm_resume(struct dwc3_msm *mdwc)
{
int ret;
bool dcp;
dev_dbg(mdwc->dev, "%s: exiting lpm\n", __func__);
if (!atomic_read(&mdwc->in_lpm)) {
dev_dbg(mdwc->dev, "%s: Already resumed\n", __func__);
return 0;
}
wake_lock(&mdwc->wlock);
if (mdwc->bus_perf_client) {
ret = msm_bus_scale_client_update_request(
mdwc->bus_perf_client, 1);
if (ret)
dev_err(mdwc->dev, "Failed to vote for bus scaling\n");
}
/* Vote for TCXO while waking up USB HSPHY */
ret = msm_xo_mode_vote(mdwc->xo_handle, MSM_XO_MODE_ON);
if (ret)
dev_err(mdwc->dev, "%s failed to vote for TCXO buffer%d\n",
__func__, ret);
dcp = mdwc->charger.chg_type == DWC3_DCP_CHARGER;
if (mdwc->otg_xceiv && mdwc->ext_xceiv.otg_capability && !dcp)
dwc3_hsusb_ldo_enable(1);
dwc3_ssusb_ldo_enable(1);
dwc3_ssusb_config_vddcx(1);
dwc3_hsusb_config_vddcx(1);
clk_prepare_enable(mdwc->ref_clk);
usleep_range(1000, 1200);
clk_prepare_enable(mdwc->iface_clk);
clk_prepare_enable(mdwc->core_clk);
/* Disable HV interrupt */
dwc3_msm_write_readback(mdwc->base, HS_PHY_CTRL_REG, 0x18000, 0x0);
/* Disable Retention */
dwc3_msm_write_readback(mdwc->base, HS_PHY_CTRL_REG, 0x2, 0x2);
dwc3_msm_write_reg(mdwc->base, DWC3_GUSB2PHYCFG(0),
dwc3_msm_read_reg(mdwc->base, DWC3_GUSB2PHYCFG(0)) | 0xF0000000);
/* 10usec delay required before de-asserting PHY RESET */
udelay(10);
dwc3_msm_write_reg(mdwc->base, DWC3_GUSB2PHYCFG(0),
dwc3_msm_read_reg(mdwc->base, DWC3_GUSB2PHYCFG(0)) & 0x7FFFFFFF);
/* Bring PHY out of suspend */
dwc3_msm_write_readback(mdwc->base, HS_PHY_CTRL_REG, 0xC00000, 0x0);
/* Assert SS PHY RESET */
dwc3_msm_write_readback(mdwc->base, SS_PHY_CTRL_REG, (1 << 7),
(1 << 7));
dwc3_msm_write_readback(mdwc->base, SS_PHY_CTRL_REG, (1 << 28),
(1 << 28));
dwc3_msm_write_readback(mdwc->base, SS_PHY_CTRL_REG, (1 << 8),
(1 << 8));
dwc3_msm_write_readback(mdwc->base, SS_PHY_CTRL_REG, (1 << 26), 0x0);
/* 10usec delay required before de-asserting SS PHY RESET */
udelay(10);
dwc3_msm_write_readback(mdwc->base, SS_PHY_CTRL_REG, (1 << 7), 0x0);
atomic_set(&mdwc->in_lpm, 0);
/* match disable_irq call from isr */
if (mdwc->lpm_irq_seen && mdwc->hs_phy_irq) {
enable_irq(mdwc->hs_phy_irq);
mdwc->lpm_irq_seen = false;
}
dev_info(mdwc->dev, "DWC3 exited from low power mode\n");
return 0;
}
static void dwc3_resume_work(struct work_struct *w)
{
struct dwc3_msm *mdwc = container_of(w, struct dwc3_msm,
resume_work.work);
dev_dbg(mdwc->dev, "%s: dwc3 resume work\n", __func__);
/* handle any event that was queued while work was already running */
if (!atomic_read(&mdwc->in_lpm)) {
dev_dbg(mdwc->dev, "%s: notifying xceiv event\n", __func__);
if (mdwc->otg_xceiv)
mdwc->ext_xceiv.notify_ext_events(mdwc->otg_xceiv->otg,
DWC3_EVENT_XCEIV_STATE);
return;
}
/* bail out if system resume in process, else initiate RESUME */
if (atomic_read(&mdwc->pm_suspended)) {
mdwc->resume_pending = true;
} else {
pm_runtime_get_sync(mdwc->dev);
if (mdwc->otg_xceiv)
mdwc->ext_xceiv.notify_ext_events(mdwc->otg_xceiv->otg,
DWC3_EVENT_PHY_RESUME);
pm_runtime_put_sync(mdwc->dev);
if (mdwc->otg_xceiv && (mdwc->ext_xceiv.otg_capability))
mdwc->ext_xceiv.notify_ext_events(mdwc->otg_xceiv->otg,
DWC3_EVENT_XCEIV_STATE);
}
}
static u32 debug_id = true, debug_bsv, debug_connect;
static int dwc3_connect_show(struct seq_file *s, void *unused)
{
if (debug_connect)
seq_printf(s, "true\n");
else
seq_printf(s, "false\n");
return 0;
}
static int dwc3_connect_open(struct inode *inode, struct file *file)
{
return single_open(file, dwc3_connect_show, inode->i_private);
}
static ssize_t dwc3_connect_write(struct file *file, const char __user *ubuf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct dwc3_msm *mdwc = s->private;
char buf[8];
memset(buf, 0x00, sizeof(buf));
if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count)))
return -EFAULT;
if (!strncmp(buf, "enable", 6) || !strncmp(buf, "true", 4)) {
debug_connect = true;
} else {
debug_connect = debug_bsv = false;
debug_id = true;
}
mdwc->ext_xceiv.bsv = debug_bsv;
mdwc->ext_xceiv.id = debug_id ? DWC3_ID_FLOAT : DWC3_ID_GROUND;
if (atomic_read(&mdwc->in_lpm)) {
dev_dbg(mdwc->dev, "%s: calling resume_work\n", __func__);
dwc3_resume_work(&mdwc->resume_work.work);
} else {
dev_dbg(mdwc->dev, "%s: notifying xceiv event\n", __func__);
if (mdwc->otg_xceiv)
mdwc->ext_xceiv.notify_ext_events(mdwc->otg_xceiv->otg,
DWC3_EVENT_XCEIV_STATE);
}
return count;
}
const struct file_operations dwc3_connect_fops = {
.open = dwc3_connect_open,
.read = seq_read,
.write = dwc3_connect_write,
.llseek = seq_lseek,
.release = single_release,
};
static struct dentry *dwc3_debugfs_root;
static void dwc3_debugfs_init(struct dwc3_msm *mdwc)
{
dwc3_debugfs_root = debugfs_create_dir("msm_dwc3", NULL);
if (!dwc3_debugfs_root || IS_ERR(dwc3_debugfs_root))
return;
if (!debugfs_create_bool("id", S_IRUGO | S_IWUSR, dwc3_debugfs_root,
&debug_id))
goto error;
if (!debugfs_create_bool("bsv", S_IRUGO | S_IWUSR, dwc3_debugfs_root,
&debug_bsv))
goto error;
if (!debugfs_create_file("connect", S_IRUGO | S_IWUSR,
dwc3_debugfs_root, mdwc, &dwc3_connect_fops))
goto error;
return;
error:
debugfs_remove_recursive(dwc3_debugfs_root);
}
static irqreturn_t msm_dwc3_irq(int irq, void *data)
{
struct dwc3_msm *mdwc = data;
if (atomic_read(&mdwc->in_lpm)) {
dev_dbg(mdwc->dev, "%s received in LPM\n", __func__);
mdwc->lpm_irq_seen = true;
disable_irq_nosync(irq);
queue_delayed_work(system_nrt_wq, &mdwc->resume_work, 0);
} else {
pr_info_ratelimited("%s: IRQ outside LPM\n", __func__);
}
return IRQ_HANDLED;
}
static int dwc3_msm_power_get_property_usb(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct dwc3_msm *mdwc = container_of(psy, struct dwc3_msm,
usb_psy);
switch (psp) {
case POWER_SUPPLY_PROP_SCOPE:
val->intval = mdwc->host_mode;
break;
case POWER_SUPPLY_PROP_CURRENT_MAX:
val->intval = mdwc->current_max;
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = mdwc->vbus_active;
break;
case POWER_SUPPLY_PROP_ONLINE:
val->intval = mdwc->online;
break;
default:
return -EINVAL;
}
return 0;
}
static int dwc3_msm_power_set_property_usb(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
static bool init;
struct dwc3_msm *mdwc = container_of(psy, struct dwc3_msm,
usb_psy);
switch (psp) {
case POWER_SUPPLY_PROP_SCOPE:
mdwc->host_mode = val->intval;
break;
/* Process PMIC notification in PRESENT prop */
case POWER_SUPPLY_PROP_PRESENT:
dev_dbg(mdwc->dev, "%s: notify xceiv event\n", __func__);
if (mdwc->otg_xceiv && (mdwc->ext_xceiv.otg_capability ||
!init)) {
mdwc->ext_xceiv.bsv = val->intval;
if (atomic_read(&mdwc->in_lpm)) {
dev_dbg(mdwc->dev,
"%s received in LPM\n", __func__);
queue_delayed_work(system_nrt_wq,
&mdwc->resume_work, 0);
} else {
mdwc->ext_xceiv.notify_ext_events(
mdwc->otg_xceiv->otg,
DWC3_EVENT_XCEIV_STATE);
}
}
if (!init)
init = true;
mdwc->vbus_active = val->intval;
break;
case POWER_SUPPLY_PROP_ONLINE:
mdwc->online = val->intval;
break;
case POWER_SUPPLY_PROP_CURRENT_MAX:
mdwc->current_max = val->intval;
break;
default:
return -EINVAL;
}
power_supply_changed(&mdwc->usb_psy);
return 0;
}
static char *dwc3_msm_pm_power_supplied_to[] = {
"battery",
};
static enum power_supply_property dwc3_msm_pm_power_props_usb[] = {
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_ONLINE,
POWER_SUPPLY_PROP_CURRENT_MAX,
POWER_SUPPLY_PROP_SCOPE,
};
static void dwc3_adc_notification(enum qpnp_tm_state state, void *ctx)
{
struct dwc3_msm *mdwc = ctx;
if (state >= ADC_TM_STATE_NUM) {
pr_err("%s: invalid notification %d\n", __func__, state);
return;
}
dev_dbg(mdwc->dev, "%s: state = %s\n", __func__,
state == ADC_TM_HIGH_STATE ? "high" : "low");
if (state == ADC_TM_HIGH_STATE) {
mdwc->ext_xceiv.id = DWC3_ID_FLOAT;
mdwc->adc_param.state_request = ADC_TM_LOW_THR_ENABLE;
} else {
mdwc->ext_xceiv.id = DWC3_ID_GROUND;
mdwc->adc_param.state_request = ADC_TM_HIGH_THR_ENABLE;
}
/* notify OTG */
queue_delayed_work(system_nrt_wq, &mdwc->resume_work, 0);
/* re-arm notification interrupt */
qpnp_adc_tm_usbid_configure(&mdwc->adc_param);
}
static void dwc3_init_adc_work(struct work_struct *w)
{
struct dwc3_msm *mdwc = container_of(w, struct dwc3_msm,
init_adc_work.work);
int ret;
ret = qpnp_adc_tm_is_ready();
if (ret == -EPROBE_DEFER) {
queue_delayed_work(system_nrt_wq, to_delayed_work(w), 100);
return;
}
mdwc->adc_param.low_thr = adc_low_threshold;
mdwc->adc_param.high_thr = adc_high_threshold;
mdwc->adc_param.timer_interval = adc_meas_interval;
mdwc->adc_param.state_request = ADC_TM_HIGH_LOW_THR_ENABLE;
mdwc->adc_param.usbid_ctx = mdwc;
mdwc->adc_param.threshold_notification = dwc3_adc_notification;
ret = qpnp_adc_tm_usbid_configure(&mdwc->adc_param);
if (ret) {
dev_err(mdwc->dev, "%s: request ADC error %d\n", __func__, ret);
return;
}
mdwc->id_adc_detect = true;
}
static ssize_t adc_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n", context->id_adc_detect ?
"enabled" : "disabled");
}
static ssize_t adc_enable_store(struct device *dev,
struct device_attribute *attr, const char
*buf, size_t size)
{
if (!strnicmp(buf, "enable", 6)) {
if (!context->id_adc_detect)
dwc3_init_adc_work(&context->init_adc_work.work);
return size;
} else if (!strnicmp(buf, "disable", 7)) {
qpnp_adc_tm_usbid_end();
context->id_adc_detect = false;
return size;
}
return -EINVAL;
}
static DEVICE_ATTR(adc_enable, S_IRUGO | S_IWUSR, adc_enable_show,
adc_enable_store);
static int __devinit dwc3_msm_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct platform_device *dwc3;
struct dwc3_msm *msm;
struct resource *res;
void __iomem *tcsr;
int ret = 0;
int len = 0;
u32 tmp[3];
msm = devm_kzalloc(&pdev->dev, sizeof(*msm), GFP_KERNEL);
if (!msm) {
dev_err(&pdev->dev, "not enough memory\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, msm);
context = msm;
msm->dev = &pdev->dev;
INIT_LIST_HEAD(&msm->req_complete_list);
INIT_DELAYED_WORK(&msm->chg_work, dwc3_chg_detect_work);
INIT_DELAYED_WORK(&msm->resume_work, dwc3_resume_work);
INIT_DELAYED_WORK(&msm->init_adc_work, dwc3_init_adc_work);
msm->xo_handle = msm_xo_get(MSM_XO_TCXO_D0, "usb");
if (IS_ERR(msm->xo_handle)) {
dev_err(&pdev->dev, "%s unable to get TCXO buffer handle\n",
__func__);
return PTR_ERR(msm->xo_handle);
}
ret = msm_xo_mode_vote(msm->xo_handle, MSM_XO_MODE_ON);
if (ret) {
dev_err(&pdev->dev, "%s failed to vote for TCXO buffer%d\n",
__func__, ret);
goto free_xo_handle;
}
/*
* DWC3 Core requires its CORE CLK (aka master / bus clk) to
* run at 125Mhz in SSUSB mode and >60MHZ for HSUSB mode.
*/
msm->core_clk = devm_clk_get(&pdev->dev, "core_clk");
if (IS_ERR(msm->core_clk)) {
dev_err(&pdev->dev, "failed to get core_clk\n");
ret = PTR_ERR(msm->core_clk);
goto free_xo_handle;
}
clk_set_rate(msm->core_clk, 125000000);
clk_prepare_enable(msm->core_clk);
msm->iface_clk = devm_clk_get(&pdev->dev, "iface_clk");
if (IS_ERR(msm->iface_clk)) {
dev_err(&pdev->dev, "failed to get iface_clk\n");
ret = PTR_ERR(msm->iface_clk);
goto disable_core_clk;
}
clk_prepare_enable(msm->iface_clk);
msm->sleep_clk = devm_clk_get(&pdev->dev, "sleep_clk");
if (IS_ERR(msm->sleep_clk)) {
dev_err(&pdev->dev, "failed to get sleep_clk\n");
ret = PTR_ERR(msm->sleep_clk);
goto disable_iface_clk;
}
clk_prepare_enable(msm->sleep_clk);
msm->hsphy_sleep_clk = devm_clk_get(&pdev->dev, "sleep_a_clk");
if (IS_ERR(msm->hsphy_sleep_clk)) {
dev_err(&pdev->dev, "failed to get sleep_a_clk\n");
ret = PTR_ERR(msm->hsphy_sleep_clk);
goto disable_sleep_clk;
}
clk_prepare_enable(msm->hsphy_sleep_clk);
msm->ref_clk = devm_clk_get(&pdev->dev, "ref_clk");
if (IS_ERR(msm->ref_clk)) {
dev_err(&pdev->dev, "failed to get ref_clk\n");
ret = PTR_ERR(msm->ref_clk);
goto disable_sleep_a_clk;
}
clk_prepare_enable(msm->ref_clk);
of_get_property(node, "qcom,vdd-voltage-level", &len);
if (len == sizeof(tmp)) {
of_property_read_u32_array(node, "qcom,vdd-voltage-level",
tmp, len/sizeof(*tmp));
msm->vdd_no_vol_level = tmp[0];
msm->vdd_low_vol_level = tmp[1];
msm->vdd_high_vol_level = tmp[2];
} else {
dev_err(&pdev->dev, "no qcom,vdd-voltage-level property\n");
ret = -EINVAL;
goto disable_ref_clk;
}
/* SS PHY */
msm->ssusb_vddcx = devm_regulator_get(&pdev->dev, "ssusb_vdd_dig");
if (IS_ERR(msm->ssusb_vddcx)) {
dev_err(&pdev->dev, "unable to get ssusb vddcx\n");
ret = PTR_ERR(msm->ssusb_vddcx);
goto disable_ref_clk;
}
ret = dwc3_ssusb_config_vddcx(1);
if (ret) {
dev_err(&pdev->dev, "ssusb vddcx configuration failed\n");
goto disable_ref_clk;
}
ret = regulator_enable(context->ssusb_vddcx);
if (ret) {
dev_err(&pdev->dev, "unable to enable the ssusb vddcx\n");
goto unconfig_ss_vddcx;
}
ret = dwc3_ssusb_ldo_init(1);
if (ret) {
dev_err(&pdev->dev, "ssusb vreg configuration failed\n");
goto disable_ss_vddcx;
}
ret = dwc3_ssusb_ldo_enable(1);
if (ret) {
dev_err(&pdev->dev, "ssusb vreg enable failed\n");
goto free_ss_ldo_init;
}
/* HS PHY */
msm->hsusb_vddcx = devm_regulator_get(&pdev->dev, "hsusb_vdd_dig");
if (IS_ERR(msm->hsusb_vddcx)) {
dev_err(&pdev->dev, "unable to get hsusb vddcx\n");
ret = PTR_ERR(msm->hsusb_vddcx);
goto disable_ss_ldo;
}
ret = dwc3_hsusb_config_vddcx(1);
if (ret) {
dev_err(&pdev->dev, "hsusb vddcx configuration failed\n");
goto disable_ss_ldo;
}
ret = regulator_enable(context->hsusb_vddcx);
if (ret) {
dev_err(&pdev->dev, "unable to enable the hsusb vddcx\n");
goto unconfig_hs_vddcx;
}
ret = dwc3_hsusb_ldo_init(1);
if (ret) {
dev_err(&pdev->dev, "hsusb vreg configuration failed\n");
goto disable_hs_vddcx;
}
ret = dwc3_hsusb_ldo_enable(1);
if (ret) {
dev_err(&pdev->dev, "hsusb vreg enable failed\n");
goto free_hs_ldo_init;
}
msm->ext_xceiv.id = DWC3_ID_FLOAT;
msm->ext_xceiv.otg_capability = of_property_read_bool(node,
"qcom,otg-capability");
msm->charger.charging_disabled = of_property_read_bool(node,
"qcom,charging-disabled");
if (!msm->ext_xceiv.otg_capability) {
/* DWC3 has separate IRQ line for OTG events (ID/BSV etc.) */
msm->hs_phy_irq = platform_get_irq_byname(pdev, "hs_phy_irq");
if (msm->hs_phy_irq < 0) {
dev_dbg(&pdev->dev, "pget_irq for hs_phy_irq failed\n");
msm->hs_phy_irq = 0;
} else {
ret = request_irq(msm->hs_phy_irq, msm_dwc3_irq,
IRQF_TRIGGER_RISING, "msm_dwc3", msm);
if (ret) {
dev_err(&pdev->dev, "irqreq HSPHYINT failed\n");
goto disable_hs_ldo;
}
enable_irq_wake(msm->hs_phy_irq);
}
} else {
/* Use ADC for ID pin detection */
queue_delayed_work(system_nrt_wq, &msm->init_adc_work, 0);
device_create_file(&pdev->dev, &dev_attr_adc_enable);
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!res) {
dev_dbg(&pdev->dev, "missing TCSR memory resource\n");
} else {
tcsr = devm_ioremap_nocache(&pdev->dev, res->start,
resource_size(res));
if (!tcsr) {
dev_dbg(&pdev->dev, "tcsr ioremap failed\n");
} else {
/* Enable USB3 on the primary USB port. */
writel_relaxed(0x1, tcsr);
/*
* Ensure that TCSR write is completed before
* USB registers initialization.
*/
mb();
}
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "missing memory base resource\n");
ret = -ENODEV;
goto free_hsphy_irq;
}
msm->base = devm_ioremap_nocache(&pdev->dev, res->start,
resource_size(res));
if (!msm->base) {
dev_err(&pdev->dev, "ioremap failed\n");
ret = -ENODEV;
goto free_hsphy_irq;
}
dwc3 = platform_device_alloc("dwc3", -1);
if (!dwc3) {
dev_err(&pdev->dev, "couldn't allocate dwc3 device\n");
ret = -ENODEV;
goto free_hsphy_irq;
}
dwc3->dev.parent = &pdev->dev;
dwc3->dev.coherent_dma_mask = DMA_BIT_MASK(32);
dwc3->dev.dma_mask = &dwc3_msm_dma_mask;
dwc3->dev.dma_parms = pdev->dev.dma_parms;
msm->resource_size = resource_size(res);
msm->dwc3 = dwc3;
dwc3_msm_qscratch_reg_init(msm);
pm_runtime_set_active(msm->dev);
pm_runtime_enable(msm->dev);
if (of_property_read_u32(node, "qcom,dwc-usb3-msm-dbm-eps",
&msm->dbm_num_eps)) {
dev_err(&pdev->dev,
"unable to read platform data num of dbm eps\n");
msm->dbm_num_eps = DBM_MAX_EPS;
}
if (msm->dbm_num_eps > DBM_MAX_EPS) {
dev_err(&pdev->dev,
"Driver doesn't support number of DBM EPs. "
"max: %d, dbm_num_eps: %d\n",
DBM_MAX_EPS, msm->dbm_num_eps);
ret = -ENODEV;
goto put_pdev;
}
msm->usb_psy.name = "usb";
msm->usb_psy.type = POWER_SUPPLY_TYPE_USB;
msm->usb_psy.supplied_to = dwc3_msm_pm_power_supplied_to;
msm->usb_psy.num_supplicants = ARRAY_SIZE(
dwc3_msm_pm_power_supplied_to);
msm->usb_psy.properties = dwc3_msm_pm_power_props_usb;
msm->usb_psy.num_properties = ARRAY_SIZE(dwc3_msm_pm_power_props_usb);
msm->usb_psy.get_property = dwc3_msm_power_get_property_usb;
msm->usb_psy.set_property = dwc3_msm_power_set_property_usb;
ret = power_supply_register(&pdev->dev, &msm->usb_psy);
if (ret < 0) {
dev_err(&pdev->dev,
"%s:power_supply_register usb failed\n",
__func__);
goto put_pdev;
}
ret = platform_device_add_resources(dwc3, pdev->resource,
pdev->num_resources);
if (ret) {
dev_err(&pdev->dev, "couldn't add resources to dwc3 device\n");
goto put_psupply;
}
ret = platform_device_add(dwc3);
if (ret) {
dev_err(&pdev->dev, "failed to register dwc3 device\n");
goto put_psupply;
}
msm->bus_scale_table = msm_bus_cl_get_pdata(pdev);
if (!msm->bus_scale_table) {
dev_err(&pdev->dev, "bus scaling is disabled\n");
} else {
msm->bus_perf_client =
msm_bus_scale_register_client(msm->bus_scale_table);
ret = msm_bus_scale_client_update_request(
msm->bus_perf_client, 1);
if (ret)
dev_err(&pdev->dev, "Failed to vote for bus scaling\n");
}
/* Reset the DBM */
dwc3_msm_dbm_soft_reset(1);
usleep_range(1000, 1200);
dwc3_msm_dbm_soft_reset(0);
dwc3_msm_event_buffer_config(dwc3_msm_read_reg(msm->base,
DWC3_GEVNTADRLO(0)),
dwc3_msm_read_reg(msm->base, DWC3_GEVNTSIZ(0)));
msm->otg_xceiv = usb_get_transceiver();
if (msm->otg_xceiv) {
msm->charger.start_detection = dwc3_start_chg_det;
ret = dwc3_set_charger(msm->otg_xceiv->otg, &msm->charger);
if (ret || !msm->charger.notify_detection_complete) {
dev_err(&pdev->dev, "failed to register charger: %d\n",
ret);
goto put_xcvr;
}
if (msm->ext_xceiv.otg_capability)
msm->ext_xceiv.ext_block_reset = dwc3_msm_block_reset;
ret = dwc3_set_ext_xceiv(msm->otg_xceiv->otg, &msm->ext_xceiv);
if (ret || !msm->ext_xceiv.notify_ext_events) {
dev_err(&pdev->dev, "failed to register xceiver: %d\n",
ret);
goto put_xcvr;
}
} else {
dev_err(&pdev->dev, "%s: No OTG transceiver found\n", __func__);
}
wake_lock_init(&msm->wlock, WAKE_LOCK_SUSPEND, "msm_dwc3");
wake_lock(&msm->wlock);
dwc3_debugfs_init(msm);
return 0;
put_xcvr:
usb_put_transceiver(msm->otg_xceiv);
platform_device_del(dwc3);
put_psupply:
power_supply_unregister(&msm->usb_psy);
put_pdev:
platform_device_put(dwc3);
free_hsphy_irq:
if (msm->hs_phy_irq)
free_irq(msm->hs_phy_irq, msm);
disable_hs_ldo:
dwc3_hsusb_ldo_enable(0);
free_hs_ldo_init:
dwc3_hsusb_ldo_init(0);
disable_hs_vddcx:
regulator_disable(context->hsusb_vddcx);
unconfig_hs_vddcx:
dwc3_hsusb_config_vddcx(0);
disable_ss_ldo:
dwc3_ssusb_ldo_enable(0);
free_ss_ldo_init:
dwc3_ssusb_ldo_init(0);
disable_ss_vddcx:
regulator_disable(context->ssusb_vddcx);
unconfig_ss_vddcx:
dwc3_ssusb_config_vddcx(0);
disable_ref_clk:
clk_disable_unprepare(msm->ref_clk);
disable_sleep_a_clk:
clk_disable_unprepare(msm->hsphy_sleep_clk);
disable_sleep_clk:
clk_disable_unprepare(msm->sleep_clk);
disable_iface_clk:
clk_disable_unprepare(msm->iface_clk);
disable_core_clk:
clk_disable_unprepare(msm->core_clk);
free_xo_handle:
msm_xo_put(msm->xo_handle);
return ret;
}
static int __devexit dwc3_msm_remove(struct platform_device *pdev)
{
struct dwc3_msm *msm = platform_get_drvdata(pdev);
if (msm->id_adc_detect)
qpnp_adc_tm_usbid_end();
if (dwc3_debugfs_root)
debugfs_remove_recursive(dwc3_debugfs_root);
if (msm->otg_xceiv) {
dwc3_start_chg_det(&msm->charger, false);
usb_put_transceiver(msm->otg_xceiv);
}
pm_runtime_disable(msm->dev);
platform_device_unregister(msm->dwc3);
wake_lock_destroy(&msm->wlock);
dwc3_hsusb_ldo_enable(0);
dwc3_hsusb_ldo_init(0);
regulator_disable(msm->hsusb_vddcx);
dwc3_hsusb_config_vddcx(0);
dwc3_ssusb_ldo_enable(0);
dwc3_ssusb_ldo_init(0);
regulator_disable(msm->ssusb_vddcx);
dwc3_ssusb_config_vddcx(0);
clk_disable_unprepare(msm->core_clk);
clk_disable_unprepare(msm->iface_clk);
clk_disable_unprepare(msm->sleep_clk);
clk_disable_unprepare(msm->hsphy_sleep_clk);
clk_disable_unprepare(msm->ref_clk);
msm_xo_put(msm->xo_handle);
return 0;
}
static int dwc3_msm_pm_suspend(struct device *dev)
{
int ret = 0;
struct dwc3_msm *mdwc = dev_get_drvdata(dev);
dev_dbg(dev, "dwc3-msm PM suspend\n");
ret = dwc3_msm_suspend(mdwc);
if (!ret)
atomic_set(&mdwc->pm_suspended, 1);
return ret;
}
static int dwc3_msm_pm_resume(struct device *dev)
{
int ret = 0;
struct dwc3_msm *mdwc = dev_get_drvdata(dev);
dev_dbg(dev, "dwc3-msm PM resume\n");
atomic_set(&mdwc->pm_suspended, 0);
if (mdwc->resume_pending) {
mdwc->resume_pending = false;
ret = dwc3_msm_resume(mdwc);
/* Update runtime PM status */
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
/* Let OTG know about resume event and update pm_count */
if (mdwc->otg_xceiv) {
mdwc->ext_xceiv.notify_ext_events(mdwc->otg_xceiv->otg,
DWC3_EVENT_PHY_RESUME);
if (mdwc->ext_xceiv.otg_capability)
mdwc->ext_xceiv.notify_ext_events(
mdwc->otg_xceiv->otg,
DWC3_EVENT_XCEIV_STATE);
}
}
return ret;
}
static int dwc3_msm_runtime_idle(struct device *dev)
{
dev_dbg(dev, "DWC3-msm runtime idle\n");
return 0;
}
static int dwc3_msm_runtime_suspend(struct device *dev)
{
struct dwc3_msm *mdwc = dev_get_drvdata(dev);
dev_dbg(dev, "DWC3-msm runtime suspend\n");
return dwc3_msm_suspend(mdwc);
}
static int dwc3_msm_runtime_resume(struct device *dev)
{
struct dwc3_msm *mdwc = dev_get_drvdata(dev);
dev_dbg(dev, "DWC3-msm runtime resume\n");
return dwc3_msm_resume(mdwc);
}
static const struct dev_pm_ops dwc3_msm_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(dwc3_msm_pm_suspend, dwc3_msm_pm_resume)
SET_RUNTIME_PM_OPS(dwc3_msm_runtime_suspend, dwc3_msm_runtime_resume,
dwc3_msm_runtime_idle)
};
static const struct of_device_id of_dwc3_matach[] = {
{
.compatible = "qcom,dwc-usb3-msm",
},
{ },
};
MODULE_DEVICE_TABLE(of, of_dwc3_matach);
static struct platform_driver dwc3_msm_driver = {
.probe = dwc3_msm_probe,
.remove = __devexit_p(dwc3_msm_remove),
.driver = {
.name = "msm-dwc3",
.pm = &dwc3_msm_dev_pm_ops,
.of_match_table = of_dwc3_matach,
},
};
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("DesignWare USB3 MSM Glue Layer");
static int __devinit dwc3_msm_init(void)
{
return platform_driver_register(&dwc3_msm_driver);
}
module_init(dwc3_msm_init);
static void __exit dwc3_msm_exit(void)
{
platform_driver_unregister(&dwc3_msm_driver);
}
module_exit(dwc3_msm_exit);