Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /********************************************************************* |
| 2 | * |
| 3 | * Filename: irlmp_frame.c |
| 4 | * Version: 0.9 |
| 5 | * Description: IrLMP frame implementation |
| 6 | * Status: Experimental. |
| 7 | * Author: Dag Brattli <dagb@cs.uit.no> |
| 8 | * Created at: Tue Aug 19 02:09:59 1997 |
| 9 | * Modified at: Mon Dec 13 13:41:12 1999 |
| 10 | * Modified by: Dag Brattli <dagb@cs.uit.no> |
| 11 | * |
| 12 | * Copyright (c) 1998-1999 Dag Brattli <dagb@cs.uit.no> |
| 13 | * All Rights Reserved. |
| 14 | * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com> |
| 15 | * |
| 16 | * This program is free software; you can redistribute it and/or |
| 17 | * modify it under the terms of the GNU General Public License as |
| 18 | * published by the Free Software Foundation; either version 2 of |
| 19 | * the License, or (at your option) any later version. |
| 20 | * |
| 21 | * Neither Dag Brattli nor University of Tromsø admit liability nor |
| 22 | * provide warranty for any of this software. This material is |
| 23 | * provided "AS-IS" and at no charge. |
| 24 | * |
| 25 | ********************************************************************/ |
| 26 | |
| 27 | #include <linux/config.h> |
| 28 | #include <linux/skbuff.h> |
| 29 | #include <linux/kernel.h> |
| 30 | |
| 31 | #include <net/irda/irda.h> |
| 32 | #include <net/irda/irlap.h> |
| 33 | #include <net/irda/timer.h> |
| 34 | #include <net/irda/irlmp.h> |
| 35 | #include <net/irda/irlmp_frame.h> |
| 36 | #include <net/irda/discovery.h> |
| 37 | |
| 38 | static struct lsap_cb *irlmp_find_lsap(struct lap_cb *self, __u8 dlsap, |
| 39 | __u8 slsap, int status, hashbin_t *); |
| 40 | |
| 41 | inline void irlmp_send_data_pdu(struct lap_cb *self, __u8 dlsap, __u8 slsap, |
| 42 | int expedited, struct sk_buff *skb) |
| 43 | { |
| 44 | skb->data[0] = dlsap; |
| 45 | skb->data[1] = slsap; |
| 46 | |
| 47 | if (expedited) { |
| 48 | IRDA_DEBUG(4, "%s(), sending expedited data\n", __FUNCTION__); |
| 49 | irlap_data_request(self->irlap, skb, TRUE); |
| 50 | } else |
| 51 | irlap_data_request(self->irlap, skb, FALSE); |
| 52 | } |
| 53 | |
| 54 | /* |
| 55 | * Function irlmp_send_lcf_pdu (dlsap, slsap, opcode,skb) |
| 56 | * |
| 57 | * Send Link Control Frame to IrLAP |
| 58 | */ |
| 59 | void irlmp_send_lcf_pdu(struct lap_cb *self, __u8 dlsap, __u8 slsap, |
| 60 | __u8 opcode, struct sk_buff *skb) |
| 61 | { |
| 62 | __u8 *frame; |
| 63 | |
| 64 | IRDA_DEBUG(2, "%s()\n", __FUNCTION__); |
| 65 | |
| 66 | IRDA_ASSERT(self != NULL, return;); |
| 67 | IRDA_ASSERT(self->magic == LMP_LAP_MAGIC, return;); |
| 68 | IRDA_ASSERT(skb != NULL, return;); |
| 69 | |
| 70 | frame = skb->data; |
| 71 | |
| 72 | frame[0] = dlsap | CONTROL_BIT; |
| 73 | frame[1] = slsap; |
| 74 | |
| 75 | frame[2] = opcode; |
| 76 | |
| 77 | if (opcode == DISCONNECT) |
| 78 | frame[3] = 0x01; /* Service user request */ |
| 79 | else |
| 80 | frame[3] = 0x00; /* rsvd */ |
| 81 | |
| 82 | irlap_data_request(self->irlap, skb, FALSE); |
| 83 | } |
| 84 | |
| 85 | /* |
| 86 | * Function irlmp_input (skb) |
| 87 | * |
| 88 | * Used by IrLAP to pass received data frames to IrLMP layer |
| 89 | * |
| 90 | */ |
| 91 | void irlmp_link_data_indication(struct lap_cb *self, struct sk_buff *skb, |
| 92 | int unreliable) |
| 93 | { |
| 94 | struct lsap_cb *lsap; |
| 95 | __u8 slsap_sel; /* Source (this) LSAP address */ |
| 96 | __u8 dlsap_sel; /* Destination LSAP address */ |
| 97 | __u8 *fp; |
| 98 | |
| 99 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); |
| 100 | |
| 101 | IRDA_ASSERT(self != NULL, return;); |
| 102 | IRDA_ASSERT(self->magic == LMP_LAP_MAGIC, return;); |
| 103 | IRDA_ASSERT(skb->len > 2, return;); |
| 104 | |
| 105 | fp = skb->data; |
| 106 | |
| 107 | /* |
| 108 | * The next statements may be confusing, but we do this so that |
| 109 | * destination LSAP of received frame is source LSAP in our view |
| 110 | */ |
| 111 | slsap_sel = fp[0] & LSAP_MASK; |
| 112 | dlsap_sel = fp[1]; |
| 113 | |
| 114 | /* |
| 115 | * Check if this is an incoming connection, since we must deal with |
| 116 | * it in a different way than other established connections. |
| 117 | */ |
| 118 | if ((fp[0] & CONTROL_BIT) && (fp[2] == CONNECT_CMD)) { |
| 119 | IRDA_DEBUG(3, "%s(), incoming connection, " |
| 120 | "source LSAP=%d, dest LSAP=%d\n", |
| 121 | __FUNCTION__, slsap_sel, dlsap_sel); |
| 122 | |
| 123 | /* Try to find LSAP among the unconnected LSAPs */ |
| 124 | lsap = irlmp_find_lsap(self, dlsap_sel, slsap_sel, CONNECT_CMD, |
| 125 | irlmp->unconnected_lsaps); |
| 126 | |
| 127 | /* Maybe LSAP was already connected, so try one more time */ |
| 128 | if (!lsap) { |
| 129 | IRDA_DEBUG(1, "%s(), incoming connection for LSAP already connected\n", __FUNCTION__); |
| 130 | lsap = irlmp_find_lsap(self, dlsap_sel, slsap_sel, 0, |
| 131 | self->lsaps); |
| 132 | } |
| 133 | } else |
| 134 | lsap = irlmp_find_lsap(self, dlsap_sel, slsap_sel, 0, |
| 135 | self->lsaps); |
| 136 | |
| 137 | if (lsap == NULL) { |
| 138 | IRDA_DEBUG(2, "IrLMP, Sorry, no LSAP for received frame!\n"); |
| 139 | IRDA_DEBUG(2, "%s(), slsap_sel = %02x, dlsap_sel = %02x\n", |
| 140 | __FUNCTION__, slsap_sel, dlsap_sel); |
| 141 | if (fp[0] & CONTROL_BIT) { |
| 142 | IRDA_DEBUG(2, "%s(), received control frame %02x\n", |
| 143 | __FUNCTION__, fp[2]); |
| 144 | } else { |
| 145 | IRDA_DEBUG(2, "%s(), received data frame\n", __FUNCTION__); |
| 146 | } |
| 147 | return; |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | * Check if we received a control frame? |
| 152 | */ |
| 153 | if (fp[0] & CONTROL_BIT) { |
| 154 | switch (fp[2]) { |
| 155 | case CONNECT_CMD: |
| 156 | lsap->lap = self; |
| 157 | irlmp_do_lsap_event(lsap, LM_CONNECT_INDICATION, skb); |
| 158 | break; |
| 159 | case CONNECT_CNF: |
| 160 | irlmp_do_lsap_event(lsap, LM_CONNECT_CONFIRM, skb); |
| 161 | break; |
| 162 | case DISCONNECT: |
| 163 | IRDA_DEBUG(4, "%s(), Disconnect indication!\n", |
| 164 | __FUNCTION__); |
| 165 | irlmp_do_lsap_event(lsap, LM_DISCONNECT_INDICATION, |
| 166 | skb); |
| 167 | break; |
| 168 | case ACCESSMODE_CMD: |
| 169 | IRDA_DEBUG(0, "Access mode cmd not implemented!\n"); |
| 170 | break; |
| 171 | case ACCESSMODE_CNF: |
| 172 | IRDA_DEBUG(0, "Access mode cnf not implemented!\n"); |
| 173 | break; |
| 174 | default: |
| 175 | IRDA_DEBUG(0, "%s(), Unknown control frame %02x\n", |
| 176 | __FUNCTION__, fp[2]); |
| 177 | break; |
| 178 | } |
| 179 | } else if (unreliable) { |
| 180 | /* Optimize and bypass the state machine if possible */ |
| 181 | if (lsap->lsap_state == LSAP_DATA_TRANSFER_READY) |
| 182 | irlmp_udata_indication(lsap, skb); |
| 183 | else |
| 184 | irlmp_do_lsap_event(lsap, LM_UDATA_INDICATION, skb); |
| 185 | } else { |
| 186 | /* Optimize and bypass the state machine if possible */ |
| 187 | if (lsap->lsap_state == LSAP_DATA_TRANSFER_READY) |
| 188 | irlmp_data_indication(lsap, skb); |
| 189 | else |
| 190 | irlmp_do_lsap_event(lsap, LM_DATA_INDICATION, skb); |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | /* |
| 195 | * Function irlmp_link_unitdata_indication (self, skb) |
| 196 | * |
| 197 | * |
| 198 | * |
| 199 | */ |
| 200 | #ifdef CONFIG_IRDA_ULTRA |
| 201 | void irlmp_link_unitdata_indication(struct lap_cb *self, struct sk_buff *skb) |
| 202 | { |
| 203 | struct lsap_cb *lsap; |
| 204 | __u8 slsap_sel; /* Source (this) LSAP address */ |
| 205 | __u8 dlsap_sel; /* Destination LSAP address */ |
| 206 | __u8 pid; /* Protocol identifier */ |
| 207 | __u8 *fp; |
| 208 | unsigned long flags; |
| 209 | |
| 210 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); |
| 211 | |
| 212 | IRDA_ASSERT(self != NULL, return;); |
| 213 | IRDA_ASSERT(self->magic == LMP_LAP_MAGIC, return;); |
| 214 | IRDA_ASSERT(skb->len > 2, return;); |
| 215 | |
| 216 | fp = skb->data; |
| 217 | |
| 218 | /* |
| 219 | * The next statements may be confusing, but we do this so that |
| 220 | * destination LSAP of received frame is source LSAP in our view |
| 221 | */ |
| 222 | slsap_sel = fp[0] & LSAP_MASK; |
| 223 | dlsap_sel = fp[1]; |
| 224 | pid = fp[2]; |
| 225 | |
| 226 | if (pid & 0x80) { |
| 227 | IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", |
| 228 | __FUNCTION__); |
| 229 | return; |
| 230 | } |
| 231 | |
| 232 | /* Check if frame is addressed to the connectionless LSAP */ |
| 233 | if ((slsap_sel != LSAP_CONNLESS) || (dlsap_sel != LSAP_CONNLESS)) { |
| 234 | IRDA_DEBUG(0, "%s(), dropping frame!\n", __FUNCTION__); |
| 235 | return; |
| 236 | } |
| 237 | |
| 238 | /* Search the connectionless LSAP */ |
| 239 | spin_lock_irqsave(&irlmp->unconnected_lsaps->hb_spinlock, flags); |
| 240 | lsap = (struct lsap_cb *) hashbin_get_first(irlmp->unconnected_lsaps); |
| 241 | while (lsap != NULL) { |
| 242 | /* |
| 243 | * Check if source LSAP and dest LSAP selectors and PID match. |
| 244 | */ |
| 245 | if ((lsap->slsap_sel == slsap_sel) && |
| 246 | (lsap->dlsap_sel == dlsap_sel) && |
| 247 | (lsap->pid == pid)) |
| 248 | { |
| 249 | break; |
| 250 | } |
| 251 | lsap = (struct lsap_cb *) hashbin_get_next(irlmp->unconnected_lsaps); |
| 252 | } |
| 253 | spin_unlock_irqrestore(&irlmp->unconnected_lsaps->hb_spinlock, flags); |
| 254 | |
| 255 | if (lsap) |
| 256 | irlmp_connless_data_indication(lsap, skb); |
| 257 | else { |
| 258 | IRDA_DEBUG(0, "%s(), found no matching LSAP!\n", __FUNCTION__); |
| 259 | } |
| 260 | } |
| 261 | #endif /* CONFIG_IRDA_ULTRA */ |
| 262 | |
| 263 | /* |
| 264 | * Function irlmp_link_disconnect_indication (reason, userdata) |
| 265 | * |
| 266 | * IrLAP has disconnected |
| 267 | * |
| 268 | */ |
| 269 | void irlmp_link_disconnect_indication(struct lap_cb *lap, |
| 270 | struct irlap_cb *irlap, |
| 271 | LAP_REASON reason, |
| 272 | struct sk_buff *skb) |
| 273 | { |
| 274 | IRDA_DEBUG(2, "%s()\n", __FUNCTION__); |
| 275 | |
| 276 | IRDA_ASSERT(lap != NULL, return;); |
| 277 | IRDA_ASSERT(lap->magic == LMP_LAP_MAGIC, return;); |
| 278 | |
| 279 | lap->reason = reason; |
| 280 | lap->daddr = DEV_ADDR_ANY; |
| 281 | |
| 282 | /* FIXME: must do something with the skb if any */ |
| 283 | |
| 284 | /* |
| 285 | * Inform station state machine |
| 286 | */ |
| 287 | irlmp_do_lap_event(lap, LM_LAP_DISCONNECT_INDICATION, NULL); |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * Function irlmp_link_connect_indication (qos) |
| 292 | * |
| 293 | * Incoming LAP connection! |
| 294 | * |
| 295 | */ |
| 296 | void irlmp_link_connect_indication(struct lap_cb *self, __u32 saddr, |
| 297 | __u32 daddr, struct qos_info *qos, |
| 298 | struct sk_buff *skb) |
| 299 | { |
| 300 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); |
| 301 | |
| 302 | /* Copy QoS settings for this session */ |
| 303 | self->qos = qos; |
| 304 | |
| 305 | /* Update destination device address */ |
| 306 | self->daddr = daddr; |
| 307 | IRDA_ASSERT(self->saddr == saddr, return;); |
| 308 | |
| 309 | irlmp_do_lap_event(self, LM_LAP_CONNECT_INDICATION, skb); |
| 310 | } |
| 311 | |
| 312 | /* |
| 313 | * Function irlmp_link_connect_confirm (qos) |
| 314 | * |
| 315 | * LAP connection confirmed! |
| 316 | * |
| 317 | */ |
| 318 | void irlmp_link_connect_confirm(struct lap_cb *self, struct qos_info *qos, |
| 319 | struct sk_buff *skb) |
| 320 | { |
| 321 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); |
| 322 | |
| 323 | IRDA_ASSERT(self != NULL, return;); |
| 324 | IRDA_ASSERT(self->magic == LMP_LAP_MAGIC, return;); |
| 325 | IRDA_ASSERT(qos != NULL, return;); |
| 326 | |
| 327 | /* Don't need use the skb for now */ |
| 328 | |
| 329 | /* Copy QoS settings for this session */ |
| 330 | self->qos = qos; |
| 331 | |
| 332 | irlmp_do_lap_event(self, LM_LAP_CONNECT_CONFIRM, NULL); |
| 333 | } |
| 334 | |
| 335 | /* |
| 336 | * Function irlmp_link_discovery_indication (self, log) |
| 337 | * |
| 338 | * Device is discovering us |
| 339 | * |
| 340 | * It's not an answer to our own discoveries, just another device trying |
| 341 | * to perform discovery, but we don't want to miss the opportunity |
| 342 | * to exploit this information, because : |
| 343 | * o We may not actively perform discovery (just passive discovery) |
| 344 | * o This type of discovery is much more reliable. In some cases, it |
| 345 | * seem that less than 50% of our discoveries get an answer, while |
| 346 | * we always get ~100% of these. |
| 347 | * o Make faster discovery, statistically divide time of discovery |
| 348 | * events by 2 (important for the latency aspect and user feel) |
| 349 | * o Even is we do active discovery, the other node might not |
| 350 | * answer our discoveries (ex: Palm). The Palm will just perform |
| 351 | * one active discovery and connect directly to us. |
| 352 | * |
| 353 | * However, when both devices discover each other, they might attempt to |
| 354 | * connect to each other following the discovery event, and it would create |
| 355 | * collisions on the medium (SNRM battle). |
| 356 | * The "fix" for that is to disable all connection requests in IrLAP |
| 357 | * for 100ms after a discovery indication by setting the media_busy flag. |
| 358 | * Previously, we used to postpone the event which was quite ugly. Now |
| 359 | * that IrLAP takes care of this problem, just pass the event up... |
| 360 | * |
| 361 | * Jean II |
| 362 | */ |
| 363 | void irlmp_link_discovery_indication(struct lap_cb *self, |
| 364 | discovery_t *discovery) |
| 365 | { |
| 366 | IRDA_ASSERT(self != NULL, return;); |
| 367 | IRDA_ASSERT(self->magic == LMP_LAP_MAGIC, return;); |
| 368 | |
| 369 | /* Add to main log, cleanup */ |
| 370 | irlmp_add_discovery(irlmp->cachelog, discovery); |
| 371 | |
| 372 | /* Just handle it the same way as a discovery confirm, |
| 373 | * bypass the LM_LAP state machine (see below) */ |
| 374 | irlmp_discovery_confirm(irlmp->cachelog, DISCOVERY_PASSIVE); |
| 375 | } |
| 376 | |
| 377 | /* |
| 378 | * Function irlmp_link_discovery_confirm (self, log) |
| 379 | * |
| 380 | * Called by IrLAP with a list of discoveries after the discovery |
| 381 | * request has been carried out. A NULL log is received if IrLAP |
| 382 | * was unable to carry out the discovery request |
| 383 | * |
| 384 | */ |
| 385 | void irlmp_link_discovery_confirm(struct lap_cb *self, hashbin_t *log) |
| 386 | { |
| 387 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); |
| 388 | |
| 389 | IRDA_ASSERT(self != NULL, return;); |
| 390 | IRDA_ASSERT(self->magic == LMP_LAP_MAGIC, return;); |
| 391 | |
| 392 | /* Add to main log, cleanup */ |
| 393 | irlmp_add_discovery_log(irlmp->cachelog, log); |
| 394 | |
| 395 | /* Propagate event to various LSAPs registered for it. |
| 396 | * We bypass the LM_LAP state machine because |
| 397 | * 1) We do it regardless of the LM_LAP state |
| 398 | * 2) It doesn't affect the LM_LAP state |
| 399 | * 3) Faster, slimer, simpler, ... |
| 400 | * Jean II */ |
| 401 | irlmp_discovery_confirm(irlmp->cachelog, DISCOVERY_ACTIVE); |
| 402 | } |
| 403 | |
| 404 | #ifdef CONFIG_IRDA_CACHE_LAST_LSAP |
| 405 | static inline void irlmp_update_cache(struct lap_cb *lap, |
| 406 | struct lsap_cb *lsap) |
| 407 | { |
| 408 | /* Prevent concurrent read to get garbage */ |
| 409 | lap->cache.valid = FALSE; |
| 410 | /* Update cache entry */ |
| 411 | lap->cache.dlsap_sel = lsap->dlsap_sel; |
| 412 | lap->cache.slsap_sel = lsap->slsap_sel; |
| 413 | lap->cache.lsap = lsap; |
| 414 | lap->cache.valid = TRUE; |
| 415 | } |
| 416 | #endif |
| 417 | |
| 418 | /* |
| 419 | * Function irlmp_find_handle (self, dlsap_sel, slsap_sel, status, queue) |
| 420 | * |
| 421 | * Find handle associated with destination and source LSAP |
| 422 | * |
| 423 | * Any IrDA connection (LSAP/TSAP) is uniquely identified by |
| 424 | * 3 parameters, the local lsap, the remote lsap and the remote address. |
| 425 | * We may initiate multiple connections to the same remote service |
| 426 | * (they will have different local lsap), a remote device may initiate |
| 427 | * multiple connections to the same local service (they will have |
| 428 | * different remote lsap), or multiple devices may connect to the same |
| 429 | * service and may use the same remote lsap (and they will have |
| 430 | * different remote address). |
| 431 | * So, where is the remote address ? Each LAP connection is made with |
| 432 | * a single remote device, so imply a specific remote address. |
| 433 | * Jean II |
| 434 | */ |
| 435 | static struct lsap_cb *irlmp_find_lsap(struct lap_cb *self, __u8 dlsap_sel, |
| 436 | __u8 slsap_sel, int status, |
| 437 | hashbin_t *queue) |
| 438 | { |
| 439 | struct lsap_cb *lsap; |
| 440 | unsigned long flags; |
| 441 | |
| 442 | /* |
| 443 | * Optimize for the common case. We assume that the last frame |
| 444 | * received is in the same connection as the last one, so check in |
| 445 | * cache first to avoid the linear search |
| 446 | */ |
| 447 | #ifdef CONFIG_IRDA_CACHE_LAST_LSAP |
| 448 | if ((self->cache.valid) && |
| 449 | (self->cache.slsap_sel == slsap_sel) && |
| 450 | (self->cache.dlsap_sel == dlsap_sel)) |
| 451 | { |
| 452 | return (self->cache.lsap); |
| 453 | } |
| 454 | #endif |
| 455 | |
| 456 | spin_lock_irqsave(&queue->hb_spinlock, flags); |
| 457 | |
| 458 | lsap = (struct lsap_cb *) hashbin_get_first(queue); |
| 459 | while (lsap != NULL) { |
| 460 | /* |
| 461 | * If this is an incoming connection, then the destination |
| 462 | * LSAP selector may have been specified as LM_ANY so that |
| 463 | * any client can connect. In that case we only need to check |
| 464 | * if the source LSAP (in our view!) match! |
| 465 | */ |
| 466 | if ((status == CONNECT_CMD) && |
| 467 | (lsap->slsap_sel == slsap_sel) && |
| 468 | (lsap->dlsap_sel == LSAP_ANY)) { |
| 469 | /* This is where the dest lsap sel is set on incoming |
| 470 | * lsaps */ |
| 471 | lsap->dlsap_sel = dlsap_sel; |
| 472 | break; |
| 473 | } |
| 474 | /* |
| 475 | * Check if source LSAP and dest LSAP selectors match. |
| 476 | */ |
| 477 | if ((lsap->slsap_sel == slsap_sel) && |
| 478 | (lsap->dlsap_sel == dlsap_sel)) |
| 479 | break; |
| 480 | |
| 481 | lsap = (struct lsap_cb *) hashbin_get_next(queue); |
| 482 | } |
| 483 | #ifdef CONFIG_IRDA_CACHE_LAST_LSAP |
| 484 | if(lsap) |
| 485 | irlmp_update_cache(self, lsap); |
| 486 | #endif |
| 487 | spin_unlock_irqrestore(&queue->hb_spinlock, flags); |
| 488 | |
| 489 | /* Return what we've found or NULL */ |
| 490 | return lsap; |
| 491 | } |