blob: 45ece8967e479b596a8e68290ce728fa7202297b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
Christoph Lameter930fc452005-10-29 18:15:41 -07008 * Numa awareness, Christoph Lameter, SGI, June 2005
Linus Torvalds1da177e2005-04-16 15:20:36 -07009 */
10
Nick Piggindb64fe02008-10-18 20:27:03 -070011#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070012#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
Alexey Dobriyand43c36d2009-10-07 17:09:06 +040015#include <linux/sched.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070016#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
Alexey Dobriyan5f6a6a92008-10-06 03:50:47 +040019#include <linux/proc_fs.h>
Christoph Lametera10aa572008-04-28 02:12:40 -070020#include <linux/seq_file.h>
Thomas Gleixner3ac7fe52008-04-30 00:55:01 -070021#include <linux/debugobjects.h>
Christoph Lameter23016962008-04-28 02:12:42 -070022#include <linux/kallsyms.h>
Nick Piggindb64fe02008-10-18 20:27:03 -070023#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
Tejun Heof0aa6612009-02-20 16:29:08 +090027#include <linux/pfn.h>
Catalin Marinas89219d32009-06-11 13:23:19 +010028#include <linux/kmemleak.h>
Nick Piggindb64fe02008-10-18 20:27:03 -070029#include <asm/atomic.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070030#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
David Miller2dca6992009-09-21 12:22:34 -070032#include <asm/shmparam.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070033
Nick Piggindb64fe02008-10-18 20:27:03 -070034/*** Page table manipulation functions ***/
Adrian Bunkb2213852006-09-25 23:31:02 -070035
Linus Torvalds1da177e2005-04-16 15:20:36 -070036static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37{
38 pte_t *pte;
39
40 pte = pte_offset_kernel(pmd, addr);
41 do {
42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 } while (pte++, addr += PAGE_SIZE, addr != end);
45}
46
Nick Piggindb64fe02008-10-18 20:27:03 -070047static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
Linus Torvalds1da177e2005-04-16 15:20:36 -070048{
49 pmd_t *pmd;
50 unsigned long next;
51
52 pmd = pmd_offset(pud, addr);
53 do {
54 next = pmd_addr_end(addr, end);
55 if (pmd_none_or_clear_bad(pmd))
56 continue;
57 vunmap_pte_range(pmd, addr, next);
58 } while (pmd++, addr = next, addr != end);
59}
60
Nick Piggindb64fe02008-10-18 20:27:03 -070061static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
Linus Torvalds1da177e2005-04-16 15:20:36 -070062{
63 pud_t *pud;
64 unsigned long next;
65
66 pud = pud_offset(pgd, addr);
67 do {
68 next = pud_addr_end(addr, end);
69 if (pud_none_or_clear_bad(pud))
70 continue;
71 vunmap_pmd_range(pud, addr, next);
72 } while (pud++, addr = next, addr != end);
73}
74
Nick Piggindb64fe02008-10-18 20:27:03 -070075static void vunmap_page_range(unsigned long addr, unsigned long end)
Linus Torvalds1da177e2005-04-16 15:20:36 -070076{
77 pgd_t *pgd;
78 unsigned long next;
Linus Torvalds1da177e2005-04-16 15:20:36 -070079
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -070082 do {
83 next = pgd_addr_end(addr, end);
84 if (pgd_none_or_clear_bad(pgd))
85 continue;
86 vunmap_pud_range(pgd, addr, next);
87 } while (pgd++, addr = next, addr != end);
Linus Torvalds1da177e2005-04-16 15:20:36 -070088}
89
90static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
Nick Piggindb64fe02008-10-18 20:27:03 -070091 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
Linus Torvalds1da177e2005-04-16 15:20:36 -070092{
93 pte_t *pte;
94
Nick Piggindb64fe02008-10-18 20:27:03 -070095 /*
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
98 */
99
Hugh Dickins872fec12005-10-29 18:16:21 -0700100 pte = pte_alloc_kernel(pmd, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700101 if (!pte)
102 return -ENOMEM;
103 do {
Nick Piggindb64fe02008-10-18 20:27:03 -0700104 struct page *page = pages[*nr];
105
106 if (WARN_ON(!pte_none(*pte)))
107 return -EBUSY;
108 if (WARN_ON(!page))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
Nick Piggindb64fe02008-10-18 20:27:03 -0700111 (*nr)++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
114}
115
Nick Piggindb64fe02008-10-18 20:27:03 -0700116static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700118{
119 pmd_t *pmd;
120 unsigned long next;
121
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
Nick Piggindb64fe02008-10-18 20:27:03 -0700127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
131}
132
Nick Piggindb64fe02008-10-18 20:27:03 -0700133static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135{
136 pud_t *pud;
137 unsigned long next;
138
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
Nick Piggindb64fe02008-10-18 20:27:03 -0700144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
148}
149
Nick Piggindb64fe02008-10-18 20:27:03 -0700150/*
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
153 *
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 */
Tejun Heo8fc48982009-02-20 16:29:08 +0900156static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 pgprot_t prot, struct page **pages)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700158{
159 pgd_t *pgd;
160 unsigned long next;
Adam Lackorzynski2e4e27c2009-01-04 12:00:46 -0800161 unsigned long addr = start;
Nick Piggindb64fe02008-10-18 20:27:03 -0700162 int err = 0;
163 int nr = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700164
165 BUG_ON(addr >= end);
166 pgd = pgd_offset_k(addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700167 do {
168 next = pgd_addr_end(addr, end);
Nick Piggindb64fe02008-10-18 20:27:03 -0700169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170 if (err)
Figo.zhangbf88c8c2009-09-21 17:01:47 -0700171 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172 } while (pgd++, addr = next, addr != end);
Nick Piggindb64fe02008-10-18 20:27:03 -0700173
Nick Piggindb64fe02008-10-18 20:27:03 -0700174 return nr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700175}
176
Tejun Heo8fc48982009-02-20 16:29:08 +0900177static int vmap_page_range(unsigned long start, unsigned long end,
178 pgprot_t prot, struct page **pages)
179{
180 int ret;
181
182 ret = vmap_page_range_noflush(start, end, prot, pages);
183 flush_cache_vmap(start, end);
184 return ret;
185}
186
KAMEZAWA Hiroyuki81ac3ad2009-09-22 16:45:49 -0700187int is_vmalloc_or_module_addr(const void *x)
Linus Torvalds73bdf0a2008-10-15 08:35:12 -0700188{
189 /*
Russell Kingab4f2ee2008-11-06 17:11:07 +0000190 * ARM, x86-64 and sparc64 put modules in a special place,
Linus Torvalds73bdf0a2008-10-15 08:35:12 -0700191 * and fall back on vmalloc() if that fails. Others
192 * just put it in the vmalloc space.
193 */
194#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 unsigned long addr = (unsigned long)x;
196 if (addr >= MODULES_VADDR && addr < MODULES_END)
197 return 1;
198#endif
199 return is_vmalloc_addr(x);
200}
201
Christoph Lameter48667e72008-02-04 22:28:31 -0800202/*
Nick Piggindb64fe02008-10-18 20:27:03 -0700203 * Walk a vmap address to the struct page it maps.
Christoph Lameter48667e72008-02-04 22:28:31 -0800204 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -0800205struct page *vmalloc_to_page(const void *vmalloc_addr)
Christoph Lameter48667e72008-02-04 22:28:31 -0800206{
207 unsigned long addr = (unsigned long) vmalloc_addr;
208 struct page *page = NULL;
209 pgd_t *pgd = pgd_offset_k(addr);
Christoph Lameter48667e72008-02-04 22:28:31 -0800210
Ingo Molnar7aa413d2008-06-19 13:28:11 +0200211 /*
212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 * architectures that do not vmalloc module space
214 */
Linus Torvalds73bdf0a2008-10-15 08:35:12 -0700215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
Jiri Slaby59ea7462008-06-12 13:56:40 +0200216
Christoph Lameter48667e72008-02-04 22:28:31 -0800217 if (!pgd_none(*pgd)) {
Nick Piggindb64fe02008-10-18 20:27:03 -0700218 pud_t *pud = pud_offset(pgd, addr);
Christoph Lameter48667e72008-02-04 22:28:31 -0800219 if (!pud_none(*pud)) {
Nick Piggindb64fe02008-10-18 20:27:03 -0700220 pmd_t *pmd = pmd_offset(pud, addr);
Christoph Lameter48667e72008-02-04 22:28:31 -0800221 if (!pmd_none(*pmd)) {
Nick Piggindb64fe02008-10-18 20:27:03 -0700222 pte_t *ptep, pte;
223
Christoph Lameter48667e72008-02-04 22:28:31 -0800224 ptep = pte_offset_map(pmd, addr);
225 pte = *ptep;
226 if (pte_present(pte))
227 page = pte_page(pte);
228 pte_unmap(ptep);
229 }
230 }
231 }
232 return page;
233}
234EXPORT_SYMBOL(vmalloc_to_page);
235
236/*
237 * Map a vmalloc()-space virtual address to the physical page frame number.
238 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -0800239unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
Christoph Lameter48667e72008-02-04 22:28:31 -0800240{
241 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
242}
243EXPORT_SYMBOL(vmalloc_to_pfn);
244
Nick Piggindb64fe02008-10-18 20:27:03 -0700245
246/*** Global kva allocator ***/
247
248#define VM_LAZY_FREE 0x01
249#define VM_LAZY_FREEING 0x02
250#define VM_VM_AREA 0x04
251
252struct vmap_area {
253 unsigned long va_start;
254 unsigned long va_end;
255 unsigned long flags;
256 struct rb_node rb_node; /* address sorted rbtree */
257 struct list_head list; /* address sorted list */
258 struct list_head purge_list; /* "lazy purge" list */
259 void *private;
260 struct rcu_head rcu_head;
261};
262
263static DEFINE_SPINLOCK(vmap_area_lock);
Nick Piggindb64fe02008-10-18 20:27:03 -0700264static LIST_HEAD(vmap_area_list);
Nick Piggin89699602011-03-22 16:30:36 -0700265static struct rb_root vmap_area_root = RB_ROOT;
266
267/* The vmap cache globals are protected by vmap_area_lock */
268static struct rb_node *free_vmap_cache;
269static unsigned long cached_hole_size;
270static unsigned long cached_vstart;
271static unsigned long cached_align;
272
Tejun Heoca23e402009-08-14 15:00:52 +0900273static unsigned long vmap_area_pcpu_hole;
Nick Piggindb64fe02008-10-18 20:27:03 -0700274
275static struct vmap_area *__find_vmap_area(unsigned long addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700276{
Nick Piggindb64fe02008-10-18 20:27:03 -0700277 struct rb_node *n = vmap_area_root.rb_node;
278
279 while (n) {
280 struct vmap_area *va;
281
282 va = rb_entry(n, struct vmap_area, rb_node);
283 if (addr < va->va_start)
284 n = n->rb_left;
285 else if (addr > va->va_start)
286 n = n->rb_right;
287 else
288 return va;
289 }
290
291 return NULL;
292}
293
294static void __insert_vmap_area(struct vmap_area *va)
295{
296 struct rb_node **p = &vmap_area_root.rb_node;
297 struct rb_node *parent = NULL;
298 struct rb_node *tmp;
299
300 while (*p) {
Namhyung Kim170168d2010-10-26 14:22:02 -0700301 struct vmap_area *tmp_va;
Nick Piggindb64fe02008-10-18 20:27:03 -0700302
303 parent = *p;
Namhyung Kim170168d2010-10-26 14:22:02 -0700304 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
305 if (va->va_start < tmp_va->va_end)
Nick Piggindb64fe02008-10-18 20:27:03 -0700306 p = &(*p)->rb_left;
Namhyung Kim170168d2010-10-26 14:22:02 -0700307 else if (va->va_end > tmp_va->va_start)
Nick Piggindb64fe02008-10-18 20:27:03 -0700308 p = &(*p)->rb_right;
309 else
310 BUG();
311 }
312
313 rb_link_node(&va->rb_node, parent, p);
314 rb_insert_color(&va->rb_node, &vmap_area_root);
315
316 /* address-sort this list so it is usable like the vmlist */
317 tmp = rb_prev(&va->rb_node);
318 if (tmp) {
319 struct vmap_area *prev;
320 prev = rb_entry(tmp, struct vmap_area, rb_node);
321 list_add_rcu(&va->list, &prev->list);
322 } else
323 list_add_rcu(&va->list, &vmap_area_list);
324}
325
326static void purge_vmap_area_lazy(void);
327
328/*
329 * Allocate a region of KVA of the specified size and alignment, within the
330 * vstart and vend.
331 */
332static struct vmap_area *alloc_vmap_area(unsigned long size,
333 unsigned long align,
334 unsigned long vstart, unsigned long vend,
335 int node, gfp_t gfp_mask)
336{
337 struct vmap_area *va;
338 struct rb_node *n;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700339 unsigned long addr;
Nick Piggindb64fe02008-10-18 20:27:03 -0700340 int purged = 0;
Nick Piggin89699602011-03-22 16:30:36 -0700341 struct vmap_area *first;
Nick Piggindb64fe02008-10-18 20:27:03 -0700342
Nick Piggin77669702009-02-27 14:03:03 -0800343 BUG_ON(!size);
Nick Piggindb64fe02008-10-18 20:27:03 -0700344 BUG_ON(size & ~PAGE_MASK);
Nick Piggin89699602011-03-22 16:30:36 -0700345 BUG_ON(!is_power_of_2(align));
Nick Piggindb64fe02008-10-18 20:27:03 -0700346
Nick Piggindb64fe02008-10-18 20:27:03 -0700347 va = kmalloc_node(sizeof(struct vmap_area),
348 gfp_mask & GFP_RECLAIM_MASK, node);
349 if (unlikely(!va))
350 return ERR_PTR(-ENOMEM);
351
352retry:
353 spin_lock(&vmap_area_lock);
Nick Piggin89699602011-03-22 16:30:36 -0700354 /*
355 * Invalidate cache if we have more permissive parameters.
356 * cached_hole_size notes the largest hole noticed _below_
357 * the vmap_area cached in free_vmap_cache: if size fits
358 * into that hole, we want to scan from vstart to reuse
359 * the hole instead of allocating above free_vmap_cache.
360 * Note that __free_vmap_area may update free_vmap_cache
361 * without updating cached_hole_size or cached_align.
362 */
363 if (!free_vmap_cache ||
364 size < cached_hole_size ||
365 vstart < cached_vstart ||
366 align < cached_align) {
367nocache:
368 cached_hole_size = 0;
369 free_vmap_cache = NULL;
370 }
371 /* record if we encounter less permissive parameters */
372 cached_vstart = vstart;
373 cached_align = align;
Nick Piggin77669702009-02-27 14:03:03 -0800374
Nick Piggin89699602011-03-22 16:30:36 -0700375 /* find starting point for our search */
376 if (free_vmap_cache) {
377 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
Johannes Weiner248ac0e2011-05-24 17:11:43 -0700378 addr = ALIGN(first->va_end, align);
Nick Piggin89699602011-03-22 16:30:36 -0700379 if (addr < vstart)
380 goto nocache;
381 if (addr + size - 1 < addr)
382 goto overflow;
Nick Piggindb64fe02008-10-18 20:27:03 -0700383
Nick Piggin89699602011-03-22 16:30:36 -0700384 } else {
385 addr = ALIGN(vstart, align);
386 if (addr + size - 1 < addr)
387 goto overflow;
388
389 n = vmap_area_root.rb_node;
390 first = NULL;
391
392 while (n) {
Nick Piggindb64fe02008-10-18 20:27:03 -0700393 struct vmap_area *tmp;
394 tmp = rb_entry(n, struct vmap_area, rb_node);
395 if (tmp->va_end >= addr) {
Nick Piggindb64fe02008-10-18 20:27:03 -0700396 first = tmp;
Nick Piggin89699602011-03-22 16:30:36 -0700397 if (tmp->va_start <= addr)
398 break;
399 n = n->rb_left;
400 } else
Nick Piggindb64fe02008-10-18 20:27:03 -0700401 n = n->rb_right;
Nick Piggin89699602011-03-22 16:30:36 -0700402 }
Nick Piggindb64fe02008-10-18 20:27:03 -0700403
404 if (!first)
405 goto found;
Nick Piggindb64fe02008-10-18 20:27:03 -0700406 }
Nick Piggin89699602011-03-22 16:30:36 -0700407
408 /* from the starting point, walk areas until a suitable hole is found */
Johannes Weiner248ac0e2011-05-24 17:11:43 -0700409 while (addr + size > first->va_start && addr + size <= vend) {
Nick Piggin89699602011-03-22 16:30:36 -0700410 if (addr + cached_hole_size < first->va_start)
411 cached_hole_size = first->va_start - addr;
Johannes Weiner248ac0e2011-05-24 17:11:43 -0700412 addr = ALIGN(first->va_end, align);
Nick Piggin89699602011-03-22 16:30:36 -0700413 if (addr + size - 1 < addr)
414 goto overflow;
415
416 n = rb_next(&first->rb_node);
417 if (n)
418 first = rb_entry(n, struct vmap_area, rb_node);
419 else
420 goto found;
421 }
422
Nick Piggindb64fe02008-10-18 20:27:03 -0700423found:
Nick Piggin89699602011-03-22 16:30:36 -0700424 if (addr + size > vend)
425 goto overflow;
Nick Piggindb64fe02008-10-18 20:27:03 -0700426
427 va->va_start = addr;
428 va->va_end = addr + size;
429 va->flags = 0;
430 __insert_vmap_area(va);
Nick Piggin89699602011-03-22 16:30:36 -0700431 free_vmap_cache = &va->rb_node;
Nick Piggindb64fe02008-10-18 20:27:03 -0700432 spin_unlock(&vmap_area_lock);
433
Nick Piggin89699602011-03-22 16:30:36 -0700434 BUG_ON(va->va_start & (align-1));
435 BUG_ON(va->va_start < vstart);
436 BUG_ON(va->va_end > vend);
437
Nick Piggindb64fe02008-10-18 20:27:03 -0700438 return va;
Nick Piggin89699602011-03-22 16:30:36 -0700439
440overflow:
441 spin_unlock(&vmap_area_lock);
442 if (!purged) {
443 purge_vmap_area_lazy();
444 purged = 1;
445 goto retry;
446 }
447 if (printk_ratelimit())
448 printk(KERN_WARNING
449 "vmap allocation for size %lu failed: "
450 "use vmalloc=<size> to increase size.\n", size);
451 kfree(va);
452 return ERR_PTR(-EBUSY);
Nick Piggindb64fe02008-10-18 20:27:03 -0700453}
454
455static void rcu_free_va(struct rcu_head *head)
456{
457 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
458
459 kfree(va);
460}
461
462static void __free_vmap_area(struct vmap_area *va)
463{
464 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
Nick Piggin89699602011-03-22 16:30:36 -0700465
466 if (free_vmap_cache) {
467 if (va->va_end < cached_vstart) {
468 free_vmap_cache = NULL;
469 } else {
470 struct vmap_area *cache;
471 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
472 if (va->va_start <= cache->va_start) {
473 free_vmap_cache = rb_prev(&va->rb_node);
474 /*
475 * We don't try to update cached_hole_size or
476 * cached_align, but it won't go very wrong.
477 */
478 }
479 }
480 }
Nick Piggindb64fe02008-10-18 20:27:03 -0700481 rb_erase(&va->rb_node, &vmap_area_root);
482 RB_CLEAR_NODE(&va->rb_node);
483 list_del_rcu(&va->list);
484
Tejun Heoca23e402009-08-14 15:00:52 +0900485 /*
486 * Track the highest possible candidate for pcpu area
487 * allocation. Areas outside of vmalloc area can be returned
488 * here too, consider only end addresses which fall inside
489 * vmalloc area proper.
490 */
491 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
492 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
493
Nick Piggindb64fe02008-10-18 20:27:03 -0700494 call_rcu(&va->rcu_head, rcu_free_va);
495}
496
497/*
498 * Free a region of KVA allocated by alloc_vmap_area
499 */
500static void free_vmap_area(struct vmap_area *va)
501{
502 spin_lock(&vmap_area_lock);
503 __free_vmap_area(va);
504 spin_unlock(&vmap_area_lock);
505}
506
507/*
508 * Clear the pagetable entries of a given vmap_area
509 */
510static void unmap_vmap_area(struct vmap_area *va)
511{
512 vunmap_page_range(va->va_start, va->va_end);
513}
514
Nick Piggincd528582009-01-06 14:39:20 -0800515static void vmap_debug_free_range(unsigned long start, unsigned long end)
516{
517 /*
518 * Unmap page tables and force a TLB flush immediately if
519 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
520 * bugs similarly to those in linear kernel virtual address
521 * space after a page has been freed.
522 *
523 * All the lazy freeing logic is still retained, in order to
524 * minimise intrusiveness of this debugging feature.
525 *
526 * This is going to be *slow* (linear kernel virtual address
527 * debugging doesn't do a broadcast TLB flush so it is a lot
528 * faster).
529 */
530#ifdef CONFIG_DEBUG_PAGEALLOC
531 vunmap_page_range(start, end);
532 flush_tlb_kernel_range(start, end);
533#endif
534}
535
Nick Piggindb64fe02008-10-18 20:27:03 -0700536/*
537 * lazy_max_pages is the maximum amount of virtual address space we gather up
538 * before attempting to purge with a TLB flush.
539 *
540 * There is a tradeoff here: a larger number will cover more kernel page tables
541 * and take slightly longer to purge, but it will linearly reduce the number of
542 * global TLB flushes that must be performed. It would seem natural to scale
543 * this number up linearly with the number of CPUs (because vmapping activity
544 * could also scale linearly with the number of CPUs), however it is likely
545 * that in practice, workloads might be constrained in other ways that mean
546 * vmap activity will not scale linearly with CPUs. Also, I want to be
547 * conservative and not introduce a big latency on huge systems, so go with
548 * a less aggressive log scale. It will still be an improvement over the old
549 * code, and it will be simple to change the scale factor if we find that it
550 * becomes a problem on bigger systems.
551 */
552static unsigned long lazy_max_pages(void)
553{
554 unsigned int log;
555
556 log = fls(num_online_cpus());
557
558 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
559}
560
561static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
562
Nick Piggin02b709d2010-02-01 22:25:57 +1100563/* for per-CPU blocks */
564static void purge_fragmented_blocks_allcpus(void);
565
Nick Piggindb64fe02008-10-18 20:27:03 -0700566/*
Cliff Wickman3ee48b62010-09-16 11:44:02 -0500567 * called before a call to iounmap() if the caller wants vm_area_struct's
568 * immediately freed.
569 */
570void set_iounmap_nonlazy(void)
571{
572 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
573}
574
575/*
Nick Piggindb64fe02008-10-18 20:27:03 -0700576 * Purges all lazily-freed vmap areas.
577 *
578 * If sync is 0 then don't purge if there is already a purge in progress.
579 * If force_flush is 1, then flush kernel TLBs between *start and *end even
580 * if we found no lazy vmap areas to unmap (callers can use this to optimise
581 * their own TLB flushing).
582 * Returns with *start = min(*start, lowest purged address)
583 * *end = max(*end, highest purged address)
584 */
585static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
586 int sync, int force_flush)
587{
Andrew Morton46666d82009-01-15 13:51:15 -0800588 static DEFINE_SPINLOCK(purge_lock);
Nick Piggindb64fe02008-10-18 20:27:03 -0700589 LIST_HEAD(valist);
590 struct vmap_area *va;
Vegard Nossumcbb76672009-02-27 14:03:04 -0800591 struct vmap_area *n_va;
Nick Piggindb64fe02008-10-18 20:27:03 -0700592 int nr = 0;
593
594 /*
595 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
596 * should not expect such behaviour. This just simplifies locking for
597 * the case that isn't actually used at the moment anyway.
598 */
599 if (!sync && !force_flush) {
Andrew Morton46666d82009-01-15 13:51:15 -0800600 if (!spin_trylock(&purge_lock))
Nick Piggindb64fe02008-10-18 20:27:03 -0700601 return;
602 } else
Andrew Morton46666d82009-01-15 13:51:15 -0800603 spin_lock(&purge_lock);
Nick Piggindb64fe02008-10-18 20:27:03 -0700604
Nick Piggin02b709d2010-02-01 22:25:57 +1100605 if (sync)
606 purge_fragmented_blocks_allcpus();
607
Nick Piggindb64fe02008-10-18 20:27:03 -0700608 rcu_read_lock();
609 list_for_each_entry_rcu(va, &vmap_area_list, list) {
610 if (va->flags & VM_LAZY_FREE) {
611 if (va->va_start < *start)
612 *start = va->va_start;
613 if (va->va_end > *end)
614 *end = va->va_end;
615 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
Nick Piggindb64fe02008-10-18 20:27:03 -0700616 list_add_tail(&va->purge_list, &valist);
617 va->flags |= VM_LAZY_FREEING;
618 va->flags &= ~VM_LAZY_FREE;
619 }
620 }
621 rcu_read_unlock();
622
Yongseok Koh88f50042010-01-19 17:33:49 +0900623 if (nr)
Nick Piggindb64fe02008-10-18 20:27:03 -0700624 atomic_sub(nr, &vmap_lazy_nr);
Nick Piggindb64fe02008-10-18 20:27:03 -0700625
626 if (nr || force_flush)
627 flush_tlb_kernel_range(*start, *end);
628
629 if (nr) {
630 spin_lock(&vmap_area_lock);
Vegard Nossumcbb76672009-02-27 14:03:04 -0800631 list_for_each_entry_safe(va, n_va, &valist, purge_list)
Nick Piggindb64fe02008-10-18 20:27:03 -0700632 __free_vmap_area(va);
633 spin_unlock(&vmap_area_lock);
634 }
Andrew Morton46666d82009-01-15 13:51:15 -0800635 spin_unlock(&purge_lock);
Nick Piggindb64fe02008-10-18 20:27:03 -0700636}
637
638/*
Nick Piggin496850e2008-11-19 15:36:33 -0800639 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
640 * is already purging.
641 */
642static void try_purge_vmap_area_lazy(void)
643{
644 unsigned long start = ULONG_MAX, end = 0;
645
646 __purge_vmap_area_lazy(&start, &end, 0, 0);
647}
648
649/*
Nick Piggindb64fe02008-10-18 20:27:03 -0700650 * Kick off a purge of the outstanding lazy areas.
651 */
652static void purge_vmap_area_lazy(void)
653{
654 unsigned long start = ULONG_MAX, end = 0;
655
Nick Piggin496850e2008-11-19 15:36:33 -0800656 __purge_vmap_area_lazy(&start, &end, 1, 0);
Nick Piggindb64fe02008-10-18 20:27:03 -0700657}
658
659/*
Jeremy Fitzhardinge64141da2010-12-02 14:31:18 -0800660 * Free a vmap area, caller ensuring that the area has been unmapped
661 * and flush_cache_vunmap had been called for the correct range
662 * previously.
Nick Piggindb64fe02008-10-18 20:27:03 -0700663 */
Jeremy Fitzhardinge64141da2010-12-02 14:31:18 -0800664static void free_vmap_area_noflush(struct vmap_area *va)
Nick Piggindb64fe02008-10-18 20:27:03 -0700665{
666 va->flags |= VM_LAZY_FREE;
667 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
668 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
Nick Piggin496850e2008-11-19 15:36:33 -0800669 try_purge_vmap_area_lazy();
Nick Piggindb64fe02008-10-18 20:27:03 -0700670}
671
Nick Pigginb29acbd2008-12-01 13:13:47 -0800672/*
Jeremy Fitzhardinge64141da2010-12-02 14:31:18 -0800673 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
674 * called for the correct range previously.
675 */
676static void free_unmap_vmap_area_noflush(struct vmap_area *va)
677{
678 unmap_vmap_area(va);
679 free_vmap_area_noflush(va);
680}
681
682/*
Nick Pigginb29acbd2008-12-01 13:13:47 -0800683 * Free and unmap a vmap area
684 */
685static void free_unmap_vmap_area(struct vmap_area *va)
686{
687 flush_cache_vunmap(va->va_start, va->va_end);
688 free_unmap_vmap_area_noflush(va);
689}
690
Nick Piggindb64fe02008-10-18 20:27:03 -0700691static struct vmap_area *find_vmap_area(unsigned long addr)
692{
693 struct vmap_area *va;
694
695 spin_lock(&vmap_area_lock);
696 va = __find_vmap_area(addr);
697 spin_unlock(&vmap_area_lock);
698
699 return va;
700}
701
702static void free_unmap_vmap_area_addr(unsigned long addr)
703{
704 struct vmap_area *va;
705
706 va = find_vmap_area(addr);
707 BUG_ON(!va);
708 free_unmap_vmap_area(va);
709}
710
711
712/*** Per cpu kva allocator ***/
713
714/*
715 * vmap space is limited especially on 32 bit architectures. Ensure there is
716 * room for at least 16 percpu vmap blocks per CPU.
717 */
718/*
719 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
720 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
721 * instead (we just need a rough idea)
722 */
723#if BITS_PER_LONG == 32
724#define VMALLOC_SPACE (128UL*1024*1024)
725#else
726#define VMALLOC_SPACE (128UL*1024*1024*1024)
727#endif
728
729#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
730#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
731#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
732#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
733#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
734#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
Clemens Ladisch2366d7c2011-06-21 22:09:50 +0200735#define VMAP_BBMAP_BITS \
736 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
737 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
738 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
Nick Piggindb64fe02008-10-18 20:27:03 -0700739
740#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
741
Jeremy Fitzhardinge9b463332008-10-28 19:22:34 +1100742static bool vmap_initialized __read_mostly = false;
743
Nick Piggindb64fe02008-10-18 20:27:03 -0700744struct vmap_block_queue {
745 spinlock_t lock;
746 struct list_head free;
Nick Piggindb64fe02008-10-18 20:27:03 -0700747};
748
749struct vmap_block {
750 spinlock_t lock;
751 struct vmap_area *va;
752 struct vmap_block_queue *vbq;
753 unsigned long free, dirty;
754 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
755 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
Nick Pigginde560422010-02-01 22:24:18 +1100756 struct list_head free_list;
757 struct rcu_head rcu_head;
Nick Piggin02b709d2010-02-01 22:25:57 +1100758 struct list_head purge;
Nick Piggindb64fe02008-10-18 20:27:03 -0700759};
760
761/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
762static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
763
764/*
765 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
766 * in the free path. Could get rid of this if we change the API to return a
767 * "cookie" from alloc, to be passed to free. But no big deal yet.
768 */
769static DEFINE_SPINLOCK(vmap_block_tree_lock);
770static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
771
772/*
773 * We should probably have a fallback mechanism to allocate virtual memory
774 * out of partially filled vmap blocks. However vmap block sizing should be
775 * fairly reasonable according to the vmalloc size, so it shouldn't be a
776 * big problem.
777 */
778
779static unsigned long addr_to_vb_idx(unsigned long addr)
780{
781 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
782 addr /= VMAP_BLOCK_SIZE;
783 return addr;
784}
785
786static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
787{
788 struct vmap_block_queue *vbq;
789 struct vmap_block *vb;
790 struct vmap_area *va;
791 unsigned long vb_idx;
792 int node, err;
793
794 node = numa_node_id();
795
796 vb = kmalloc_node(sizeof(struct vmap_block),
797 gfp_mask & GFP_RECLAIM_MASK, node);
798 if (unlikely(!vb))
799 return ERR_PTR(-ENOMEM);
800
801 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
802 VMALLOC_START, VMALLOC_END,
803 node, gfp_mask);
Tobias Klauserddf9c6d2011-01-13 15:46:15 -0800804 if (IS_ERR(va)) {
Nick Piggindb64fe02008-10-18 20:27:03 -0700805 kfree(vb);
Julia Lawalle7d86342010-08-09 17:18:28 -0700806 return ERR_CAST(va);
Nick Piggindb64fe02008-10-18 20:27:03 -0700807 }
808
809 err = radix_tree_preload(gfp_mask);
810 if (unlikely(err)) {
811 kfree(vb);
812 free_vmap_area(va);
813 return ERR_PTR(err);
814 }
815
816 spin_lock_init(&vb->lock);
817 vb->va = va;
818 vb->free = VMAP_BBMAP_BITS;
819 vb->dirty = 0;
820 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
821 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
822 INIT_LIST_HEAD(&vb->free_list);
Nick Piggindb64fe02008-10-18 20:27:03 -0700823
824 vb_idx = addr_to_vb_idx(va->va_start);
825 spin_lock(&vmap_block_tree_lock);
826 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
827 spin_unlock(&vmap_block_tree_lock);
828 BUG_ON(err);
829 radix_tree_preload_end();
830
831 vbq = &get_cpu_var(vmap_block_queue);
832 vb->vbq = vbq;
833 spin_lock(&vbq->lock);
Nick Pigginde560422010-02-01 22:24:18 +1100834 list_add_rcu(&vb->free_list, &vbq->free);
Nick Piggindb64fe02008-10-18 20:27:03 -0700835 spin_unlock(&vbq->lock);
Tejun Heo3f04ba82009-10-29 22:34:12 +0900836 put_cpu_var(vmap_block_queue);
Nick Piggindb64fe02008-10-18 20:27:03 -0700837
838 return vb;
839}
840
841static void rcu_free_vb(struct rcu_head *head)
842{
843 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
844
845 kfree(vb);
846}
847
848static void free_vmap_block(struct vmap_block *vb)
849{
850 struct vmap_block *tmp;
851 unsigned long vb_idx;
852
Nick Piggindb64fe02008-10-18 20:27:03 -0700853 vb_idx = addr_to_vb_idx(vb->va->va_start);
854 spin_lock(&vmap_block_tree_lock);
855 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
856 spin_unlock(&vmap_block_tree_lock);
857 BUG_ON(tmp != vb);
858
Jeremy Fitzhardinge64141da2010-12-02 14:31:18 -0800859 free_vmap_area_noflush(vb->va);
Nick Piggindb64fe02008-10-18 20:27:03 -0700860 call_rcu(&vb->rcu_head, rcu_free_vb);
861}
862
Nick Piggin02b709d2010-02-01 22:25:57 +1100863static void purge_fragmented_blocks(int cpu)
864{
865 LIST_HEAD(purge);
866 struct vmap_block *vb;
867 struct vmap_block *n_vb;
868 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
869
870 rcu_read_lock();
871 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
872
873 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
874 continue;
875
876 spin_lock(&vb->lock);
877 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
878 vb->free = 0; /* prevent further allocs after releasing lock */
879 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
880 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
881 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
882 spin_lock(&vbq->lock);
883 list_del_rcu(&vb->free_list);
884 spin_unlock(&vbq->lock);
885 spin_unlock(&vb->lock);
886 list_add_tail(&vb->purge, &purge);
887 } else
888 spin_unlock(&vb->lock);
889 }
890 rcu_read_unlock();
891
892 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
893 list_del(&vb->purge);
894 free_vmap_block(vb);
895 }
896}
897
898static void purge_fragmented_blocks_thiscpu(void)
899{
900 purge_fragmented_blocks(smp_processor_id());
901}
902
903static void purge_fragmented_blocks_allcpus(void)
904{
905 int cpu;
906
907 for_each_possible_cpu(cpu)
908 purge_fragmented_blocks(cpu);
909}
910
Nick Piggindb64fe02008-10-18 20:27:03 -0700911static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
912{
913 struct vmap_block_queue *vbq;
914 struct vmap_block *vb;
915 unsigned long addr = 0;
916 unsigned int order;
Nick Piggin02b709d2010-02-01 22:25:57 +1100917 int purge = 0;
Nick Piggindb64fe02008-10-18 20:27:03 -0700918
919 BUG_ON(size & ~PAGE_MASK);
920 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
921 order = get_order(size);
922
923again:
924 rcu_read_lock();
925 vbq = &get_cpu_var(vmap_block_queue);
926 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
927 int i;
928
929 spin_lock(&vb->lock);
Nick Piggin02b709d2010-02-01 22:25:57 +1100930 if (vb->free < 1UL << order)
931 goto next;
932
Nick Piggindb64fe02008-10-18 20:27:03 -0700933 i = bitmap_find_free_region(vb->alloc_map,
934 VMAP_BBMAP_BITS, order);
935
Nick Piggin02b709d2010-02-01 22:25:57 +1100936 if (i < 0) {
937 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
938 /* fragmented and no outstanding allocations */
939 BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
940 purge = 1;
Nick Piggindb64fe02008-10-18 20:27:03 -0700941 }
Nick Piggin02b709d2010-02-01 22:25:57 +1100942 goto next;
943 }
944 addr = vb->va->va_start + (i << PAGE_SHIFT);
945 BUG_ON(addr_to_vb_idx(addr) !=
946 addr_to_vb_idx(vb->va->va_start));
947 vb->free -= 1UL << order;
948 if (vb->free == 0) {
949 spin_lock(&vbq->lock);
950 list_del_rcu(&vb->free_list);
951 spin_unlock(&vbq->lock);
Nick Piggindb64fe02008-10-18 20:27:03 -0700952 }
953 spin_unlock(&vb->lock);
Nick Piggin02b709d2010-02-01 22:25:57 +1100954 break;
955next:
956 spin_unlock(&vb->lock);
Nick Piggindb64fe02008-10-18 20:27:03 -0700957 }
Nick Piggin02b709d2010-02-01 22:25:57 +1100958
959 if (purge)
960 purge_fragmented_blocks_thiscpu();
961
Tejun Heo3f04ba82009-10-29 22:34:12 +0900962 put_cpu_var(vmap_block_queue);
Nick Piggindb64fe02008-10-18 20:27:03 -0700963 rcu_read_unlock();
964
965 if (!addr) {
966 vb = new_vmap_block(gfp_mask);
967 if (IS_ERR(vb))
968 return vb;
969 goto again;
970 }
971
972 return (void *)addr;
973}
974
975static void vb_free(const void *addr, unsigned long size)
976{
977 unsigned long offset;
978 unsigned long vb_idx;
979 unsigned int order;
980 struct vmap_block *vb;
981
982 BUG_ON(size & ~PAGE_MASK);
983 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
Nick Pigginb29acbd2008-12-01 13:13:47 -0800984
985 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
986
Nick Piggindb64fe02008-10-18 20:27:03 -0700987 order = get_order(size);
988
989 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
990
991 vb_idx = addr_to_vb_idx((unsigned long)addr);
992 rcu_read_lock();
993 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
994 rcu_read_unlock();
995 BUG_ON(!vb);
996
Jeremy Fitzhardinge64141da2010-12-02 14:31:18 -0800997 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
998
Nick Piggindb64fe02008-10-18 20:27:03 -0700999 spin_lock(&vb->lock);
Nick Pigginde560422010-02-01 22:24:18 +11001000 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
MinChan Kimd0868172009-03-31 15:19:26 -07001001
Nick Piggindb64fe02008-10-18 20:27:03 -07001002 vb->dirty += 1UL << order;
1003 if (vb->dirty == VMAP_BBMAP_BITS) {
Nick Pigginde560422010-02-01 22:24:18 +11001004 BUG_ON(vb->free);
Nick Piggindb64fe02008-10-18 20:27:03 -07001005 spin_unlock(&vb->lock);
1006 free_vmap_block(vb);
1007 } else
1008 spin_unlock(&vb->lock);
1009}
1010
1011/**
1012 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1013 *
1014 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1015 * to amortize TLB flushing overheads. What this means is that any page you
1016 * have now, may, in a former life, have been mapped into kernel virtual
1017 * address by the vmap layer and so there might be some CPUs with TLB entries
1018 * still referencing that page (additional to the regular 1:1 kernel mapping).
1019 *
1020 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1021 * be sure that none of the pages we have control over will have any aliases
1022 * from the vmap layer.
1023 */
1024void vm_unmap_aliases(void)
1025{
1026 unsigned long start = ULONG_MAX, end = 0;
1027 int cpu;
1028 int flush = 0;
1029
Jeremy Fitzhardinge9b463332008-10-28 19:22:34 +11001030 if (unlikely(!vmap_initialized))
1031 return;
1032
Nick Piggindb64fe02008-10-18 20:27:03 -07001033 for_each_possible_cpu(cpu) {
1034 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1035 struct vmap_block *vb;
1036
1037 rcu_read_lock();
1038 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1039 int i;
1040
1041 spin_lock(&vb->lock);
1042 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1043 while (i < VMAP_BBMAP_BITS) {
1044 unsigned long s, e;
1045 int j;
1046 j = find_next_zero_bit(vb->dirty_map,
1047 VMAP_BBMAP_BITS, i);
1048
1049 s = vb->va->va_start + (i << PAGE_SHIFT);
1050 e = vb->va->va_start + (j << PAGE_SHIFT);
Nick Piggindb64fe02008-10-18 20:27:03 -07001051 flush = 1;
1052
1053 if (s < start)
1054 start = s;
1055 if (e > end)
1056 end = e;
1057
1058 i = j;
1059 i = find_next_bit(vb->dirty_map,
1060 VMAP_BBMAP_BITS, i);
1061 }
1062 spin_unlock(&vb->lock);
1063 }
1064 rcu_read_unlock();
1065 }
1066
1067 __purge_vmap_area_lazy(&start, &end, 1, flush);
1068}
1069EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1070
1071/**
1072 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1073 * @mem: the pointer returned by vm_map_ram
1074 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1075 */
1076void vm_unmap_ram(const void *mem, unsigned int count)
1077{
1078 unsigned long size = count << PAGE_SHIFT;
1079 unsigned long addr = (unsigned long)mem;
1080
1081 BUG_ON(!addr);
1082 BUG_ON(addr < VMALLOC_START);
1083 BUG_ON(addr > VMALLOC_END);
1084 BUG_ON(addr & (PAGE_SIZE-1));
1085
1086 debug_check_no_locks_freed(mem, size);
Nick Piggincd528582009-01-06 14:39:20 -08001087 vmap_debug_free_range(addr, addr+size);
Nick Piggindb64fe02008-10-18 20:27:03 -07001088
1089 if (likely(count <= VMAP_MAX_ALLOC))
1090 vb_free(mem, size);
1091 else
1092 free_unmap_vmap_area_addr(addr);
1093}
1094EXPORT_SYMBOL(vm_unmap_ram);
1095
1096/**
1097 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1098 * @pages: an array of pointers to the pages to be mapped
1099 * @count: number of pages
1100 * @node: prefer to allocate data structures on this node
1101 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
Randy Dunlape99c97a2008-10-29 14:01:09 -07001102 *
1103 * Returns: a pointer to the address that has been mapped, or %NULL on failure
Nick Piggindb64fe02008-10-18 20:27:03 -07001104 */
1105void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1106{
1107 unsigned long size = count << PAGE_SHIFT;
1108 unsigned long addr;
1109 void *mem;
1110
1111 if (likely(count <= VMAP_MAX_ALLOC)) {
1112 mem = vb_alloc(size, GFP_KERNEL);
1113 if (IS_ERR(mem))
1114 return NULL;
1115 addr = (unsigned long)mem;
1116 } else {
1117 struct vmap_area *va;
1118 va = alloc_vmap_area(size, PAGE_SIZE,
1119 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1120 if (IS_ERR(va))
1121 return NULL;
1122
1123 addr = va->va_start;
1124 mem = (void *)addr;
1125 }
1126 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1127 vm_unmap_ram(mem, count);
1128 return NULL;
1129 }
1130 return mem;
1131}
1132EXPORT_SYMBOL(vm_map_ram);
1133
Tejun Heof0aa6612009-02-20 16:29:08 +09001134/**
1135 * vm_area_register_early - register vmap area early during boot
1136 * @vm: vm_struct to register
Tejun Heoc0c0a292009-02-24 11:57:21 +09001137 * @align: requested alignment
Tejun Heof0aa6612009-02-20 16:29:08 +09001138 *
1139 * This function is used to register kernel vm area before
1140 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1141 * proper values on entry and other fields should be zero. On return,
1142 * vm->addr contains the allocated address.
1143 *
1144 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1145 */
Tejun Heoc0c0a292009-02-24 11:57:21 +09001146void __init vm_area_register_early(struct vm_struct *vm, size_t align)
Tejun Heof0aa6612009-02-20 16:29:08 +09001147{
1148 static size_t vm_init_off __initdata;
Tejun Heoc0c0a292009-02-24 11:57:21 +09001149 unsigned long addr;
Tejun Heof0aa6612009-02-20 16:29:08 +09001150
Tejun Heoc0c0a292009-02-24 11:57:21 +09001151 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1152 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1153
1154 vm->addr = (void *)addr;
Tejun Heof0aa6612009-02-20 16:29:08 +09001155
1156 vm->next = vmlist;
1157 vmlist = vm;
1158}
1159
Nick Piggindb64fe02008-10-18 20:27:03 -07001160void __init vmalloc_init(void)
1161{
Ivan Kokshaysky822c18f2009-01-15 13:50:48 -08001162 struct vmap_area *va;
1163 struct vm_struct *tmp;
Nick Piggindb64fe02008-10-18 20:27:03 -07001164 int i;
1165
1166 for_each_possible_cpu(i) {
1167 struct vmap_block_queue *vbq;
1168
1169 vbq = &per_cpu(vmap_block_queue, i);
1170 spin_lock_init(&vbq->lock);
1171 INIT_LIST_HEAD(&vbq->free);
Nick Piggindb64fe02008-10-18 20:27:03 -07001172 }
Jeremy Fitzhardinge9b463332008-10-28 19:22:34 +11001173
Ivan Kokshaysky822c18f2009-01-15 13:50:48 -08001174 /* Import existing vmlist entries. */
1175 for (tmp = vmlist; tmp; tmp = tmp->next) {
Pekka Enberg43ebdac2009-05-25 15:01:35 +03001176 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
Ivan Kokshaysky822c18f2009-01-15 13:50:48 -08001177 va->flags = tmp->flags | VM_VM_AREA;
1178 va->va_start = (unsigned long)tmp->addr;
1179 va->va_end = va->va_start + tmp->size;
1180 __insert_vmap_area(va);
1181 }
Tejun Heoca23e402009-08-14 15:00:52 +09001182
1183 vmap_area_pcpu_hole = VMALLOC_END;
1184
Jeremy Fitzhardinge9b463332008-10-28 19:22:34 +11001185 vmap_initialized = true;
Nick Piggindb64fe02008-10-18 20:27:03 -07001186}
1187
Tejun Heo8fc48982009-02-20 16:29:08 +09001188/**
1189 * map_kernel_range_noflush - map kernel VM area with the specified pages
1190 * @addr: start of the VM area to map
1191 * @size: size of the VM area to map
1192 * @prot: page protection flags to use
1193 * @pages: pages to map
1194 *
1195 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1196 * specify should have been allocated using get_vm_area() and its
1197 * friends.
1198 *
1199 * NOTE:
1200 * This function does NOT do any cache flushing. The caller is
1201 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1202 * before calling this function.
1203 *
1204 * RETURNS:
1205 * The number of pages mapped on success, -errno on failure.
1206 */
1207int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1208 pgprot_t prot, struct page **pages)
1209{
1210 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1211}
1212
1213/**
1214 * unmap_kernel_range_noflush - unmap kernel VM area
1215 * @addr: start of the VM area to unmap
1216 * @size: size of the VM area to unmap
1217 *
1218 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1219 * specify should have been allocated using get_vm_area() and its
1220 * friends.
1221 *
1222 * NOTE:
1223 * This function does NOT do any cache flushing. The caller is
1224 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1225 * before calling this function and flush_tlb_kernel_range() after.
1226 */
1227void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1228{
1229 vunmap_page_range(addr, addr + size);
1230}
Huang Ying81e88fd2011-01-12 14:44:55 +08001231EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
Tejun Heo8fc48982009-02-20 16:29:08 +09001232
1233/**
1234 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1235 * @addr: start of the VM area to unmap
1236 * @size: size of the VM area to unmap
1237 *
1238 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1239 * the unmapping and tlb after.
1240 */
Nick Piggindb64fe02008-10-18 20:27:03 -07001241void unmap_kernel_range(unsigned long addr, unsigned long size)
1242{
1243 unsigned long end = addr + size;
Tejun Heof6fcba72009-02-20 15:38:48 -08001244
1245 flush_cache_vunmap(addr, end);
Nick Piggindb64fe02008-10-18 20:27:03 -07001246 vunmap_page_range(addr, end);
1247 flush_tlb_kernel_range(addr, end);
1248}
1249
1250int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1251{
1252 unsigned long addr = (unsigned long)area->addr;
1253 unsigned long end = addr + area->size - PAGE_SIZE;
1254 int err;
1255
1256 err = vmap_page_range(addr, end, prot, *pages);
1257 if (err > 0) {
1258 *pages += err;
1259 err = 0;
1260 }
1261
1262 return err;
1263}
1264EXPORT_SYMBOL_GPL(map_vm_area);
1265
1266/*** Old vmalloc interfaces ***/
1267DEFINE_RWLOCK(vmlist_lock);
1268struct vm_struct *vmlist;
1269
Tejun Heocf88c792009-08-14 15:00:52 +09001270static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1271 unsigned long flags, void *caller)
1272{
1273 struct vm_struct *tmp, **p;
1274
1275 vm->flags = flags;
1276 vm->addr = (void *)va->va_start;
1277 vm->size = va->va_end - va->va_start;
1278 vm->caller = caller;
1279 va->private = vm;
1280 va->flags |= VM_VM_AREA;
1281
1282 write_lock(&vmlist_lock);
1283 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1284 if (tmp->addr >= vm->addr)
1285 break;
1286 }
1287 vm->next = *p;
1288 *p = vm;
1289 write_unlock(&vmlist_lock);
1290}
1291
Nick Piggindb64fe02008-10-18 20:27:03 -07001292static struct vm_struct *__get_vm_area_node(unsigned long size,
David Miller2dca6992009-09-21 12:22:34 -07001293 unsigned long align, unsigned long flags, unsigned long start,
1294 unsigned long end, int node, gfp_t gfp_mask, void *caller)
Nick Piggindb64fe02008-10-18 20:27:03 -07001295{
1296 static struct vmap_area *va;
1297 struct vm_struct *area;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001298
Giridhar Pemmasani52fd24c2006-10-28 10:38:34 -07001299 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001300 if (flags & VM_IOREMAP) {
1301 int bit = fls(size);
1302
1303 if (bit > IOREMAP_MAX_ORDER)
1304 bit = IOREMAP_MAX_ORDER;
1305 else if (bit < PAGE_SHIFT)
1306 bit = PAGE_SHIFT;
1307
1308 align = 1ul << bit;
1309 }
Nick Piggindb64fe02008-10-18 20:27:03 -07001310
Linus Torvalds1da177e2005-04-16 15:20:36 -07001311 size = PAGE_ALIGN(size);
OGAWA Hirofumi31be8302006-11-16 01:19:29 -08001312 if (unlikely(!size))
1313 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001314
Tejun Heocf88c792009-08-14 15:00:52 +09001315 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001316 if (unlikely(!area))
1317 return NULL;
1318
Linus Torvalds1da177e2005-04-16 15:20:36 -07001319 /*
1320 * We always allocate a guard page.
1321 */
1322 size += PAGE_SIZE;
1323
Nick Piggindb64fe02008-10-18 20:27:03 -07001324 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1325 if (IS_ERR(va)) {
1326 kfree(area);
1327 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001328 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001329
Tejun Heocf88c792009-08-14 15:00:52 +09001330 insert_vmalloc_vm(area, va, flags, caller);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001331 return area;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001332}
1333
Christoph Lameter930fc452005-10-29 18:15:41 -07001334struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1335 unsigned long start, unsigned long end)
1336{
David Miller2dca6992009-09-21 12:22:34 -07001337 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
Christoph Lameter23016962008-04-28 02:12:42 -07001338 __builtin_return_address(0));
Christoph Lameter930fc452005-10-29 18:15:41 -07001339}
Rusty Russell5992b6d2007-07-19 01:49:21 -07001340EXPORT_SYMBOL_GPL(__get_vm_area);
Christoph Lameter930fc452005-10-29 18:15:41 -07001341
Benjamin Herrenschmidtc2968612009-02-18 14:48:12 -08001342struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1343 unsigned long start, unsigned long end,
1344 void *caller)
1345{
David Miller2dca6992009-09-21 12:22:34 -07001346 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
Benjamin Herrenschmidtc2968612009-02-18 14:48:12 -08001347 caller);
1348}
1349
Linus Torvalds1da177e2005-04-16 15:20:36 -07001350/**
Simon Arlott183ff222007-10-20 01:27:18 +02001351 * get_vm_area - reserve a contiguous kernel virtual area
Linus Torvalds1da177e2005-04-16 15:20:36 -07001352 * @size: size of the area
1353 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1354 *
1355 * Search an area of @size in the kernel virtual mapping area,
1356 * and reserved it for out purposes. Returns the area descriptor
1357 * on success or %NULL on failure.
1358 */
1359struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1360{
David Miller2dca6992009-09-21 12:22:34 -07001361 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
Christoph Lameter23016962008-04-28 02:12:42 -07001362 -1, GFP_KERNEL, __builtin_return_address(0));
1363}
1364
1365struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1366 void *caller)
1367{
David Miller2dca6992009-09-21 12:22:34 -07001368 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
Christoph Lameter23016962008-04-28 02:12:42 -07001369 -1, GFP_KERNEL, caller);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001370}
1371
Nick Piggindb64fe02008-10-18 20:27:03 -07001372static struct vm_struct *find_vm_area(const void *addr)
Nick Piggin83342312006-06-23 02:03:20 -07001373{
Nick Piggindb64fe02008-10-18 20:27:03 -07001374 struct vmap_area *va;
Nick Piggin83342312006-06-23 02:03:20 -07001375
Nick Piggindb64fe02008-10-18 20:27:03 -07001376 va = find_vmap_area((unsigned long)addr);
1377 if (va && va->flags & VM_VM_AREA)
1378 return va->private;
Nick Piggin83342312006-06-23 02:03:20 -07001379
Andi Kleen7856dfe2005-05-20 14:27:57 -07001380 return NULL;
Andi Kleen7856dfe2005-05-20 14:27:57 -07001381}
1382
Linus Torvalds1da177e2005-04-16 15:20:36 -07001383/**
Simon Arlott183ff222007-10-20 01:27:18 +02001384 * remove_vm_area - find and remove a continuous kernel virtual area
Linus Torvalds1da177e2005-04-16 15:20:36 -07001385 * @addr: base address
1386 *
1387 * Search for the kernel VM area starting at @addr, and remove it.
1388 * This function returns the found VM area, but using it is NOT safe
Andi Kleen7856dfe2005-05-20 14:27:57 -07001389 * on SMP machines, except for its size or flags.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001390 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -08001391struct vm_struct *remove_vm_area(const void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001392{
Nick Piggindb64fe02008-10-18 20:27:03 -07001393 struct vmap_area *va;
1394
1395 va = find_vmap_area((unsigned long)addr);
1396 if (va && va->flags & VM_VM_AREA) {
1397 struct vm_struct *vm = va->private;
1398 struct vm_struct *tmp, **p;
KAMEZAWA Hiroyukidd32c272009-09-21 17:02:32 -07001399 /*
1400 * remove from list and disallow access to this vm_struct
1401 * before unmap. (address range confliction is maintained by
1402 * vmap.)
1403 */
Nick Piggindb64fe02008-10-18 20:27:03 -07001404 write_lock(&vmlist_lock);
1405 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1406 ;
1407 *p = tmp->next;
1408 write_unlock(&vmlist_lock);
1409
KAMEZAWA Hiroyukidd32c272009-09-21 17:02:32 -07001410 vmap_debug_free_range(va->va_start, va->va_end);
1411 free_unmap_vmap_area(va);
1412 vm->size -= PAGE_SIZE;
1413
Nick Piggindb64fe02008-10-18 20:27:03 -07001414 return vm;
1415 }
1416 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001417}
1418
Christoph Lameterb3bdda02008-02-04 22:28:32 -08001419static void __vunmap(const void *addr, int deallocate_pages)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001420{
1421 struct vm_struct *area;
1422
1423 if (!addr)
1424 return;
1425
1426 if ((PAGE_SIZE-1) & (unsigned long)addr) {
Arjan van de Ven4c8573e2008-07-25 19:45:37 -07001427 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001428 return;
1429 }
1430
1431 area = remove_vm_area(addr);
1432 if (unlikely(!area)) {
Arjan van de Ven4c8573e2008-07-25 19:45:37 -07001433 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -07001434 addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001435 return;
1436 }
1437
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07001438 debug_check_no_locks_freed(addr, area->size);
Thomas Gleixner3ac7fe52008-04-30 00:55:01 -07001439 debug_check_no_obj_freed(addr, area->size);
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07001440
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441 if (deallocate_pages) {
1442 int i;
1443
1444 for (i = 0; i < area->nr_pages; i++) {
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001445 struct page *page = area->pages[i];
1446
1447 BUG_ON(!page);
1448 __free_page(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001449 }
1450
Jan Kiszka8757d5f2006-07-14 00:23:56 -07001451 if (area->flags & VM_VPAGES)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001452 vfree(area->pages);
1453 else
1454 kfree(area->pages);
1455 }
1456
1457 kfree(area);
1458 return;
1459}
1460
1461/**
1462 * vfree - release memory allocated by vmalloc()
Linus Torvalds1da177e2005-04-16 15:20:36 -07001463 * @addr: memory base address
1464 *
Simon Arlott183ff222007-10-20 01:27:18 +02001465 * Free the virtually continuous memory area starting at @addr, as
Pekka Enberg80e93ef2005-09-09 13:10:16 -07001466 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1467 * NULL, no operation is performed.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001468 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07001469 * Must not be called in interrupt context.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001470 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -08001471void vfree(const void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001472{
1473 BUG_ON(in_interrupt());
Catalin Marinas89219d32009-06-11 13:23:19 +01001474
1475 kmemleak_free(addr);
1476
Linus Torvalds1da177e2005-04-16 15:20:36 -07001477 __vunmap(addr, 1);
1478}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001479EXPORT_SYMBOL(vfree);
1480
1481/**
1482 * vunmap - release virtual mapping obtained by vmap()
Linus Torvalds1da177e2005-04-16 15:20:36 -07001483 * @addr: memory base address
1484 *
1485 * Free the virtually contiguous memory area starting at @addr,
1486 * which was created from the page array passed to vmap().
1487 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07001488 * Must not be called in interrupt context.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001489 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -08001490void vunmap(const void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001491{
1492 BUG_ON(in_interrupt());
Peter Zijlstra34754b62009-02-25 16:04:03 +01001493 might_sleep();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001494 __vunmap(addr, 0);
1495}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001496EXPORT_SYMBOL(vunmap);
1497
1498/**
1499 * vmap - map an array of pages into virtually contiguous space
Linus Torvalds1da177e2005-04-16 15:20:36 -07001500 * @pages: array of page pointers
1501 * @count: number of pages to map
1502 * @flags: vm_area->flags
1503 * @prot: page protection for the mapping
1504 *
1505 * Maps @count pages from @pages into contiguous kernel virtual
1506 * space.
1507 */
1508void *vmap(struct page **pages, unsigned int count,
1509 unsigned long flags, pgprot_t prot)
1510{
1511 struct vm_struct *area;
1512
Peter Zijlstra34754b62009-02-25 16:04:03 +01001513 might_sleep();
1514
Jan Beulich44813742009-09-21 17:03:05 -07001515 if (count > totalram_pages)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001516 return NULL;
1517
Christoph Lameter23016962008-04-28 02:12:42 -07001518 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1519 __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001520 if (!area)
1521 return NULL;
Christoph Lameter23016962008-04-28 02:12:42 -07001522
Linus Torvalds1da177e2005-04-16 15:20:36 -07001523 if (map_vm_area(area, prot, &pages)) {
1524 vunmap(area->addr);
1525 return NULL;
1526 }
1527
1528 return area->addr;
1529}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001530EXPORT_SYMBOL(vmap);
1531
David Miller2dca6992009-09-21 12:22:34 -07001532static void *__vmalloc_node(unsigned long size, unsigned long align,
1533 gfp_t gfp_mask, pgprot_t prot,
Nick Piggindb64fe02008-10-18 20:27:03 -07001534 int node, void *caller);
Adrian Bunke31d9eb2008-02-04 22:29:09 -08001535static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
Christoph Lameter23016962008-04-28 02:12:42 -07001536 pgprot_t prot, int node, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001537{
Dave Hansen22943ab2011-05-24 17:12:18 -07001538 const int order = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001539 struct page **pages;
1540 unsigned int nr_pages, array_size, i;
Jan Beulich976d6df2009-12-14 17:58:39 -08001541 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001542
1543 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1544 array_size = (nr_pages * sizeof(struct page *));
1545
1546 area->nr_pages = nr_pages;
1547 /* Please note that the recursion is strictly bounded. */
Jan Kiszka8757d5f2006-07-14 00:23:56 -07001548 if (array_size > PAGE_SIZE) {
Jan Beulich976d6df2009-12-14 17:58:39 -08001549 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
Christoph Lameter23016962008-04-28 02:12:42 -07001550 PAGE_KERNEL, node, caller);
Jan Kiszka8757d5f2006-07-14 00:23:56 -07001551 area->flags |= VM_VPAGES;
Andrew Morton286e1ea2006-10-17 00:09:57 -07001552 } else {
Jan Beulich976d6df2009-12-14 17:58:39 -08001553 pages = kmalloc_node(array_size, nested_gfp, node);
Andrew Morton286e1ea2006-10-17 00:09:57 -07001554 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001555 area->pages = pages;
Christoph Lameter23016962008-04-28 02:12:42 -07001556 area->caller = caller;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001557 if (!area->pages) {
1558 remove_vm_area(area->addr);
1559 kfree(area);
1560 return NULL;
1561 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001562
1563 for (i = 0; i < area->nr_pages; i++) {
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001564 struct page *page;
Dave Hansen22943ab2011-05-24 17:12:18 -07001565 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001566
Christoph Lameter930fc452005-10-29 18:15:41 -07001567 if (node < 0)
Dave Hansen22943ab2011-05-24 17:12:18 -07001568 page = alloc_page(tmp_mask);
Christoph Lameter930fc452005-10-29 18:15:41 -07001569 else
Dave Hansen22943ab2011-05-24 17:12:18 -07001570 page = alloc_pages_node(node, tmp_mask, order);
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001571
1572 if (unlikely(!page)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001573 /* Successfully allocated i pages, free them in __vunmap() */
1574 area->nr_pages = i;
1575 goto fail;
1576 }
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001577 area->pages[i] = page;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001578 }
1579
1580 if (map_vm_area(area, prot, &pages))
1581 goto fail;
1582 return area->addr;
1583
1584fail:
Dave Hansen22943ab2011-05-24 17:12:18 -07001585 warn_alloc_failed(gfp_mask, order, "vmalloc: allocation failure, "
1586 "allocated %ld of %ld bytes\n",
1587 (area->nr_pages*PAGE_SIZE), area->size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001588 vfree(area->addr);
1589 return NULL;
1590}
1591
David Rientjesd0a21262011-01-13 15:46:02 -08001592/**
1593 * __vmalloc_node_range - allocate virtually contiguous memory
1594 * @size: allocation size
1595 * @align: desired alignment
1596 * @start: vm area range start
1597 * @end: vm area range end
1598 * @gfp_mask: flags for the page level allocator
1599 * @prot: protection mask for the allocated pages
1600 * @node: node to use for allocation or -1
1601 * @caller: caller's return address
1602 *
1603 * Allocate enough pages to cover @size from the page level
1604 * allocator with @gfp_mask flags. Map them into contiguous
1605 * kernel virtual space, using a pagetable protection of @prot.
1606 */
1607void *__vmalloc_node_range(unsigned long size, unsigned long align,
1608 unsigned long start, unsigned long end, gfp_t gfp_mask,
1609 pgprot_t prot, int node, void *caller)
Christoph Lameter930fc452005-10-29 18:15:41 -07001610{
David Rientjesd0a21262011-01-13 15:46:02 -08001611 struct vm_struct *area;
1612 void *addr;
1613 unsigned long real_size = size;
1614
1615 size = PAGE_ALIGN(size);
1616 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1617 return NULL;
1618
1619 area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node,
1620 gfp_mask, caller);
1621
1622 if (!area)
1623 return NULL;
1624
1625 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
Catalin Marinas89219d32009-06-11 13:23:19 +01001626
1627 /*
1628 * A ref_count = 3 is needed because the vm_struct and vmap_area
1629 * structures allocated in the __get_vm_area_node() function contain
1630 * references to the virtual address of the vmalloc'ed block.
1631 */
David Rientjesd0a21262011-01-13 15:46:02 -08001632 kmemleak_alloc(addr, real_size, 3, gfp_mask);
Catalin Marinas89219d32009-06-11 13:23:19 +01001633
1634 return addr;
Christoph Lameter930fc452005-10-29 18:15:41 -07001635}
1636
Linus Torvalds1da177e2005-04-16 15:20:36 -07001637/**
Christoph Lameter930fc452005-10-29 18:15:41 -07001638 * __vmalloc_node - allocate virtually contiguous memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07001639 * @size: allocation size
David Miller2dca6992009-09-21 12:22:34 -07001640 * @align: desired alignment
Linus Torvalds1da177e2005-04-16 15:20:36 -07001641 * @gfp_mask: flags for the page level allocator
1642 * @prot: protection mask for the allocated pages
Randy Dunlapd44e0782005-11-07 01:01:10 -08001643 * @node: node to use for allocation or -1
Randy Dunlapc85d1942008-05-01 04:34:48 -07001644 * @caller: caller's return address
Linus Torvalds1da177e2005-04-16 15:20:36 -07001645 *
1646 * Allocate enough pages to cover @size from the page level
1647 * allocator with @gfp_mask flags. Map them into contiguous
1648 * kernel virtual space, using a pagetable protection of @prot.
1649 */
David Miller2dca6992009-09-21 12:22:34 -07001650static void *__vmalloc_node(unsigned long size, unsigned long align,
1651 gfp_t gfp_mask, pgprot_t prot,
1652 int node, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001653{
David Rientjesd0a21262011-01-13 15:46:02 -08001654 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1655 gfp_mask, prot, node, caller);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001656}
1657
Christoph Lameter930fc452005-10-29 18:15:41 -07001658void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1659{
David Miller2dca6992009-09-21 12:22:34 -07001660 return __vmalloc_node(size, 1, gfp_mask, prot, -1,
Christoph Lameter23016962008-04-28 02:12:42 -07001661 __builtin_return_address(0));
Christoph Lameter930fc452005-10-29 18:15:41 -07001662}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001663EXPORT_SYMBOL(__vmalloc);
1664
Dave Younge1ca7782010-10-26 14:22:06 -07001665static inline void *__vmalloc_node_flags(unsigned long size,
1666 int node, gfp_t flags)
1667{
1668 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1669 node, __builtin_return_address(0));
1670}
1671
Linus Torvalds1da177e2005-04-16 15:20:36 -07001672/**
1673 * vmalloc - allocate virtually contiguous memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07001674 * @size: allocation size
Linus Torvalds1da177e2005-04-16 15:20:36 -07001675 * Allocate enough pages to cover @size from the page level
1676 * allocator and map them into contiguous kernel virtual space.
1677 *
Michael Opdenackerc1c88972006-10-03 23:21:02 +02001678 * For tight control over page level allocator and protection flags
Linus Torvalds1da177e2005-04-16 15:20:36 -07001679 * use __vmalloc() instead.
1680 */
1681void *vmalloc(unsigned long size)
1682{
Dave Younge1ca7782010-10-26 14:22:06 -07001683 return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001684}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001685EXPORT_SYMBOL(vmalloc);
1686
Christoph Lameter930fc452005-10-29 18:15:41 -07001687/**
Dave Younge1ca7782010-10-26 14:22:06 -07001688 * vzalloc - allocate virtually contiguous memory with zero fill
1689 * @size: allocation size
1690 * Allocate enough pages to cover @size from the page level
1691 * allocator and map them into contiguous kernel virtual space.
1692 * The memory allocated is set to zero.
1693 *
1694 * For tight control over page level allocator and protection flags
1695 * use __vmalloc() instead.
1696 */
1697void *vzalloc(unsigned long size)
1698{
1699 return __vmalloc_node_flags(size, -1,
1700 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1701}
1702EXPORT_SYMBOL(vzalloc);
1703
1704/**
Rolf Eike Beeread04082006-09-27 01:50:13 -07001705 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1706 * @size: allocation size
Nick Piggin83342312006-06-23 02:03:20 -07001707 *
Rolf Eike Beeread04082006-09-27 01:50:13 -07001708 * The resulting memory area is zeroed so it can be mapped to userspace
1709 * without leaking data.
Nick Piggin83342312006-06-23 02:03:20 -07001710 */
1711void *vmalloc_user(unsigned long size)
1712{
1713 struct vm_struct *area;
1714 void *ret;
1715
David Miller2dca6992009-09-21 12:22:34 -07001716 ret = __vmalloc_node(size, SHMLBA,
1717 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
Glauber Costa84877842009-01-06 14:39:19 -08001718 PAGE_KERNEL, -1, __builtin_return_address(0));
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001719 if (ret) {
Nick Piggindb64fe02008-10-18 20:27:03 -07001720 area = find_vm_area(ret);
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001721 area->flags |= VM_USERMAP;
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001722 }
Nick Piggin83342312006-06-23 02:03:20 -07001723 return ret;
1724}
1725EXPORT_SYMBOL(vmalloc_user);
1726
1727/**
Christoph Lameter930fc452005-10-29 18:15:41 -07001728 * vmalloc_node - allocate memory on a specific node
Christoph Lameter930fc452005-10-29 18:15:41 -07001729 * @size: allocation size
Randy Dunlapd44e0782005-11-07 01:01:10 -08001730 * @node: numa node
Christoph Lameter930fc452005-10-29 18:15:41 -07001731 *
1732 * Allocate enough pages to cover @size from the page level
1733 * allocator and map them into contiguous kernel virtual space.
1734 *
Michael Opdenackerc1c88972006-10-03 23:21:02 +02001735 * For tight control over page level allocator and protection flags
Christoph Lameter930fc452005-10-29 18:15:41 -07001736 * use __vmalloc() instead.
1737 */
1738void *vmalloc_node(unsigned long size, int node)
1739{
David Miller2dca6992009-09-21 12:22:34 -07001740 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
Christoph Lameter23016962008-04-28 02:12:42 -07001741 node, __builtin_return_address(0));
Christoph Lameter930fc452005-10-29 18:15:41 -07001742}
1743EXPORT_SYMBOL(vmalloc_node);
1744
Dave Younge1ca7782010-10-26 14:22:06 -07001745/**
1746 * vzalloc_node - allocate memory on a specific node with zero fill
1747 * @size: allocation size
1748 * @node: numa node
1749 *
1750 * Allocate enough pages to cover @size from the page level
1751 * allocator and map them into contiguous kernel virtual space.
1752 * The memory allocated is set to zero.
1753 *
1754 * For tight control over page level allocator and protection flags
1755 * use __vmalloc_node() instead.
1756 */
1757void *vzalloc_node(unsigned long size, int node)
1758{
1759 return __vmalloc_node_flags(size, node,
1760 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1761}
1762EXPORT_SYMBOL(vzalloc_node);
1763
Pavel Pisa4dc3b162005-05-01 08:59:25 -07001764#ifndef PAGE_KERNEL_EXEC
1765# define PAGE_KERNEL_EXEC PAGE_KERNEL
1766#endif
1767
Linus Torvalds1da177e2005-04-16 15:20:36 -07001768/**
1769 * vmalloc_exec - allocate virtually contiguous, executable memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770 * @size: allocation size
1771 *
1772 * Kernel-internal function to allocate enough pages to cover @size
1773 * the page level allocator and map them into contiguous and
1774 * executable kernel virtual space.
1775 *
Michael Opdenackerc1c88972006-10-03 23:21:02 +02001776 * For tight control over page level allocator and protection flags
Linus Torvalds1da177e2005-04-16 15:20:36 -07001777 * use __vmalloc() instead.
1778 */
1779
Linus Torvalds1da177e2005-04-16 15:20:36 -07001780void *vmalloc_exec(unsigned long size)
1781{
David Miller2dca6992009-09-21 12:22:34 -07001782 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
Glauber Costa84877842009-01-06 14:39:19 -08001783 -1, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001784}
1785
Andi Kleen0d08e0d2007-05-02 19:27:12 +02001786#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
Benjamin Herrenschmidt7ac674f2007-07-19 01:49:10 -07001787#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
Andi Kleen0d08e0d2007-05-02 19:27:12 +02001788#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
Benjamin Herrenschmidt7ac674f2007-07-19 01:49:10 -07001789#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
Andi Kleen0d08e0d2007-05-02 19:27:12 +02001790#else
1791#define GFP_VMALLOC32 GFP_KERNEL
1792#endif
1793
Linus Torvalds1da177e2005-04-16 15:20:36 -07001794/**
1795 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001796 * @size: allocation size
1797 *
1798 * Allocate enough 32bit PA addressable pages to cover @size from the
1799 * page level allocator and map them into contiguous kernel virtual space.
1800 */
1801void *vmalloc_32(unsigned long size)
1802{
David Miller2dca6992009-09-21 12:22:34 -07001803 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
Glauber Costa84877842009-01-06 14:39:19 -08001804 -1, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001805}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001806EXPORT_SYMBOL(vmalloc_32);
1807
Nick Piggin83342312006-06-23 02:03:20 -07001808/**
Rolf Eike Beeread04082006-09-27 01:50:13 -07001809 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
Nick Piggin83342312006-06-23 02:03:20 -07001810 * @size: allocation size
Rolf Eike Beeread04082006-09-27 01:50:13 -07001811 *
1812 * The resulting memory area is 32bit addressable and zeroed so it can be
1813 * mapped to userspace without leaking data.
Nick Piggin83342312006-06-23 02:03:20 -07001814 */
1815void *vmalloc_32_user(unsigned long size)
1816{
1817 struct vm_struct *area;
1818 void *ret;
1819
David Miller2dca6992009-09-21 12:22:34 -07001820 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
Glauber Costa84877842009-01-06 14:39:19 -08001821 -1, __builtin_return_address(0));
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001822 if (ret) {
Nick Piggindb64fe02008-10-18 20:27:03 -07001823 area = find_vm_area(ret);
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001824 area->flags |= VM_USERMAP;
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001825 }
Nick Piggin83342312006-06-23 02:03:20 -07001826 return ret;
1827}
1828EXPORT_SYMBOL(vmalloc_32_user);
1829
KAMEZAWA Hiroyukid0107eb2009-09-21 17:02:34 -07001830/*
1831 * small helper routine , copy contents to buf from addr.
1832 * If the page is not present, fill zero.
1833 */
1834
1835static int aligned_vread(char *buf, char *addr, unsigned long count)
1836{
1837 struct page *p;
1838 int copied = 0;
1839
1840 while (count) {
1841 unsigned long offset, length;
1842
1843 offset = (unsigned long)addr & ~PAGE_MASK;
1844 length = PAGE_SIZE - offset;
1845 if (length > count)
1846 length = count;
1847 p = vmalloc_to_page(addr);
1848 /*
1849 * To do safe access to this _mapped_ area, we need
1850 * lock. But adding lock here means that we need to add
1851 * overhead of vmalloc()/vfree() calles for this _debug_
1852 * interface, rarely used. Instead of that, we'll use
1853 * kmap() and get small overhead in this access function.
1854 */
1855 if (p) {
1856 /*
1857 * we can expect USER0 is not used (see vread/vwrite's
1858 * function description)
1859 */
1860 void *map = kmap_atomic(p, KM_USER0);
1861 memcpy(buf, map + offset, length);
1862 kunmap_atomic(map, KM_USER0);
1863 } else
1864 memset(buf, 0, length);
1865
1866 addr += length;
1867 buf += length;
1868 copied += length;
1869 count -= length;
1870 }
1871 return copied;
1872}
1873
1874static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1875{
1876 struct page *p;
1877 int copied = 0;
1878
1879 while (count) {
1880 unsigned long offset, length;
1881
1882 offset = (unsigned long)addr & ~PAGE_MASK;
1883 length = PAGE_SIZE - offset;
1884 if (length > count)
1885 length = count;
1886 p = vmalloc_to_page(addr);
1887 /*
1888 * To do safe access to this _mapped_ area, we need
1889 * lock. But adding lock here means that we need to add
1890 * overhead of vmalloc()/vfree() calles for this _debug_
1891 * interface, rarely used. Instead of that, we'll use
1892 * kmap() and get small overhead in this access function.
1893 */
1894 if (p) {
1895 /*
1896 * we can expect USER0 is not used (see vread/vwrite's
1897 * function description)
1898 */
1899 void *map = kmap_atomic(p, KM_USER0);
1900 memcpy(map + offset, buf, length);
1901 kunmap_atomic(map, KM_USER0);
1902 }
1903 addr += length;
1904 buf += length;
1905 copied += length;
1906 count -= length;
1907 }
1908 return copied;
1909}
1910
1911/**
1912 * vread() - read vmalloc area in a safe way.
1913 * @buf: buffer for reading data
1914 * @addr: vm address.
1915 * @count: number of bytes to be read.
1916 *
1917 * Returns # of bytes which addr and buf should be increased.
1918 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1919 * includes any intersect with alive vmalloc area.
1920 *
1921 * This function checks that addr is a valid vmalloc'ed area, and
1922 * copy data from that area to a given buffer. If the given memory range
1923 * of [addr...addr+count) includes some valid address, data is copied to
1924 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1925 * IOREMAP area is treated as memory hole and no copy is done.
1926 *
1927 * If [addr...addr+count) doesn't includes any intersects with alive
1928 * vm_struct area, returns 0.
1929 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1930 * the caller should guarantee KM_USER0 is not used.
1931 *
1932 * Note: In usual ops, vread() is never necessary because the caller
1933 * should know vmalloc() area is valid and can use memcpy().
1934 * This is for routines which have to access vmalloc area without
1935 * any informaion, as /dev/kmem.
1936 *
1937 */
1938
Linus Torvalds1da177e2005-04-16 15:20:36 -07001939long vread(char *buf, char *addr, unsigned long count)
1940{
1941 struct vm_struct *tmp;
1942 char *vaddr, *buf_start = buf;
KAMEZAWA Hiroyukid0107eb2009-09-21 17:02:34 -07001943 unsigned long buflen = count;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001944 unsigned long n;
1945
1946 /* Don't allow overflow */
1947 if ((unsigned long) addr + count < count)
1948 count = -(unsigned long) addr;
1949
1950 read_lock(&vmlist_lock);
KAMEZAWA Hiroyukid0107eb2009-09-21 17:02:34 -07001951 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001952 vaddr = (char *) tmp->addr;
1953 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1954 continue;
1955 while (addr < vaddr) {
1956 if (count == 0)
1957 goto finished;
1958 *buf = '\0';
1959 buf++;
1960 addr++;
1961 count--;
1962 }
1963 n = vaddr + tmp->size - PAGE_SIZE - addr;
KAMEZAWA Hiroyukid0107eb2009-09-21 17:02:34 -07001964 if (n > count)
1965 n = count;
1966 if (!(tmp->flags & VM_IOREMAP))
1967 aligned_vread(buf, addr, n);
1968 else /* IOREMAP area is treated as memory hole */
1969 memset(buf, 0, n);
1970 buf += n;
1971 addr += n;
1972 count -= n;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001973 }
1974finished:
1975 read_unlock(&vmlist_lock);
KAMEZAWA Hiroyukid0107eb2009-09-21 17:02:34 -07001976
1977 if (buf == buf_start)
1978 return 0;
1979 /* zero-fill memory holes */
1980 if (buf != buf_start + buflen)
1981 memset(buf, 0, buflen - (buf - buf_start));
1982
1983 return buflen;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001984}
1985
KAMEZAWA Hiroyukid0107eb2009-09-21 17:02:34 -07001986/**
1987 * vwrite() - write vmalloc area in a safe way.
1988 * @buf: buffer for source data
1989 * @addr: vm address.
1990 * @count: number of bytes to be read.
1991 *
1992 * Returns # of bytes which addr and buf should be incresed.
1993 * (same number to @count).
1994 * If [addr...addr+count) doesn't includes any intersect with valid
1995 * vmalloc area, returns 0.
1996 *
1997 * This function checks that addr is a valid vmalloc'ed area, and
1998 * copy data from a buffer to the given addr. If specified range of
1999 * [addr...addr+count) includes some valid address, data is copied from
2000 * proper area of @buf. If there are memory holes, no copy to hole.
2001 * IOREMAP area is treated as memory hole and no copy is done.
2002 *
2003 * If [addr...addr+count) doesn't includes any intersects with alive
2004 * vm_struct area, returns 0.
2005 * @buf should be kernel's buffer. Because this function uses KM_USER0,
2006 * the caller should guarantee KM_USER0 is not used.
2007 *
2008 * Note: In usual ops, vwrite() is never necessary because the caller
2009 * should know vmalloc() area is valid and can use memcpy().
2010 * This is for routines which have to access vmalloc area without
2011 * any informaion, as /dev/kmem.
KAMEZAWA Hiroyukid0107eb2009-09-21 17:02:34 -07002012 */
2013
Linus Torvalds1da177e2005-04-16 15:20:36 -07002014long vwrite(char *buf, char *addr, unsigned long count)
2015{
2016 struct vm_struct *tmp;
KAMEZAWA Hiroyukid0107eb2009-09-21 17:02:34 -07002017 char *vaddr;
2018 unsigned long n, buflen;
2019 int copied = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002020
2021 /* Don't allow overflow */
2022 if ((unsigned long) addr + count < count)
2023 count = -(unsigned long) addr;
KAMEZAWA Hiroyukid0107eb2009-09-21 17:02:34 -07002024 buflen = count;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002025
2026 read_lock(&vmlist_lock);
KAMEZAWA Hiroyukid0107eb2009-09-21 17:02:34 -07002027 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002028 vaddr = (char *) tmp->addr;
2029 if (addr >= vaddr + tmp->size - PAGE_SIZE)
2030 continue;
2031 while (addr < vaddr) {
2032 if (count == 0)
2033 goto finished;
2034 buf++;
2035 addr++;
2036 count--;
2037 }
2038 n = vaddr + tmp->size - PAGE_SIZE - addr;
KAMEZAWA Hiroyukid0107eb2009-09-21 17:02:34 -07002039 if (n > count)
2040 n = count;
2041 if (!(tmp->flags & VM_IOREMAP)) {
2042 aligned_vwrite(buf, addr, n);
2043 copied++;
2044 }
2045 buf += n;
2046 addr += n;
2047 count -= n;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002048 }
2049finished:
2050 read_unlock(&vmlist_lock);
KAMEZAWA Hiroyukid0107eb2009-09-21 17:02:34 -07002051 if (!copied)
2052 return 0;
2053 return buflen;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002054}
Nick Piggin83342312006-06-23 02:03:20 -07002055
2056/**
2057 * remap_vmalloc_range - map vmalloc pages to userspace
Nick Piggin83342312006-06-23 02:03:20 -07002058 * @vma: vma to cover (map full range of vma)
2059 * @addr: vmalloc memory
2060 * @pgoff: number of pages into addr before first page to map
Randy Dunlap76824862008-03-19 17:00:40 -07002061 *
2062 * Returns: 0 for success, -Exxx on failure
Nick Piggin83342312006-06-23 02:03:20 -07002063 *
2064 * This function checks that addr is a valid vmalloc'ed area, and
2065 * that it is big enough to cover the vma. Will return failure if
2066 * that criteria isn't met.
2067 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08002068 * Similar to remap_pfn_range() (see mm/memory.c)
Nick Piggin83342312006-06-23 02:03:20 -07002069 */
2070int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2071 unsigned long pgoff)
2072{
2073 struct vm_struct *area;
2074 unsigned long uaddr = vma->vm_start;
2075 unsigned long usize = vma->vm_end - vma->vm_start;
Nick Piggin83342312006-06-23 02:03:20 -07002076
2077 if ((PAGE_SIZE-1) & (unsigned long)addr)
2078 return -EINVAL;
2079
Nick Piggindb64fe02008-10-18 20:27:03 -07002080 area = find_vm_area(addr);
Nick Piggin83342312006-06-23 02:03:20 -07002081 if (!area)
Nick Piggindb64fe02008-10-18 20:27:03 -07002082 return -EINVAL;
Nick Piggin83342312006-06-23 02:03:20 -07002083
2084 if (!(area->flags & VM_USERMAP))
Nick Piggindb64fe02008-10-18 20:27:03 -07002085 return -EINVAL;
Nick Piggin83342312006-06-23 02:03:20 -07002086
2087 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
Nick Piggindb64fe02008-10-18 20:27:03 -07002088 return -EINVAL;
Nick Piggin83342312006-06-23 02:03:20 -07002089
2090 addr += pgoff << PAGE_SHIFT;
2091 do {
2092 struct page *page = vmalloc_to_page(addr);
Nick Piggindb64fe02008-10-18 20:27:03 -07002093 int ret;
2094
Nick Piggin83342312006-06-23 02:03:20 -07002095 ret = vm_insert_page(vma, uaddr, page);
2096 if (ret)
2097 return ret;
2098
2099 uaddr += PAGE_SIZE;
2100 addr += PAGE_SIZE;
2101 usize -= PAGE_SIZE;
2102 } while (usize > 0);
2103
2104 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
2105 vma->vm_flags |= VM_RESERVED;
2106
Nick Piggindb64fe02008-10-18 20:27:03 -07002107 return 0;
Nick Piggin83342312006-06-23 02:03:20 -07002108}
2109EXPORT_SYMBOL(remap_vmalloc_range);
2110
Christoph Hellwig1eeb66a2007-05-08 00:27:03 -07002111/*
2112 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2113 * have one.
2114 */
2115void __attribute__((weak)) vmalloc_sync_all(void)
2116{
2117}
Jeremy Fitzhardinge5f4352f2007-07-17 18:37:04 -07002118
2119
Martin Schwidefsky2f569af2008-02-08 04:22:04 -08002120static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
Jeremy Fitzhardinge5f4352f2007-07-17 18:37:04 -07002121{
2122 /* apply_to_page_range() does all the hard work. */
2123 return 0;
2124}
2125
2126/**
2127 * alloc_vm_area - allocate a range of kernel address space
2128 * @size: size of the area
Randy Dunlap76824862008-03-19 17:00:40 -07002129 *
2130 * Returns: NULL on failure, vm_struct on success
Jeremy Fitzhardinge5f4352f2007-07-17 18:37:04 -07002131 *
2132 * This function reserves a range of kernel address space, and
2133 * allocates pagetables to map that range. No actual mappings
2134 * are created. If the kernel address space is not shared
2135 * between processes, it syncs the pagetable across all
2136 * processes.
2137 */
2138struct vm_struct *alloc_vm_area(size_t size)
2139{
2140 struct vm_struct *area;
2141
Christoph Lameter23016962008-04-28 02:12:42 -07002142 area = get_vm_area_caller(size, VM_IOREMAP,
2143 __builtin_return_address(0));
Jeremy Fitzhardinge5f4352f2007-07-17 18:37:04 -07002144 if (area == NULL)
2145 return NULL;
2146
2147 /*
2148 * This ensures that page tables are constructed for this region
2149 * of kernel virtual address space and mapped into init_mm.
2150 */
2151 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2152 area->size, f, NULL)) {
2153 free_vm_area(area);
2154 return NULL;
2155 }
2156
David Vrabeld63c8a02011-09-14 16:22:02 -07002157 /*
2158 * If the allocated address space is passed to a hypercall
2159 * before being used then we cannot rely on a page fault to
2160 * trigger an update of the page tables. So sync all the page
2161 * tables here.
2162 */
2163 vmalloc_sync_all();
2164
Jeremy Fitzhardinge5f4352f2007-07-17 18:37:04 -07002165 return area;
2166}
2167EXPORT_SYMBOL_GPL(alloc_vm_area);
2168
2169void free_vm_area(struct vm_struct *area)
2170{
2171 struct vm_struct *ret;
2172 ret = remove_vm_area(area->addr);
2173 BUG_ON(ret != area);
2174 kfree(area);
2175}
2176EXPORT_SYMBOL_GPL(free_vm_area);
Christoph Lametera10aa572008-04-28 02:12:40 -07002177
Tejun Heo4f8b02b2010-09-03 18:22:47 +02002178#ifdef CONFIG_SMP
Tejun Heoca23e402009-08-14 15:00:52 +09002179static struct vmap_area *node_to_va(struct rb_node *n)
2180{
2181 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2182}
2183
2184/**
2185 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2186 * @end: target address
2187 * @pnext: out arg for the next vmap_area
2188 * @pprev: out arg for the previous vmap_area
2189 *
2190 * Returns: %true if either or both of next and prev are found,
2191 * %false if no vmap_area exists
2192 *
2193 * Find vmap_areas end addresses of which enclose @end. ie. if not
2194 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2195 */
2196static bool pvm_find_next_prev(unsigned long end,
2197 struct vmap_area **pnext,
2198 struct vmap_area **pprev)
2199{
2200 struct rb_node *n = vmap_area_root.rb_node;
2201 struct vmap_area *va = NULL;
2202
2203 while (n) {
2204 va = rb_entry(n, struct vmap_area, rb_node);
2205 if (end < va->va_end)
2206 n = n->rb_left;
2207 else if (end > va->va_end)
2208 n = n->rb_right;
2209 else
2210 break;
2211 }
2212
2213 if (!va)
2214 return false;
2215
2216 if (va->va_end > end) {
2217 *pnext = va;
2218 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2219 } else {
2220 *pprev = va;
2221 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2222 }
2223 return true;
2224}
2225
2226/**
2227 * pvm_determine_end - find the highest aligned address between two vmap_areas
2228 * @pnext: in/out arg for the next vmap_area
2229 * @pprev: in/out arg for the previous vmap_area
2230 * @align: alignment
2231 *
2232 * Returns: determined end address
2233 *
2234 * Find the highest aligned address between *@pnext and *@pprev below
2235 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2236 * down address is between the end addresses of the two vmap_areas.
2237 *
2238 * Please note that the address returned by this function may fall
2239 * inside *@pnext vmap_area. The caller is responsible for checking
2240 * that.
2241 */
2242static unsigned long pvm_determine_end(struct vmap_area **pnext,
2243 struct vmap_area **pprev,
2244 unsigned long align)
2245{
2246 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2247 unsigned long addr;
2248
2249 if (*pnext)
2250 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2251 else
2252 addr = vmalloc_end;
2253
2254 while (*pprev && (*pprev)->va_end > addr) {
2255 *pnext = *pprev;
2256 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2257 }
2258
2259 return addr;
2260}
2261
2262/**
2263 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2264 * @offsets: array containing offset of each area
2265 * @sizes: array containing size of each area
2266 * @nr_vms: the number of areas to allocate
2267 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
Tejun Heoca23e402009-08-14 15:00:52 +09002268 *
2269 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2270 * vm_structs on success, %NULL on failure
2271 *
2272 * Percpu allocator wants to use congruent vm areas so that it can
2273 * maintain the offsets among percpu areas. This function allocates
David Rientjesec3f64f2011-01-13 15:46:01 -08002274 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2275 * be scattered pretty far, distance between two areas easily going up
2276 * to gigabytes. To avoid interacting with regular vmallocs, these
2277 * areas are allocated from top.
Tejun Heoca23e402009-08-14 15:00:52 +09002278 *
2279 * Despite its complicated look, this allocator is rather simple. It
2280 * does everything top-down and scans areas from the end looking for
2281 * matching slot. While scanning, if any of the areas overlaps with
2282 * existing vmap_area, the base address is pulled down to fit the
2283 * area. Scanning is repeated till all the areas fit and then all
2284 * necessary data structres are inserted and the result is returned.
2285 */
2286struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2287 const size_t *sizes, int nr_vms,
David Rientjesec3f64f2011-01-13 15:46:01 -08002288 size_t align)
Tejun Heoca23e402009-08-14 15:00:52 +09002289{
2290 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2291 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2292 struct vmap_area **vas, *prev, *next;
2293 struct vm_struct **vms;
2294 int area, area2, last_area, term_area;
2295 unsigned long base, start, end, last_end;
2296 bool purged = false;
2297
Tejun Heoca23e402009-08-14 15:00:52 +09002298 /* verify parameters and allocate data structures */
2299 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2300 for (last_area = 0, area = 0; area < nr_vms; area++) {
2301 start = offsets[area];
2302 end = start + sizes[area];
2303
2304 /* is everything aligned properly? */
2305 BUG_ON(!IS_ALIGNED(offsets[area], align));
2306 BUG_ON(!IS_ALIGNED(sizes[area], align));
2307
2308 /* detect the area with the highest address */
2309 if (start > offsets[last_area])
2310 last_area = area;
2311
2312 for (area2 = 0; area2 < nr_vms; area2++) {
2313 unsigned long start2 = offsets[area2];
2314 unsigned long end2 = start2 + sizes[area2];
2315
2316 if (area2 == area)
2317 continue;
2318
2319 BUG_ON(start2 >= start && start2 < end);
2320 BUG_ON(end2 <= end && end2 > start);
2321 }
2322 }
2323 last_end = offsets[last_area] + sizes[last_area];
2324
2325 if (vmalloc_end - vmalloc_start < last_end) {
2326 WARN_ON(true);
2327 return NULL;
2328 }
2329
David Rientjesec3f64f2011-01-13 15:46:01 -08002330 vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
2331 vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
Tejun Heoca23e402009-08-14 15:00:52 +09002332 if (!vas || !vms)
2333 goto err_free;
2334
2335 for (area = 0; area < nr_vms; area++) {
David Rientjesec3f64f2011-01-13 15:46:01 -08002336 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2337 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
Tejun Heoca23e402009-08-14 15:00:52 +09002338 if (!vas[area] || !vms[area])
2339 goto err_free;
2340 }
2341retry:
2342 spin_lock(&vmap_area_lock);
2343
2344 /* start scanning - we scan from the top, begin with the last area */
2345 area = term_area = last_area;
2346 start = offsets[area];
2347 end = start + sizes[area];
2348
2349 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2350 base = vmalloc_end - last_end;
2351 goto found;
2352 }
2353 base = pvm_determine_end(&next, &prev, align) - end;
2354
2355 while (true) {
2356 BUG_ON(next && next->va_end <= base + end);
2357 BUG_ON(prev && prev->va_end > base + end);
2358
2359 /*
2360 * base might have underflowed, add last_end before
2361 * comparing.
2362 */
2363 if (base + last_end < vmalloc_start + last_end) {
2364 spin_unlock(&vmap_area_lock);
2365 if (!purged) {
2366 purge_vmap_area_lazy();
2367 purged = true;
2368 goto retry;
2369 }
2370 goto err_free;
2371 }
2372
2373 /*
2374 * If next overlaps, move base downwards so that it's
2375 * right below next and then recheck.
2376 */
2377 if (next && next->va_start < base + end) {
2378 base = pvm_determine_end(&next, &prev, align) - end;
2379 term_area = area;
2380 continue;
2381 }
2382
2383 /*
2384 * If prev overlaps, shift down next and prev and move
2385 * base so that it's right below new next and then
2386 * recheck.
2387 */
2388 if (prev && prev->va_end > base + start) {
2389 next = prev;
2390 prev = node_to_va(rb_prev(&next->rb_node));
2391 base = pvm_determine_end(&next, &prev, align) - end;
2392 term_area = area;
2393 continue;
2394 }
2395
2396 /*
2397 * This area fits, move on to the previous one. If
2398 * the previous one is the terminal one, we're done.
2399 */
2400 area = (area + nr_vms - 1) % nr_vms;
2401 if (area == term_area)
2402 break;
2403 start = offsets[area];
2404 end = start + sizes[area];
2405 pvm_find_next_prev(base + end, &next, &prev);
2406 }
2407found:
2408 /* we've found a fitting base, insert all va's */
2409 for (area = 0; area < nr_vms; area++) {
2410 struct vmap_area *va = vas[area];
2411
2412 va->va_start = base + offsets[area];
2413 va->va_end = va->va_start + sizes[area];
2414 __insert_vmap_area(va);
2415 }
2416
2417 vmap_area_pcpu_hole = base + offsets[last_area];
2418
2419 spin_unlock(&vmap_area_lock);
2420
2421 /* insert all vm's */
2422 for (area = 0; area < nr_vms; area++)
2423 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2424 pcpu_get_vm_areas);
2425
2426 kfree(vas);
2427 return vms;
2428
2429err_free:
2430 for (area = 0; area < nr_vms; area++) {
2431 if (vas)
2432 kfree(vas[area]);
2433 if (vms)
2434 kfree(vms[area]);
2435 }
2436 kfree(vas);
2437 kfree(vms);
2438 return NULL;
2439}
2440
2441/**
2442 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2443 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2444 * @nr_vms: the number of allocated areas
2445 *
2446 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2447 */
2448void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2449{
2450 int i;
2451
2452 for (i = 0; i < nr_vms; i++)
2453 free_vm_area(vms[i]);
2454 kfree(vms);
2455}
Tejun Heo4f8b02b2010-09-03 18:22:47 +02002456#endif /* CONFIG_SMP */
Christoph Lametera10aa572008-04-28 02:12:40 -07002457
2458#ifdef CONFIG_PROC_FS
2459static void *s_start(struct seq_file *m, loff_t *pos)
Namhyung Kime199b5d2010-10-26 14:22:03 -07002460 __acquires(&vmlist_lock)
Christoph Lametera10aa572008-04-28 02:12:40 -07002461{
2462 loff_t n = *pos;
2463 struct vm_struct *v;
2464
2465 read_lock(&vmlist_lock);
2466 v = vmlist;
2467 while (n > 0 && v) {
2468 n--;
2469 v = v->next;
2470 }
2471 if (!n)
2472 return v;
2473
2474 return NULL;
2475
2476}
2477
2478static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2479{
2480 struct vm_struct *v = p;
2481
2482 ++*pos;
2483 return v->next;
2484}
2485
2486static void s_stop(struct seq_file *m, void *p)
Namhyung Kime199b5d2010-10-26 14:22:03 -07002487 __releases(&vmlist_lock)
Christoph Lametera10aa572008-04-28 02:12:40 -07002488{
2489 read_unlock(&vmlist_lock);
2490}
2491
Eric Dumazeta47a1262008-07-23 21:27:38 -07002492static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2493{
2494 if (NUMA_BUILD) {
2495 unsigned int nr, *counters = m->private;
2496
2497 if (!counters)
2498 return;
2499
2500 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2501
2502 for (nr = 0; nr < v->nr_pages; nr++)
2503 counters[page_to_nid(v->pages[nr])]++;
2504
2505 for_each_node_state(nr, N_HIGH_MEMORY)
2506 if (counters[nr])
2507 seq_printf(m, " N%u=%u", nr, counters[nr]);
2508 }
2509}
2510
Christoph Lametera10aa572008-04-28 02:12:40 -07002511static int s_show(struct seq_file *m, void *p)
2512{
2513 struct vm_struct *v = p;
2514
2515 seq_printf(m, "0x%p-0x%p %7ld",
2516 v->addr, v->addr + v->size, v->size);
2517
Joe Perches62c70bc2011-01-13 15:45:52 -08002518 if (v->caller)
2519 seq_printf(m, " %pS", v->caller);
Christoph Lameter23016962008-04-28 02:12:42 -07002520
Christoph Lametera10aa572008-04-28 02:12:40 -07002521 if (v->nr_pages)
2522 seq_printf(m, " pages=%d", v->nr_pages);
2523
2524 if (v->phys_addr)
Kenji Kaneshigeffa71f32010-06-18 12:22:40 +09002525 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
Christoph Lametera10aa572008-04-28 02:12:40 -07002526
2527 if (v->flags & VM_IOREMAP)
2528 seq_printf(m, " ioremap");
2529
2530 if (v->flags & VM_ALLOC)
2531 seq_printf(m, " vmalloc");
2532
2533 if (v->flags & VM_MAP)
2534 seq_printf(m, " vmap");
2535
2536 if (v->flags & VM_USERMAP)
2537 seq_printf(m, " user");
2538
2539 if (v->flags & VM_VPAGES)
2540 seq_printf(m, " vpages");
2541
Eric Dumazeta47a1262008-07-23 21:27:38 -07002542 show_numa_info(m, v);
Christoph Lametera10aa572008-04-28 02:12:40 -07002543 seq_putc(m, '\n');
2544 return 0;
2545}
2546
Alexey Dobriyan5f6a6a92008-10-06 03:50:47 +04002547static const struct seq_operations vmalloc_op = {
Christoph Lametera10aa572008-04-28 02:12:40 -07002548 .start = s_start,
2549 .next = s_next,
2550 .stop = s_stop,
2551 .show = s_show,
2552};
Alexey Dobriyan5f6a6a92008-10-06 03:50:47 +04002553
2554static int vmalloc_open(struct inode *inode, struct file *file)
2555{
2556 unsigned int *ptr = NULL;
2557 int ret;
2558
Kulikov Vasiliy51980ac2010-08-09 17:19:58 -07002559 if (NUMA_BUILD) {
Alexey Dobriyan5f6a6a92008-10-06 03:50:47 +04002560 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
Kulikov Vasiliy51980ac2010-08-09 17:19:58 -07002561 if (ptr == NULL)
2562 return -ENOMEM;
2563 }
Alexey Dobriyan5f6a6a92008-10-06 03:50:47 +04002564 ret = seq_open(file, &vmalloc_op);
2565 if (!ret) {
2566 struct seq_file *m = file->private_data;
2567 m->private = ptr;
2568 } else
2569 kfree(ptr);
2570 return ret;
2571}
2572
2573static const struct file_operations proc_vmalloc_operations = {
2574 .open = vmalloc_open,
2575 .read = seq_read,
2576 .llseek = seq_lseek,
2577 .release = seq_release_private,
2578};
2579
2580static int __init proc_vmalloc_init(void)
2581{
2582 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2583 return 0;
2584}
2585module_init(proc_vmalloc_init);
Christoph Lametera10aa572008-04-28 02:12:40 -07002586#endif
2587