blob: 5be9293961ba3249b6f39480b6e966e0fca1f9c9 [file] [log] [blame]
Rusty Russellf938d2c2007-07-26 10:41:02 -07001/*P:010
2 * A hypervisor allows multiple Operating Systems to run on a single machine.
3 * To quote David Wheeler: "Any problem in computer science can be solved with
4 * another layer of indirection."
Rusty Russell07ad1572007-07-19 01:49:22 -07005 *
Rusty Russellf938d2c2007-07-26 10:41:02 -07006 * We keep things simple in two ways. First, we start with a normal Linux
7 * kernel and insert a module (lg.ko) which allows us to run other Linux
8 * kernels the same way we'd run processes. We call the first kernel the Host,
9 * and the others the Guests. The program which sets up and configures Guests
10 * (such as the example in Documentation/lguest/lguest.c) is called the
11 * Launcher.
12 *
Rusty Russella6bd8e12008-03-28 11:05:53 -050013 * Secondly, we only run specially modified Guests, not normal kernels: setting
14 * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
15 * how to be a Guest at boot time. This means that you can use the same kernel
16 * you boot normally (ie. as a Host) as a Guest.
Rusty Russellf938d2c2007-07-26 10:41:02 -070017 *
18 * These Guests know that they cannot do privileged operations, such as disable
19 * interrupts, and that they have to ask the Host to do such things explicitly.
20 * This file consists of all the replacements for such low-level native
21 * hardware operations: these special Guest versions call the Host.
22 *
Rusty Russella6bd8e12008-03-28 11:05:53 -050023 * So how does the kernel know it's a Guest? We'll see that later, but let's
24 * just say that we end up here where we replace the native functions various
25 * "paravirt" structures with our Guest versions, then boot like normal. :*/
Rusty Russellf938d2c2007-07-26 10:41:02 -070026
27/*
Rusty Russell07ad1572007-07-19 01:49:22 -070028 * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
29 *
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
34 *
35 * This program is distributed in the hope that it will be useful, but
36 * WITHOUT ANY WARRANTY; without even the implied warranty of
37 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
38 * NON INFRINGEMENT. See the GNU General Public License for more
39 * details.
40 *
41 * You should have received a copy of the GNU General Public License
42 * along with this program; if not, write to the Free Software
43 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
44 */
45#include <linux/kernel.h>
46#include <linux/start_kernel.h>
47#include <linux/string.h>
48#include <linux/console.h>
49#include <linux/screen_info.h>
50#include <linux/irq.h>
51#include <linux/interrupt.h>
Rusty Russelld7e28ff2007-07-19 01:49:23 -070052#include <linux/clocksource.h>
53#include <linux/clockchips.h>
Rusty Russell07ad1572007-07-19 01:49:22 -070054#include <linux/lguest.h>
55#include <linux/lguest_launcher.h>
Rusty Russell19f15372007-10-22 11:24:21 +100056#include <linux/virtio_console.h>
Jeff Garzik4cfe6c32007-10-25 14:15:09 +100057#include <linux/pm.h>
Ingo Molnar7be42002008-07-20 17:04:57 +020058#include <asm/apic.h>
Harvey Harrisoncbc34972008-02-13 13:14:35 -080059#include <asm/lguest.h>
Rusty Russell07ad1572007-07-19 01:49:22 -070060#include <asm/paravirt.h>
61#include <asm/param.h>
62#include <asm/page.h>
63#include <asm/pgtable.h>
64#include <asm/desc.h>
65#include <asm/setup.h>
66#include <asm/e820.h>
67#include <asm/mce.h>
68#include <asm/io.h>
Jes Sorensen625efab2007-10-22 11:03:28 +100069#include <asm/i387.h>
Balaji Raoec04b132007-12-28 14:26:24 +053070#include <asm/reboot.h> /* for struct machine_ops */
Rusty Russell07ad1572007-07-19 01:49:22 -070071
Rusty Russellb2b47c22007-07-26 10:41:02 -070072/*G:010 Welcome to the Guest!
73 *
74 * The Guest in our tale is a simple creature: identical to the Host but
75 * behaving in simplified but equivalent ways. In particular, the Guest is the
76 * same kernel as the Host (or at least, built from the same source code). :*/
77
Rusty Russell07ad1572007-07-19 01:49:22 -070078struct lguest_data lguest_data = {
79 .hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
80 .noirq_start = (u32)lguest_noirq_start,
81 .noirq_end = (u32)lguest_noirq_end,
Rusty Russell47436aa2007-10-22 11:03:36 +100082 .kernel_address = PAGE_OFFSET,
Rusty Russell07ad1572007-07-19 01:49:22 -070083 .blocked_interrupts = { 1 }, /* Block timer interrupts */
Rusty Russellc18acd72007-10-22 11:03:35 +100084 .syscall_vec = SYSCALL_VECTOR,
Rusty Russell07ad1572007-07-19 01:49:22 -070085};
Rusty Russell07ad1572007-07-19 01:49:22 -070086
Rusty Russell633872b2007-11-05 21:55:57 +110087/*G:037 async_hcall() is pretty simple: I'm quite proud of it really. We have a
Rusty Russellb2b47c22007-07-26 10:41:02 -070088 * ring buffer of stored hypercalls which the Host will run though next time we
89 * do a normal hypercall. Each entry in the ring has 4 slots for the hypercall
90 * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
91 * and 255 once the Host has finished with it.
92 *
93 * If we come around to a slot which hasn't been finished, then the table is
94 * full and we just make the hypercall directly. This has the nice side
95 * effect of causing the Host to run all the stored calls in the ring buffer
96 * which empties it for next time! */
Adrian Bunk9b56fdb2007-11-02 16:43:10 +010097static void async_hcall(unsigned long call, unsigned long arg1,
98 unsigned long arg2, unsigned long arg3)
Rusty Russell07ad1572007-07-19 01:49:22 -070099{
100 /* Note: This code assumes we're uniprocessor. */
101 static unsigned int next_call;
102 unsigned long flags;
103
Rusty Russellb2b47c22007-07-26 10:41:02 -0700104 /* Disable interrupts if not already disabled: we don't want an
105 * interrupt handler making a hypercall while we're already doing
106 * one! */
Rusty Russell07ad1572007-07-19 01:49:22 -0700107 local_irq_save(flags);
108 if (lguest_data.hcall_status[next_call] != 0xFF) {
109 /* Table full, so do normal hcall which will flush table. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200110 kvm_hypercall3(call, arg1, arg2, arg3);
Rusty Russell07ad1572007-07-19 01:49:22 -0700111 } else {
Jes Sorensenb410e7b2007-10-22 11:03:31 +1000112 lguest_data.hcalls[next_call].arg0 = call;
113 lguest_data.hcalls[next_call].arg1 = arg1;
114 lguest_data.hcalls[next_call].arg2 = arg2;
115 lguest_data.hcalls[next_call].arg3 = arg3;
Rusty Russellb2b47c22007-07-26 10:41:02 -0700116 /* Arguments must all be written before we mark it to go */
Rusty Russell07ad1572007-07-19 01:49:22 -0700117 wmb();
118 lguest_data.hcall_status[next_call] = 0;
119 if (++next_call == LHCALL_RING_SIZE)
120 next_call = 0;
121 }
122 local_irq_restore(flags);
123}
Adrian Bunk9b56fdb2007-11-02 16:43:10 +0100124
Rusty Russell633872b2007-11-05 21:55:57 +1100125/*G:035 Notice the lazy_hcall() above, rather than hcall(). This is our first
126 * real optimization trick!
127 *
128 * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
129 * them as a batch when lazy_mode is eventually turned off. Because hypercalls
130 * are reasonably expensive, batching them up makes sense. For example, a
131 * large munmap might update dozens of page table entries: that code calls
132 * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
133 * lguest_leave_lazy_mode().
134 *
135 * So, when we're in lazy mode, we call async_hcall() to store the call for
Rusty Russella6bd8e12008-03-28 11:05:53 -0500136 * future processing: */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200137static void lazy_hcall1(unsigned long call,
138 unsigned long arg1)
139{
140 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
141 kvm_hypercall1(call, arg1);
142 else
143 async_hcall(call, arg1, 0, 0);
144}
145
146static void lazy_hcall2(unsigned long call,
147 unsigned long arg1,
148 unsigned long arg2)
149{
150 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
151 kvm_hypercall2(call, arg1, arg2);
152 else
153 async_hcall(call, arg1, arg2, 0);
154}
155
156static void lazy_hcall3(unsigned long call,
Adrian Bunk9b56fdb2007-11-02 16:43:10 +0100157 unsigned long arg1,
158 unsigned long arg2,
159 unsigned long arg3)
160{
161 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200162 kvm_hypercall3(call, arg1, arg2, arg3);
Adrian Bunk9b56fdb2007-11-02 16:43:10 +0100163 else
164 async_hcall(call, arg1, arg2, arg3);
165}
Rusty Russell633872b2007-11-05 21:55:57 +1100166
167/* When lazy mode is turned off reset the per-cpu lazy mode variable and then
Rusty Russella6bd8e12008-03-28 11:05:53 -0500168 * issue the do-nothing hypercall to flush any stored calls. */
Rusty Russell633872b2007-11-05 21:55:57 +1100169static void lguest_leave_lazy_mode(void)
170{
171 paravirt_leave_lazy(paravirt_get_lazy_mode());
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200172 kvm_hypercall0(LHCALL_FLUSH_ASYNC);
Rusty Russell633872b2007-11-05 21:55:57 +1100173}
Rusty Russell07ad1572007-07-19 01:49:22 -0700174
Rusty Russellb2b47c22007-07-26 10:41:02 -0700175/*G:033
Rusty Russelle1e72962007-10-25 15:02:50 +1000176 * After that diversion we return to our first native-instruction
177 * replacements: four functions for interrupt control.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700178 *
179 * The simplest way of implementing these would be to have "turn interrupts
180 * off" and "turn interrupts on" hypercalls. Unfortunately, this is too slow:
181 * these are by far the most commonly called functions of those we override.
182 *
183 * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
184 * which the Guest can update with a single instruction. The Host knows to
Rusty Russella6bd8e12008-03-28 11:05:53 -0500185 * check there before it tries to deliver an interrupt.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700186 */
187
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100188/* save_flags() is expected to return the processor state (ie. "flags"). The
189 * flags word contains all kind of stuff, but in practice Linux only cares
Rusty Russellb2b47c22007-07-26 10:41:02 -0700190 * about the interrupt flag. Our "save_flags()" just returns that. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700191static unsigned long save_fl(void)
192{
193 return lguest_data.irq_enabled;
194}
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -0800195PV_CALLEE_SAVE_REGS_THUNK(save_fl);
Rusty Russell07ad1572007-07-19 01:49:22 -0700196
Rusty Russelle1e72962007-10-25 15:02:50 +1000197/* restore_flags() just sets the flags back to the value given. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700198static void restore_fl(unsigned long flags)
199{
Rusty Russell07ad1572007-07-19 01:49:22 -0700200 lguest_data.irq_enabled = flags;
201}
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -0800202PV_CALLEE_SAVE_REGS_THUNK(restore_fl);
Rusty Russell07ad1572007-07-19 01:49:22 -0700203
Rusty Russellb2b47c22007-07-26 10:41:02 -0700204/* Interrupts go off... */
Rusty Russell07ad1572007-07-19 01:49:22 -0700205static void irq_disable(void)
206{
207 lguest_data.irq_enabled = 0;
208}
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -0800209PV_CALLEE_SAVE_REGS_THUNK(irq_disable);
Rusty Russell07ad1572007-07-19 01:49:22 -0700210
Rusty Russellb2b47c22007-07-26 10:41:02 -0700211/* Interrupts go on... */
Rusty Russell07ad1572007-07-19 01:49:22 -0700212static void irq_enable(void)
213{
Rusty Russell07ad1572007-07-19 01:49:22 -0700214 lguest_data.irq_enabled = X86_EFLAGS_IF;
215}
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -0800216PV_CALLEE_SAVE_REGS_THUNK(irq_enable);
217
Rusty Russellf56a3842007-07-26 10:41:05 -0700218/*:*/
219/*M:003 Note that we don't check for outstanding interrupts when we re-enable
220 * them (or when we unmask an interrupt). This seems to work for the moment,
221 * since interrupts are rare and we'll just get the interrupt on the next timer
Rusty Russella6bd8e12008-03-28 11:05:53 -0500222 * tick, but now we can run with CONFIG_NO_HZ, we should revisit this. One way
Rusty Russellf56a3842007-07-26 10:41:05 -0700223 * would be to put the "irq_enabled" field in a page by itself, and have the
224 * Host write-protect it when an interrupt comes in when irqs are disabled.
Rusty Russella6bd8e12008-03-28 11:05:53 -0500225 * There will then be a page fault as soon as interrupts are re-enabled.
226 *
227 * A better method is to implement soft interrupt disable generally for x86:
228 * instead of disabling interrupts, we set a flag. If an interrupt does come
229 * in, we then disable them for real. This is uncommon, so we could simply use
230 * a hypercall for interrupt control and not worry about efficiency. :*/
Rusty Russell07ad1572007-07-19 01:49:22 -0700231
Rusty Russellb2b47c22007-07-26 10:41:02 -0700232/*G:034
233 * The Interrupt Descriptor Table (IDT).
234 *
235 * The IDT tells the processor what to do when an interrupt comes in. Each
236 * entry in the table is a 64-bit descriptor: this holds the privilege level,
237 * address of the handler, and... well, who cares? The Guest just asks the
238 * Host to make the change anyway, because the Host controls the real IDT.
239 */
Glauber de Oliveira Costa8d947342008-01-30 13:31:12 +0100240static void lguest_write_idt_entry(gate_desc *dt,
241 int entrynum, const gate_desc *g)
Rusty Russell07ad1572007-07-19 01:49:22 -0700242{
Rusty Russella6bd8e12008-03-28 11:05:53 -0500243 /* The gate_desc structure is 8 bytes long: we hand it to the Host in
244 * two 32-bit chunks. The whole 32-bit kernel used to hand descriptors
245 * around like this; typesafety wasn't a big concern in Linux's early
246 * years. */
Glauber de Oliveira Costa8d947342008-01-30 13:31:12 +0100247 u32 *desc = (u32 *)g;
Rusty Russellb2b47c22007-07-26 10:41:02 -0700248 /* Keep the local copy up to date. */
Glauber de Oliveira Costa8d947342008-01-30 13:31:12 +0100249 native_write_idt_entry(dt, entrynum, g);
Rusty Russellb2b47c22007-07-26 10:41:02 -0700250 /* Tell Host about this new entry. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200251 kvm_hypercall3(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1]);
Rusty Russell07ad1572007-07-19 01:49:22 -0700252}
253
Rusty Russellb2b47c22007-07-26 10:41:02 -0700254/* Changing to a different IDT is very rare: we keep the IDT up-to-date every
255 * time it is written, so we can simply loop through all entries and tell the
256 * Host about them. */
Glauber de Oliveira Costa6b68f012008-01-30 13:31:12 +0100257static void lguest_load_idt(const struct desc_ptr *desc)
Rusty Russell07ad1572007-07-19 01:49:22 -0700258{
259 unsigned int i;
260 struct desc_struct *idt = (void *)desc->address;
261
262 for (i = 0; i < (desc->size+1)/8; i++)
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200263 kvm_hypercall3(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b);
Rusty Russell07ad1572007-07-19 01:49:22 -0700264}
265
Rusty Russellb2b47c22007-07-26 10:41:02 -0700266/*
267 * The Global Descriptor Table.
268 *
269 * The Intel architecture defines another table, called the Global Descriptor
270 * Table (GDT). You tell the CPU where it is (and its size) using the "lgdt"
271 * instruction, and then several other instructions refer to entries in the
272 * table. There are three entries which the Switcher needs, so the Host simply
273 * controls the entire thing and the Guest asks it to make changes using the
274 * LOAD_GDT hypercall.
275 *
276 * This is the opposite of the IDT code where we have a LOAD_IDT_ENTRY
277 * hypercall and use that repeatedly to load a new IDT. I don't think it
Rusty Russella6bd8e12008-03-28 11:05:53 -0500278 * really matters, but wouldn't it be nice if they were the same? Wouldn't
279 * it be even better if you were the one to send the patch to fix it?
Rusty Russellb2b47c22007-07-26 10:41:02 -0700280 */
Glauber de Oliveira Costa6b68f012008-01-30 13:31:12 +0100281static void lguest_load_gdt(const struct desc_ptr *desc)
Rusty Russell07ad1572007-07-19 01:49:22 -0700282{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200283 BUG_ON((desc->size + 1) / 8 != GDT_ENTRIES);
284 kvm_hypercall2(LHCALL_LOAD_GDT, __pa(desc->address), GDT_ENTRIES);
Rusty Russell07ad1572007-07-19 01:49:22 -0700285}
286
Rusty Russellb2b47c22007-07-26 10:41:02 -0700287/* For a single GDT entry which changes, we do the lazy thing: alter our GDT,
288 * then tell the Host to reload the entire thing. This operation is so rare
289 * that this naive implementation is reasonable. */
Glauber de Oliveira Costa014b15b2008-01-30 13:31:13 +0100290static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
291 const void *desc, int type)
Rusty Russell07ad1572007-07-19 01:49:22 -0700292{
Glauber de Oliveira Costa014b15b2008-01-30 13:31:13 +0100293 native_write_gdt_entry(dt, entrynum, desc, type);
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200294 kvm_hypercall2(LHCALL_LOAD_GDT, __pa(dt), GDT_ENTRIES);
Rusty Russell07ad1572007-07-19 01:49:22 -0700295}
296
Rusty Russellb2b47c22007-07-26 10:41:02 -0700297/* OK, I lied. There are three "thread local storage" GDT entries which change
298 * on every context switch (these three entries are how glibc implements
299 * __thread variables). So we have a hypercall specifically for this case. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700300static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
301{
Rusty Russell0d027c02007-08-09 20:57:13 +1000302 /* There's one problem which normal hardware doesn't have: the Host
303 * can't handle us removing entries we're currently using. So we clear
304 * the GS register here: if it's needed it'll be reloaded anyway. */
Tejun Heoccbeed32009-02-09 22:17:40 +0900305 lazy_load_gs(0);
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200306 lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
Rusty Russell07ad1572007-07-19 01:49:22 -0700307}
308
Rusty Russellb2b47c22007-07-26 10:41:02 -0700309/*G:038 That's enough excitement for now, back to ploughing through each of
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -0700310 * the different pv_ops structures (we're about 1/3 of the way through).
Rusty Russellb2b47c22007-07-26 10:41:02 -0700311 *
312 * This is the Local Descriptor Table, another weird Intel thingy. Linux only
313 * uses this for some strange applications like Wine. We don't do anything
314 * here, so they'll get an informative and friendly Segmentation Fault. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700315static void lguest_set_ldt(const void *addr, unsigned entries)
316{
317}
318
Rusty Russellb2b47c22007-07-26 10:41:02 -0700319/* This loads a GDT entry into the "Task Register": that entry points to a
320 * structure called the Task State Segment. Some comments scattered though the
321 * kernel code indicate that this used for task switching in ages past, along
322 * with blood sacrifice and astrology.
323 *
324 * Now there's nothing interesting in here that we don't get told elsewhere.
325 * But the native version uses the "ltr" instruction, which makes the Host
326 * complain to the Guest about a Segmentation Fault and it'll oops. So we
327 * override the native version with a do-nothing version. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700328static void lguest_load_tr_desc(void)
329{
330}
331
Rusty Russellb2b47c22007-07-26 10:41:02 -0700332/* The "cpuid" instruction is a way of querying both the CPU identity
333 * (manufacturer, model, etc) and its features. It was introduced before the
Rusty Russella6bd8e12008-03-28 11:05:53 -0500334 * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
335 * As you might imagine, after a decade and a half this treatment, it is now a
336 * giant ball of hair. Its entry in the current Intel manual runs to 28 pages.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700337 *
338 * This instruction even it has its own Wikipedia entry. The Wikipedia entry
339 * has been translated into 4 languages. I am not making this up!
340 *
341 * We could get funky here and identify ourselves as "GenuineLguest", but
342 * instead we just use the real "cpuid" instruction. Then I pretty much turned
343 * off feature bits until the Guest booted. (Don't say that: you'll damage
344 * lguest sales!) Shut up, inner voice! (Hey, just pointing out that this is
345 * hardly future proof.) Noone's listening! They don't like you anyway,
346 * parenthetic weirdo!
347 *
348 * Replacing the cpuid so we can turn features off is great for the kernel, but
349 * anyone (including userspace) can just use the raw "cpuid" instruction and
350 * the Host won't even notice since it isn't privileged. So we try not to get
351 * too worked up about it. */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100352static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
353 unsigned int *cx, unsigned int *dx)
Rusty Russell07ad1572007-07-19 01:49:22 -0700354{
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100355 int function = *ax;
Rusty Russell07ad1572007-07-19 01:49:22 -0700356
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100357 native_cpuid(ax, bx, cx, dx);
Rusty Russell07ad1572007-07-19 01:49:22 -0700358 switch (function) {
359 case 1: /* Basic feature request. */
360 /* We only allow kernel to see SSE3, CMPXCHG16B and SSSE3 */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100361 *cx &= 0x00002201;
Rusty Russell3fabc552008-03-11 09:35:56 -0500362 /* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU. */
363 *dx &= 0x07808111;
Rusty Russellb2b47c22007-07-26 10:41:02 -0700364 /* The Host can do a nice optimization if it knows that the
365 * kernel mappings (addresses above 0xC0000000 or whatever
366 * PAGE_OFFSET is set to) haven't changed. But Linux calls
367 * flush_tlb_user() for both user and kernel mappings unless
368 * the Page Global Enable (PGE) feature bit is set. */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100369 *dx |= 0x00002000;
Rusty Russellcbd88c82009-03-09 10:06:22 -0600370 /* We also lie, and say we're family id 5. 6 or greater
371 * leads to a rdmsr in early_init_intel which we can't handle.
372 * Family ID is returned as bits 8-12 in ax. */
373 *ax &= 0xFFFFF0FF;
374 *ax |= 0x00000500;
Rusty Russell07ad1572007-07-19 01:49:22 -0700375 break;
376 case 0x80000000:
377 /* Futureproof this a little: if they ask how much extended
Rusty Russellb2b47c22007-07-26 10:41:02 -0700378 * processor information there is, limit it to known fields. */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100379 if (*ax > 0x80000008)
380 *ax = 0x80000008;
Rusty Russell07ad1572007-07-19 01:49:22 -0700381 break;
382 }
383}
384
Rusty Russellb2b47c22007-07-26 10:41:02 -0700385/* Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
386 * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
387 * it. The Host needs to know when the Guest wants to change them, so we have
388 * a whole series of functions like read_cr0() and write_cr0().
389 *
Rusty Russelle1e72962007-10-25 15:02:50 +1000390 * We start with cr0. cr0 allows you to turn on and off all kinds of basic
Rusty Russellb2b47c22007-07-26 10:41:02 -0700391 * features, but Linux only really cares about one: the horrifically-named Task
392 * Switched (TS) bit at bit 3 (ie. 8)
393 *
394 * What does the TS bit do? Well, it causes the CPU to trap (interrupt 7) if
395 * the floating point unit is used. Which allows us to restore FPU state
396 * lazily after a task switch, and Linux uses that gratefully, but wouldn't a
397 * name like "FPUTRAP bit" be a little less cryptic?
398 *
Rusty Russellad5173f2008-10-31 11:24:27 -0500399 * We store cr0 locally because the Host never changes it. The Guest sometimes
400 * wants to read it and we'd prefer not to bother the Host unnecessarily. */
401static unsigned long current_cr0;
Rusty Russell07ad1572007-07-19 01:49:22 -0700402static void lguest_write_cr0(unsigned long val)
403{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200404 lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
Rusty Russell07ad1572007-07-19 01:49:22 -0700405 current_cr0 = val;
406}
407
408static unsigned long lguest_read_cr0(void)
409{
410 return current_cr0;
411}
412
Rusty Russellb2b47c22007-07-26 10:41:02 -0700413/* Intel provided a special instruction to clear the TS bit for people too cool
414 * to use write_cr0() to do it. This "clts" instruction is faster, because all
415 * the vowels have been optimized out. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700416static void lguest_clts(void)
417{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200418 lazy_hcall1(LHCALL_TS, 0);
Rusty Russell25c47bb2007-10-25 14:09:53 +1000419 current_cr0 &= ~X86_CR0_TS;
Rusty Russell07ad1572007-07-19 01:49:22 -0700420}
421
Rusty Russelle1e72962007-10-25 15:02:50 +1000422/* cr2 is the virtual address of the last page fault, which the Guest only ever
Rusty Russellb2b47c22007-07-26 10:41:02 -0700423 * reads. The Host kindly writes this into our "struct lguest_data", so we
424 * just read it out of there. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700425static unsigned long lguest_read_cr2(void)
426{
427 return lguest_data.cr2;
428}
429
Rusty Russellad5173f2008-10-31 11:24:27 -0500430/* See lguest_set_pte() below. */
431static bool cr3_changed = false;
432
Rusty Russelle1e72962007-10-25 15:02:50 +1000433/* cr3 is the current toplevel pagetable page: the principle is the same as
Rusty Russellad5173f2008-10-31 11:24:27 -0500434 * cr0. Keep a local copy, and tell the Host when it changes. The only
435 * difference is that our local copy is in lguest_data because the Host needs
436 * to set it upon our initial hypercall. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700437static void lguest_write_cr3(unsigned long cr3)
438{
Rusty Russellad5173f2008-10-31 11:24:27 -0500439 lguest_data.pgdir = cr3;
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200440 lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
Rusty Russellad5173f2008-10-31 11:24:27 -0500441 cr3_changed = true;
Rusty Russell07ad1572007-07-19 01:49:22 -0700442}
443
444static unsigned long lguest_read_cr3(void)
445{
Rusty Russellad5173f2008-10-31 11:24:27 -0500446 return lguest_data.pgdir;
Rusty Russell07ad1572007-07-19 01:49:22 -0700447}
448
Rusty Russelle1e72962007-10-25 15:02:50 +1000449/* cr4 is used to enable and disable PGE, but we don't care. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700450static unsigned long lguest_read_cr4(void)
451{
452 return 0;
453}
454
455static void lguest_write_cr4(unsigned long val)
456{
457}
458
Rusty Russellb2b47c22007-07-26 10:41:02 -0700459/*
460 * Page Table Handling.
461 *
462 * Now would be a good time to take a rest and grab a coffee or similarly
463 * relaxing stimulant. The easy parts are behind us, and the trek gradually
464 * winds uphill from here.
465 *
466 * Quick refresher: memory is divided into "pages" of 4096 bytes each. The CPU
467 * maps virtual addresses to physical addresses using "page tables". We could
468 * use one huge index of 1 million entries: each address is 4 bytes, so that's
469 * 1024 pages just to hold the page tables. But since most virtual addresses
Rusty Russelle1e72962007-10-25 15:02:50 +1000470 * are unused, we use a two level index which saves space. The cr3 register
Rusty Russellb2b47c22007-07-26 10:41:02 -0700471 * contains the physical address of the top level "page directory" page, which
472 * contains physical addresses of up to 1024 second-level pages. Each of these
473 * second level pages contains up to 1024 physical addresses of actual pages,
474 * or Page Table Entries (PTEs).
475 *
476 * Here's a diagram, where arrows indicate physical addresses:
477 *
Rusty Russelle1e72962007-10-25 15:02:50 +1000478 * cr3 ---> +---------+
Rusty Russellb2b47c22007-07-26 10:41:02 -0700479 * | --------->+---------+
480 * | | | PADDR1 |
481 * Top-level | | PADDR2 |
482 * (PMD) page | | |
483 * | | Lower-level |
484 * | | (PTE) page |
485 * | | | |
486 * .... ....
487 *
488 * So to convert a virtual address to a physical address, we look up the top
489 * level, which points us to the second level, which gives us the physical
490 * address of that page. If the top level entry was not present, or the second
491 * level entry was not present, then the virtual address is invalid (we
492 * say "the page was not mapped").
493 *
494 * Put another way, a 32-bit virtual address is divided up like so:
495 *
496 * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
497 * |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
498 * Index into top Index into second Offset within page
499 * page directory page pagetable page
500 *
501 * The kernel spends a lot of time changing both the top-level page directory
502 * and lower-level pagetable pages. The Guest doesn't know physical addresses,
503 * so while it maintains these page tables exactly like normal, it also needs
504 * to keep the Host informed whenever it makes a change: the Host will create
505 * the real page tables based on the Guests'.
506 */
507
508/* The Guest calls this to set a second-level entry (pte), ie. to map a page
509 * into a process' address space. We set the entry then tell the Host the
510 * toplevel and address this corresponds to. The Guest uses one pagetable per
511 * process, so we need to tell the Host which one we're changing (mm->pgd). */
Rusty Russellb7ff99e2009-03-30 21:55:23 -0600512static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
513 pte_t *ptep)
514{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200515 lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
Rusty Russellb7ff99e2009-03-30 21:55:23 -0600516}
517
Rusty Russell07ad1572007-07-19 01:49:22 -0700518static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
519 pte_t *ptep, pte_t pteval)
520{
521 *ptep = pteval;
Rusty Russellb7ff99e2009-03-30 21:55:23 -0600522 lguest_pte_update(mm, addr, ptep);
Rusty Russell07ad1572007-07-19 01:49:22 -0700523}
524
Rusty Russellb2b47c22007-07-26 10:41:02 -0700525/* The Guest calls this to set a top-level entry. Again, we set the entry then
526 * tell the Host which top-level page we changed, and the index of the entry we
527 * changed. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700528static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
529{
530 *pmdp = pmdval;
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200531 lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
532 (__pa(pmdp) & (PAGE_SIZE - 1)) / 4);
Rusty Russell07ad1572007-07-19 01:49:22 -0700533}
534
Rusty Russellb2b47c22007-07-26 10:41:02 -0700535/* There are a couple of legacy places where the kernel sets a PTE, but we
536 * don't know the top level any more. This is useless for us, since we don't
537 * know which pagetable is changing or what address, so we just tell the Host
538 * to forget all of them. Fortunately, this is very rare.
539 *
540 * ... except in early boot when the kernel sets up the initial pagetables,
Rusty Russellad5173f2008-10-31 11:24:27 -0500541 * which makes booting astonishingly slow: 1.83 seconds! So we don't even tell
542 * the Host anything changed until we've done the first page table switch,
543 * which brings boot back to 0.25 seconds. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700544static void lguest_set_pte(pte_t *ptep, pte_t pteval)
545{
546 *ptep = pteval;
Rusty Russellad5173f2008-10-31 11:24:27 -0500547 if (cr3_changed)
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200548 lazy_hcall1(LHCALL_FLUSH_TLB, 1);
Rusty Russell07ad1572007-07-19 01:49:22 -0700549}
550
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -0700551/* Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
Rusty Russellb2b47c22007-07-26 10:41:02 -0700552 * native page table operations. On native hardware you can set a new page
553 * table entry whenever you want, but if you want to remove one you have to do
554 * a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
555 *
556 * So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
557 * called when a valid entry is written, not when it's removed (ie. marked not
558 * present). Instead, this is where we come when the Guest wants to remove a
559 * page table entry: we tell the Host to set that entry to 0 (ie. the present
560 * bit is zero). */
Rusty Russell07ad1572007-07-19 01:49:22 -0700561static void lguest_flush_tlb_single(unsigned long addr)
562{
Rusty Russellb2b47c22007-07-26 10:41:02 -0700563 /* Simply set it to zero: if it was not, it will fault back in. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200564 lazy_hcall3(LHCALL_SET_PTE, lguest_data.pgdir, addr, 0);
Rusty Russell07ad1572007-07-19 01:49:22 -0700565}
566
Rusty Russellb2b47c22007-07-26 10:41:02 -0700567/* This is what happens after the Guest has removed a large number of entries.
568 * This tells the Host that any of the page table entries for userspace might
569 * have changed, ie. virtual addresses below PAGE_OFFSET. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700570static void lguest_flush_tlb_user(void)
571{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200572 lazy_hcall1(LHCALL_FLUSH_TLB, 0);
Rusty Russell07ad1572007-07-19 01:49:22 -0700573}
574
Rusty Russellb2b47c22007-07-26 10:41:02 -0700575/* This is called when the kernel page tables have changed. That's not very
576 * common (unless the Guest is using highmem, which makes the Guest extremely
577 * slow), so it's worth separating this from the user flushing above. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700578static void lguest_flush_tlb_kernel(void)
579{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200580 lazy_hcall1(LHCALL_FLUSH_TLB, 1);
Rusty Russell07ad1572007-07-19 01:49:22 -0700581}
582
Rusty Russellb2b47c22007-07-26 10:41:02 -0700583/*
584 * The Unadvanced Programmable Interrupt Controller.
585 *
586 * This is an attempt to implement the simplest possible interrupt controller.
587 * I spent some time looking though routines like set_irq_chip_and_handler,
588 * set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
589 * I *think* this is as simple as it gets.
590 *
591 * We can tell the Host what interrupts we want blocked ready for using the
592 * lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
593 * simple as setting a bit. We don't actually "ack" interrupts as such, we
594 * just mask and unmask them. I wonder if we should be cleverer?
595 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700596static void disable_lguest_irq(unsigned int irq)
597{
598 set_bit(irq, lguest_data.blocked_interrupts);
599}
600
601static void enable_lguest_irq(unsigned int irq)
602{
603 clear_bit(irq, lguest_data.blocked_interrupts);
Rusty Russell07ad1572007-07-19 01:49:22 -0700604}
605
Rusty Russellb2b47c22007-07-26 10:41:02 -0700606/* This structure describes the lguest IRQ controller. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700607static struct irq_chip lguest_irq_controller = {
608 .name = "lguest",
609 .mask = disable_lguest_irq,
610 .mask_ack = disable_lguest_irq,
611 .unmask = enable_lguest_irq,
612};
613
Rusty Russellb2b47c22007-07-26 10:41:02 -0700614/* This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
615 * interrupt (except 128, which is used for system calls), and then tells the
616 * Linux infrastructure that each interrupt is controlled by our level-based
617 * lguest interrupt controller. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700618static void __init lguest_init_IRQ(void)
619{
620 unsigned int i;
621
622 for (i = 0; i < LGUEST_IRQS; i++) {
623 int vector = FIRST_EXTERNAL_VECTOR + i;
Rusty Russell526e5ab2008-10-31 11:24:27 -0500624 /* Some systems map "vectors" to interrupts weirdly. Lguest has
625 * a straightforward 1 to 1 mapping, so force that here. */
626 __get_cpu_var(vector_irq)[vector] = i;
Rusty Russell6db6a5f2009-03-09 10:06:28 -0600627 if (vector != SYSCALL_VECTOR)
628 set_intr_gate(vector, interrupt[i]);
Rusty Russell07ad1572007-07-19 01:49:22 -0700629 }
Rusty Russellb2b47c22007-07-26 10:41:02 -0700630 /* This call is required to set up for 4k stacks, where we have
631 * separate stacks for hard and soft interrupts. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700632 irq_ctx_init(smp_processor_id());
633}
634
Rusty Russell6db6a5f2009-03-09 10:06:28 -0600635void lguest_setup_irq(unsigned int irq)
636{
637 irq_to_desc_alloc_cpu(irq, 0);
638 set_irq_chip_and_handler_name(irq, &lguest_irq_controller,
639 handle_level_irq, "level");
640}
641
Rusty Russellb2b47c22007-07-26 10:41:02 -0700642/*
643 * Time.
644 *
645 * It would be far better for everyone if the Guest had its own clock, but
Rusty Russell6c8dca52007-07-27 13:42:52 +1000646 * until then the Host gives us the time on every interrupt.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700647 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700648static unsigned long lguest_get_wallclock(void)
649{
Rusty Russell6c8dca52007-07-27 13:42:52 +1000650 return lguest_data.time.tv_sec;
Rusty Russell07ad1572007-07-19 01:49:22 -0700651}
652
Rusty Russella6bd8e12008-03-28 11:05:53 -0500653/* The TSC is an Intel thing called the Time Stamp Counter. The Host tells us
654 * what speed it runs at, or 0 if it's unusable as a reliable clock source.
655 * This matches what we want here: if we return 0 from this function, the x86
656 * TSC clock will give up and not register itself. */
Alok Katariae93ef942008-07-01 11:43:36 -0700657static unsigned long lguest_tsc_khz(void)
Rusty Russell3fabc552008-03-11 09:35:56 -0500658{
659 return lguest_data.tsc_khz;
660}
661
Rusty Russella6bd8e12008-03-28 11:05:53 -0500662/* If we can't use the TSC, the kernel falls back to our lower-priority
663 * "lguest_clock", where we read the time value given to us by the Host. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700664static cycle_t lguest_clock_read(void)
Rusty Russell07ad1572007-07-19 01:49:22 -0700665{
Rusty Russell6c8dca52007-07-27 13:42:52 +1000666 unsigned long sec, nsec;
667
Rusty Russell3fabc552008-03-11 09:35:56 -0500668 /* Since the time is in two parts (seconds and nanoseconds), we risk
669 * reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
670 * and getting 99 and 0. As Linux tends to come apart under the stress
671 * of time travel, we must be careful: */
Rusty Russell6c8dca52007-07-27 13:42:52 +1000672 do {
673 /* First we read the seconds part. */
674 sec = lguest_data.time.tv_sec;
675 /* This read memory barrier tells the compiler and the CPU that
676 * this can't be reordered: we have to complete the above
677 * before going on. */
678 rmb();
679 /* Now we read the nanoseconds part. */
680 nsec = lguest_data.time.tv_nsec;
681 /* Make sure we've done that. */
682 rmb();
683 /* Now if the seconds part has changed, try again. */
684 } while (unlikely(lguest_data.time.tv_sec != sec));
685
Rusty Russell3fabc552008-03-11 09:35:56 -0500686 /* Our lguest clock is in real nanoseconds. */
Rusty Russell6c8dca52007-07-27 13:42:52 +1000687 return sec*1000000000ULL + nsec;
Rusty Russell07ad1572007-07-19 01:49:22 -0700688}
689
Rusty Russell3fabc552008-03-11 09:35:56 -0500690/* This is the fallback clocksource: lower priority than the TSC clocksource. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700691static struct clocksource lguest_clock = {
692 .name = "lguest",
Rusty Russell3fabc552008-03-11 09:35:56 -0500693 .rating = 200,
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700694 .read = lguest_clock_read,
Rusty Russell6c8dca52007-07-27 13:42:52 +1000695 .mask = CLOCKSOURCE_MASK(64),
Rusty Russell37250092007-08-09 20:52:35 +1000696 .mult = 1 << 22,
697 .shift = 22,
Tony Breeds05aa0262007-10-22 10:56:25 +1000698 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700699};
700
701/* We also need a "struct clock_event_device": Linux asks us to set it to go
702 * off some time in the future. Actually, James Morris figured all this out, I
703 * just applied the patch. */
704static int lguest_clockevent_set_next_event(unsigned long delta,
705 struct clock_event_device *evt)
706{
Rusty Russella6bd8e12008-03-28 11:05:53 -0500707 /* FIXME: I don't think this can ever happen, but James tells me he had
708 * to put this code in. Maybe we should remove it now. Anyone? */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700709 if (delta < LG_CLOCK_MIN_DELTA) {
710 if (printk_ratelimit())
711 printk(KERN_DEBUG "%s: small delta %lu ns\n",
Harvey Harrison77bf90e2008-03-03 11:37:23 -0800712 __func__, delta);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700713 return -ETIME;
714 }
Rusty Russella6bd8e12008-03-28 11:05:53 -0500715
716 /* Please wake us this far in the future. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200717 kvm_hypercall1(LHCALL_SET_CLOCKEVENT, delta);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700718 return 0;
719}
720
721static void lguest_clockevent_set_mode(enum clock_event_mode mode,
722 struct clock_event_device *evt)
723{
724 switch (mode) {
725 case CLOCK_EVT_MODE_UNUSED:
726 case CLOCK_EVT_MODE_SHUTDOWN:
727 /* A 0 argument shuts the clock down. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200728 kvm_hypercall0(LHCALL_SET_CLOCKEVENT);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700729 break;
730 case CLOCK_EVT_MODE_ONESHOT:
731 /* This is what we expect. */
732 break;
733 case CLOCK_EVT_MODE_PERIODIC:
734 BUG();
Thomas Gleixner18de5bc2007-07-21 04:37:34 -0700735 case CLOCK_EVT_MODE_RESUME:
736 break;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700737 }
738}
739
740/* This describes our primitive timer chip. */
741static struct clock_event_device lguest_clockevent = {
742 .name = "lguest",
743 .features = CLOCK_EVT_FEAT_ONESHOT,
744 .set_next_event = lguest_clockevent_set_next_event,
745 .set_mode = lguest_clockevent_set_mode,
746 .rating = INT_MAX,
747 .mult = 1,
748 .shift = 0,
749 .min_delta_ns = LG_CLOCK_MIN_DELTA,
750 .max_delta_ns = LG_CLOCK_MAX_DELTA,
751};
752
753/* This is the Guest timer interrupt handler (hardware interrupt 0). We just
754 * call the clockevent infrastructure and it does whatever needs doing. */
755static void lguest_time_irq(unsigned int irq, struct irq_desc *desc)
756{
757 unsigned long flags;
758
759 /* Don't interrupt us while this is running. */
760 local_irq_save(flags);
761 lguest_clockevent.event_handler(&lguest_clockevent);
762 local_irq_restore(flags);
763}
764
Rusty Russellb2b47c22007-07-26 10:41:02 -0700765/* At some point in the boot process, we get asked to set up our timing
766 * infrastructure. The kernel doesn't expect timer interrupts before this, but
767 * we cleverly initialized the "blocked_interrupts" field of "struct
768 * lguest_data" so that timer interrupts were blocked until now. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700769static void lguest_time_init(void)
770{
Rusty Russellb2b47c22007-07-26 10:41:02 -0700771 /* Set up the timer interrupt (0) to go to our simple timer routine */
Rusty Russell07ad1572007-07-19 01:49:22 -0700772 set_irq_handler(0, lguest_time_irq);
Rusty Russell07ad1572007-07-19 01:49:22 -0700773
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700774 clocksource_register(&lguest_clock);
775
Rusty Russellb2b47c22007-07-26 10:41:02 -0700776 /* We can't set cpumask in the initializer: damn C limitations! Set it
777 * here and register our timer device. */
Rusty Russell320ab2b2008-12-13 21:20:26 +1030778 lguest_clockevent.cpumask = cpumask_of(0);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700779 clockevents_register_device(&lguest_clockevent);
780
Rusty Russellb2b47c22007-07-26 10:41:02 -0700781 /* Finally, we unblock the timer interrupt. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700782 enable_lguest_irq(0);
Rusty Russell07ad1572007-07-19 01:49:22 -0700783}
784
Rusty Russellb2b47c22007-07-26 10:41:02 -0700785/*
786 * Miscellaneous bits and pieces.
787 *
788 * Here is an oddball collection of functions which the Guest needs for things
789 * to work. They're pretty simple.
790 */
791
Rusty Russelle1e72962007-10-25 15:02:50 +1000792/* The Guest needs to tell the Host what stack it expects traps to use. For
Rusty Russellb2b47c22007-07-26 10:41:02 -0700793 * native hardware, this is part of the Task State Segment mentioned above in
794 * lguest_load_tr_desc(), but to help hypervisors there's this special call.
795 *
796 * We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
797 * segment), the privilege level (we're privilege level 1, the Host is 0 and
798 * will not tolerate us trying to use that), the stack pointer, and the number
799 * of pages in the stack. */
H. Peter Anvinfaca6222008-01-30 13:31:02 +0100800static void lguest_load_sp0(struct tss_struct *tss,
Rusty Russella6bd8e12008-03-28 11:05:53 -0500801 struct thread_struct *thread)
Rusty Russell07ad1572007-07-19 01:49:22 -0700802{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200803 lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
804 THREAD_SIZE / PAGE_SIZE);
Rusty Russell07ad1572007-07-19 01:49:22 -0700805}
806
Rusty Russellb2b47c22007-07-26 10:41:02 -0700807/* Let's just say, I wouldn't do debugging under a Guest. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700808static void lguest_set_debugreg(int regno, unsigned long value)
809{
810 /* FIXME: Implement */
811}
812
Rusty Russellb2b47c22007-07-26 10:41:02 -0700813/* There are times when the kernel wants to make sure that no memory writes are
814 * caught in the cache (that they've all reached real hardware devices). This
815 * doesn't matter for the Guest which has virtual hardware.
816 *
817 * On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
818 * (clflush) instruction is available and the kernel uses that. Otherwise, it
819 * uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
820 * Unlike clflush, wbinvd can only be run at privilege level 0. So we can
821 * ignore clflush, but replace wbinvd.
822 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700823static void lguest_wbinvd(void)
824{
825}
826
Rusty Russellb2b47c22007-07-26 10:41:02 -0700827/* If the Guest expects to have an Advanced Programmable Interrupt Controller,
828 * we play dumb by ignoring writes and returning 0 for reads. So it's no
829 * longer Programmable nor Controlling anything, and I don't think 8 lines of
830 * code qualifies for Advanced. It will also never interrupt anything. It
831 * does, however, allow us to get through the Linux boot code. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700832#ifdef CONFIG_X86_LOCAL_APIC
Suresh Siddhaad66dd32008-07-11 13:11:56 -0700833static void lguest_apic_write(u32 reg, u32 v)
Rusty Russell07ad1572007-07-19 01:49:22 -0700834{
835}
836
Suresh Siddhaad66dd32008-07-11 13:11:56 -0700837static u32 lguest_apic_read(u32 reg)
Rusty Russell07ad1572007-07-19 01:49:22 -0700838{
839 return 0;
840}
Suresh Siddha511d9d32008-07-14 09:49:14 -0700841
842static u64 lguest_apic_icr_read(void)
843{
844 return 0;
845}
846
847static void lguest_apic_icr_write(u32 low, u32 id)
848{
849 /* Warn to see if there's any stray references */
850 WARN_ON(1);
851}
852
853static void lguest_apic_wait_icr_idle(void)
854{
855 return;
856}
857
858static u32 lguest_apic_safe_wait_icr_idle(void)
859{
860 return 0;
861}
862
Yinghai Luc1eeb2d2009-02-16 23:02:14 -0800863static void set_lguest_basic_apic_ops(void)
864{
865 apic->read = lguest_apic_read;
866 apic->write = lguest_apic_write;
867 apic->icr_read = lguest_apic_icr_read;
868 apic->icr_write = lguest_apic_icr_write;
869 apic->wait_icr_idle = lguest_apic_wait_icr_idle;
870 apic->safe_wait_icr_idle = lguest_apic_safe_wait_icr_idle;
Suresh Siddha511d9d32008-07-14 09:49:14 -0700871};
Rusty Russell07ad1572007-07-19 01:49:22 -0700872#endif
873
Rusty Russellb2b47c22007-07-26 10:41:02 -0700874/* STOP! Until an interrupt comes in. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700875static void lguest_safe_halt(void)
876{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200877 kvm_hypercall0(LHCALL_HALT);
Rusty Russell07ad1572007-07-19 01:49:22 -0700878}
879
Rusty Russella6bd8e12008-03-28 11:05:53 -0500880/* The SHUTDOWN hypercall takes a string to describe what's happening, and
881 * an argument which says whether this to restart (reboot) the Guest or not.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700882 *
883 * Note that the Host always prefers that the Guest speak in physical addresses
884 * rather than virtual addresses, so we use __pa() here. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700885static void lguest_power_off(void)
886{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200887 kvm_hypercall2(LHCALL_SHUTDOWN, __pa("Power down"),
888 LGUEST_SHUTDOWN_POWEROFF);
Rusty Russell07ad1572007-07-19 01:49:22 -0700889}
890
Rusty Russellb2b47c22007-07-26 10:41:02 -0700891/*
892 * Panicing.
893 *
894 * Don't. But if you did, this is what happens.
895 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700896static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
897{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200898 kvm_hypercall2(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF);
Rusty Russellb2b47c22007-07-26 10:41:02 -0700899 /* The hcall won't return, but to keep gcc happy, we're "done". */
Rusty Russell07ad1572007-07-19 01:49:22 -0700900 return NOTIFY_DONE;
901}
902
903static struct notifier_block paniced = {
904 .notifier_call = lguest_panic
905};
906
Rusty Russellb2b47c22007-07-26 10:41:02 -0700907/* Setting up memory is fairly easy. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700908static __init char *lguest_memory_setup(void)
909{
Rusty Russella6bd8e12008-03-28 11:05:53 -0500910 /* We do this here and not earlier because lockcheck used to barf if we
911 * did it before start_kernel(). I think we fixed that, so it'd be
912 * nice to move it back to lguest_init. Patch welcome... */
Rusty Russell07ad1572007-07-19 01:49:22 -0700913 atomic_notifier_chain_register(&panic_notifier_list, &paniced);
914
Rusty Russellb2b47c22007-07-26 10:41:02 -0700915 /* The Linux bootloader header contains an "e820" memory map: the
916 * Launcher populated the first entry with our memory limit. */
Yinghai Lud0be6bd2008-06-15 18:58:51 -0700917 e820_add_region(boot_params.e820_map[0].addr,
H. Peter Anvin30c82642007-10-15 17:13:22 -0700918 boot_params.e820_map[0].size,
919 boot_params.e820_map[0].type);
Rusty Russellb2b47c22007-07-26 10:41:02 -0700920
921 /* This string is for the boot messages. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700922 return "LGUEST";
923}
924
Rusty Russelle1e72962007-10-25 15:02:50 +1000925/* We will eventually use the virtio console device to produce console output,
926 * but before that is set up we use LHCALL_NOTIFY on normal memory to produce
927 * console output. */
Rusty Russell19f15372007-10-22 11:24:21 +1000928static __init int early_put_chars(u32 vtermno, const char *buf, int count)
929{
930 char scratch[17];
931 unsigned int len = count;
932
Rusty Russelle1e72962007-10-25 15:02:50 +1000933 /* We use a nul-terminated string, so we have to make a copy. Icky,
934 * huh? */
Rusty Russell19f15372007-10-22 11:24:21 +1000935 if (len > sizeof(scratch) - 1)
936 len = sizeof(scratch) - 1;
937 scratch[len] = '\0';
938 memcpy(scratch, buf, len);
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200939 kvm_hypercall1(LHCALL_NOTIFY, __pa(scratch));
Rusty Russell19f15372007-10-22 11:24:21 +1000940
941 /* This routine returns the number of bytes actually written. */
942 return len;
943}
944
Rusty Russella6bd8e12008-03-28 11:05:53 -0500945/* Rebooting also tells the Host we're finished, but the RESTART flag tells the
946 * Launcher to reboot us. */
947static void lguest_restart(char *reason)
948{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200949 kvm_hypercall2(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART);
Rusty Russella6bd8e12008-03-28 11:05:53 -0500950}
951
Rusty Russellb2b47c22007-07-26 10:41:02 -0700952/*G:050
953 * Patching (Powerfully Placating Performance Pedants)
954 *
Rusty Russella6bd8e12008-03-28 11:05:53 -0500955 * We have already seen that pv_ops structures let us replace simple native
956 * instructions with calls to the appropriate back end all throughout the
957 * kernel. This allows the same kernel to run as a Guest and as a native
Rusty Russellb2b47c22007-07-26 10:41:02 -0700958 * kernel, but it's slow because of all the indirect branches.
959 *
960 * Remember that David Wheeler quote about "Any problem in computer science can
961 * be solved with another layer of indirection"? The rest of that quote is
962 * "... But that usually will create another problem." This is the first of
963 * those problems.
964 *
965 * Our current solution is to allow the paravirt back end to optionally patch
966 * over the indirect calls to replace them with something more efficient. We
967 * patch the four most commonly called functions: disable interrupts, enable
Rusty Russelle1e72962007-10-25 15:02:50 +1000968 * interrupts, restore interrupts and save interrupts. We usually have 6 or 10
Rusty Russellb2b47c22007-07-26 10:41:02 -0700969 * bytes to patch into: the Guest versions of these operations are small enough
970 * that we can fit comfortably.
971 *
972 * First we need assembly templates of each of the patchable Guest operations,
Atsushi SAKAI72410af2009-01-16 20:39:14 +0900973 * and these are in i386_head.S. */
Rusty Russellb2b47c22007-07-26 10:41:02 -0700974
975/*G:060 We construct a table from the assembler templates: */
Rusty Russell07ad1572007-07-19 01:49:22 -0700976static const struct lguest_insns
977{
978 const char *start, *end;
979} lguest_insns[] = {
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -0700980 [PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
981 [PARAVIRT_PATCH(pv_irq_ops.irq_enable)] = { lgstart_sti, lgend_sti },
982 [PARAVIRT_PATCH(pv_irq_ops.restore_fl)] = { lgstart_popf, lgend_popf },
983 [PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
Rusty Russell07ad1572007-07-19 01:49:22 -0700984};
Rusty Russellb2b47c22007-07-26 10:41:02 -0700985
986/* Now our patch routine is fairly simple (based on the native one in
987 * paravirt.c). If we have a replacement, we copy it in and return how much of
988 * the available space we used. */
Andi Kleenab144f52007-08-10 22:31:03 +0200989static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
990 unsigned long addr, unsigned len)
Rusty Russell07ad1572007-07-19 01:49:22 -0700991{
992 unsigned int insn_len;
993
Rusty Russellb2b47c22007-07-26 10:41:02 -0700994 /* Don't do anything special if we don't have a replacement */
Rusty Russell07ad1572007-07-19 01:49:22 -0700995 if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
Andi Kleenab144f52007-08-10 22:31:03 +0200996 return paravirt_patch_default(type, clobber, ibuf, addr, len);
Rusty Russell07ad1572007-07-19 01:49:22 -0700997
998 insn_len = lguest_insns[type].end - lguest_insns[type].start;
999
Rusty Russellb2b47c22007-07-26 10:41:02 -07001000 /* Similarly if we can't fit replacement (shouldn't happen, but let's
1001 * be thorough). */
Rusty Russell07ad1572007-07-19 01:49:22 -07001002 if (len < insn_len)
Andi Kleenab144f52007-08-10 22:31:03 +02001003 return paravirt_patch_default(type, clobber, ibuf, addr, len);
Rusty Russell07ad1572007-07-19 01:49:22 -07001004
Rusty Russellb2b47c22007-07-26 10:41:02 -07001005 /* Copy in our instructions. */
Andi Kleenab144f52007-08-10 22:31:03 +02001006 memcpy(ibuf, lguest_insns[type].start, insn_len);
Rusty Russell07ad1572007-07-19 01:49:22 -07001007 return insn_len;
1008}
1009
Rusty Russella6bd8e12008-03-28 11:05:53 -05001010/*G:030 Once we get to lguest_init(), we know we're a Guest. The various
1011 * pv_ops structures in the kernel provide points for (almost) every routine we
1012 * have to override to avoid privileged instructions. */
Rusty Russell814a0e52007-10-22 11:29:44 +10001013__init void lguest_init(void)
Rusty Russell07ad1572007-07-19 01:49:22 -07001014{
Rusty Russellb2b47c22007-07-26 10:41:02 -07001015 /* We're under lguest, paravirt is enabled, and we're running at
1016 * privilege level 1, not 0 as normal. */
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001017 pv_info.name = "lguest";
1018 pv_info.paravirt_enabled = 1;
1019 pv_info.kernel_rpl = 1;
Rusty Russell07ad1572007-07-19 01:49:22 -07001020
Rusty Russellb2b47c22007-07-26 10:41:02 -07001021 /* We set up all the lguest overrides for sensitive operations. These
1022 * are detailed with the operations themselves. */
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001023
1024 /* interrupt-related operations */
1025 pv_irq_ops.init_IRQ = lguest_init_IRQ;
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -08001026 pv_irq_ops.save_fl = PV_CALLEE_SAVE(save_fl);
1027 pv_irq_ops.restore_fl = PV_CALLEE_SAVE(restore_fl);
1028 pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable);
1029 pv_irq_ops.irq_enable = PV_CALLEE_SAVE(irq_enable);
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001030 pv_irq_ops.safe_halt = lguest_safe_halt;
1031
1032 /* init-time operations */
1033 pv_init_ops.memory_setup = lguest_memory_setup;
1034 pv_init_ops.patch = lguest_patch;
1035
1036 /* Intercepts of various cpu instructions */
1037 pv_cpu_ops.load_gdt = lguest_load_gdt;
1038 pv_cpu_ops.cpuid = lguest_cpuid;
1039 pv_cpu_ops.load_idt = lguest_load_idt;
1040 pv_cpu_ops.iret = lguest_iret;
H. Peter Anvinfaca6222008-01-30 13:31:02 +01001041 pv_cpu_ops.load_sp0 = lguest_load_sp0;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001042 pv_cpu_ops.load_tr_desc = lguest_load_tr_desc;
1043 pv_cpu_ops.set_ldt = lguest_set_ldt;
1044 pv_cpu_ops.load_tls = lguest_load_tls;
1045 pv_cpu_ops.set_debugreg = lguest_set_debugreg;
1046 pv_cpu_ops.clts = lguest_clts;
1047 pv_cpu_ops.read_cr0 = lguest_read_cr0;
1048 pv_cpu_ops.write_cr0 = lguest_write_cr0;
1049 pv_cpu_ops.read_cr4 = lguest_read_cr4;
1050 pv_cpu_ops.write_cr4 = lguest_write_cr4;
1051 pv_cpu_ops.write_gdt_entry = lguest_write_gdt_entry;
1052 pv_cpu_ops.write_idt_entry = lguest_write_idt_entry;
1053 pv_cpu_ops.wbinvd = lguest_wbinvd;
Jeremy Fitzhardinge8965c1c2007-10-16 11:51:29 -07001054 pv_cpu_ops.lazy_mode.enter = paravirt_enter_lazy_cpu;
1055 pv_cpu_ops.lazy_mode.leave = lguest_leave_lazy_mode;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001056
1057 /* pagetable management */
1058 pv_mmu_ops.write_cr3 = lguest_write_cr3;
1059 pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
1060 pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
1061 pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
1062 pv_mmu_ops.set_pte = lguest_set_pte;
1063 pv_mmu_ops.set_pte_at = lguest_set_pte_at;
1064 pv_mmu_ops.set_pmd = lguest_set_pmd;
1065 pv_mmu_ops.read_cr2 = lguest_read_cr2;
1066 pv_mmu_ops.read_cr3 = lguest_read_cr3;
Jeremy Fitzhardinge8965c1c2007-10-16 11:51:29 -07001067 pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
1068 pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mode;
Rusty Russellb7ff99e2009-03-30 21:55:23 -06001069 pv_mmu_ops.pte_update = lguest_pte_update;
1070 pv_mmu_ops.pte_update_defer = lguest_pte_update;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001071
Rusty Russell07ad1572007-07-19 01:49:22 -07001072#ifdef CONFIG_X86_LOCAL_APIC
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001073 /* apic read/write intercepts */
Yinghai Luc1eeb2d2009-02-16 23:02:14 -08001074 set_lguest_basic_apic_ops();
Rusty Russell07ad1572007-07-19 01:49:22 -07001075#endif
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001076
1077 /* time operations */
1078 pv_time_ops.get_wallclock = lguest_get_wallclock;
1079 pv_time_ops.time_init = lguest_time_init;
Alok Katariae93ef942008-07-01 11:43:36 -07001080 pv_time_ops.get_tsc_khz = lguest_tsc_khz;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001081
Rusty Russellb2b47c22007-07-26 10:41:02 -07001082 /* Now is a good time to look at the implementations of these functions
1083 * before returning to the rest of lguest_init(). */
Rusty Russell07ad1572007-07-19 01:49:22 -07001084
Rusty Russellb2b47c22007-07-26 10:41:02 -07001085 /*G:070 Now we've seen all the paravirt_ops, we return to
1086 * lguest_init() where the rest of the fairly chaotic boot setup
Rusty Russell47436aa2007-10-22 11:03:36 +10001087 * occurs. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001088
Rusty Russellb2b47c22007-07-26 10:41:02 -07001089 /* The native boot code sets up initial page tables immediately after
1090 * the kernel itself, and sets init_pg_tables_end so they're not
1091 * clobbered. The Launcher places our initial pagetables somewhere at
1092 * the top of our physical memory, so we don't need extra space: set
1093 * init_pg_tables_end to the end of the kernel. */
Yinghai Luf0d43102008-05-29 12:56:36 -07001094 init_pg_tables_start = __pa(pg0);
Rusty Russell07ad1572007-07-19 01:49:22 -07001095 init_pg_tables_end = __pa(pg0);
1096
Rusty Russell5d006d82008-07-29 09:58:29 -05001097 /* As described in head_32.S, we map the first 128M of memory. */
1098 max_pfn_mapped = (128*1024*1024) >> PAGE_SHIFT;
1099
Rusty Russellb2b47c22007-07-26 10:41:02 -07001100 /* Load the %fs segment register (the per-cpu segment register) with
1101 * the normal data segment to get through booting. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001102 asm volatile ("mov %0, %%fs" : : "r" (__KERNEL_DS) : "memory");
1103
Rusty Russella6bd8e12008-03-28 11:05:53 -05001104 /* The Host<->Guest Switcher lives at the top of our address space, and
1105 * the Host told us how big it is when we made LGUEST_INIT hypercall:
1106 * it put the answer in lguest_data.reserve_mem */
Rusty Russell07ad1572007-07-19 01:49:22 -07001107 reserve_top_address(lguest_data.reserve_mem);
1108
Rusty Russellb2b47c22007-07-26 10:41:02 -07001109 /* If we don't initialize the lock dependency checker now, it crashes
1110 * paravirt_disable_iospace. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001111 lockdep_init();
1112
Rusty Russellb2b47c22007-07-26 10:41:02 -07001113 /* The IDE code spends about 3 seconds probing for disks: if we reserve
1114 * all the I/O ports up front it can't get them and so doesn't probe.
1115 * Other device drivers are similar (but less severe). This cuts the
1116 * kernel boot time on my machine from 4.1 seconds to 0.45 seconds. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001117 paravirt_disable_iospace();
1118
Rusty Russellb2b47c22007-07-26 10:41:02 -07001119 /* This is messy CPU setup stuff which the native boot code does before
1120 * start_kernel, so we have to do, too: */
Rusty Russell07ad1572007-07-19 01:49:22 -07001121 cpu_detect(&new_cpu_data);
1122 /* head.S usually sets up the first capability word, so do it here. */
1123 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1124
1125 /* Math is always hard! */
1126 new_cpu_data.hard_math = 1;
1127
Rusty Russella6bd8e12008-03-28 11:05:53 -05001128 /* We don't have features. We have puppies! Puppies! */
Rusty Russell07ad1572007-07-19 01:49:22 -07001129#ifdef CONFIG_X86_MCE
1130 mce_disabled = 1;
1131#endif
Rusty Russell07ad1572007-07-19 01:49:22 -07001132#ifdef CONFIG_ACPI
1133 acpi_disabled = 1;
1134 acpi_ht = 0;
1135#endif
1136
Atsushi SAKAI72410af2009-01-16 20:39:14 +09001137 /* We set the preferred console to "hvc". This is the "hypervisor
Rusty Russellb2b47c22007-07-26 10:41:02 -07001138 * virtual console" driver written by the PowerPC people, which we also
1139 * adapted for lguest's use. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001140 add_preferred_console("hvc", 0, NULL);
1141
Rusty Russell19f15372007-10-22 11:24:21 +10001142 /* Register our very early console. */
1143 virtio_cons_early_init(early_put_chars);
1144
Rusty Russellb2b47c22007-07-26 10:41:02 -07001145 /* Last of all, we set the power management poweroff hook to point to
Rusty Russella6bd8e12008-03-28 11:05:53 -05001146 * the Guest routine to power off, and the reboot hook to our restart
1147 * routine. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001148 pm_power_off = lguest_power_off;
Balaji Raoec04b132007-12-28 14:26:24 +05301149 machine_ops.restart = lguest_restart;
Rusty Russella6bd8e12008-03-28 11:05:53 -05001150
Yinghai Luf0d43102008-05-29 12:56:36 -07001151 /* Now we're set up, call i386_start_kernel() in head32.c and we proceed
Rusty Russellb2b47c22007-07-26 10:41:02 -07001152 * to boot as normal. It never returns. */
Yinghai Luf0d43102008-05-29 12:56:36 -07001153 i386_start_kernel();
Rusty Russell07ad1572007-07-19 01:49:22 -07001154}
Rusty Russellb2b47c22007-07-26 10:41:02 -07001155/*
1156 * This marks the end of stage II of our journey, The Guest.
1157 *
Rusty Russelle1e72962007-10-25 15:02:50 +10001158 * It is now time for us to explore the layer of virtual drivers and complete
1159 * our understanding of the Guest in "make Drivers".
Rusty Russellb2b47c22007-07-26 10:41:02 -07001160 */