blob: c2d5907dc8e054edd6ecab18bdc954cfbfd1554b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * Big-endian support
12 * rx_copybreak/alignment
13 * Scatter gather
14 * More testing
15 *
16 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@redhat.com>
17 * Additional fixes and clean up: Francois Romieu
18 *
19 * This source has not been verified for use in safety critical systems.
20 *
21 * Please direct queries about the revamped driver to the linux-kernel
22 * list not VIA.
23 *
24 * Original code:
25 *
26 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
27 * All rights reserved.
28 *
29 * This software may be redistributed and/or modified under
30 * the terms of the GNU General Public License as published by the Free
31 * Software Foundation; either version 2 of the License, or
32 * any later version.
33 *
34 * This program is distributed in the hope that it will be useful, but
35 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
36 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
37 * for more details.
38 *
39 * Author: Chuang Liang-Shing, AJ Jiang
40 *
41 * Date: Jan 24, 2003
42 *
43 * MODULE_LICENSE("GPL");
44 *
45 */
46
47
48#include <linux/module.h>
49#include <linux/types.h>
50#include <linux/config.h>
51#include <linux/init.h>
52#include <linux/mm.h>
53#include <linux/errno.h>
54#include <linux/ioport.h>
55#include <linux/pci.h>
56#include <linux/kernel.h>
57#include <linux/netdevice.h>
58#include <linux/etherdevice.h>
59#include <linux/skbuff.h>
60#include <linux/delay.h>
61#include <linux/timer.h>
62#include <linux/slab.h>
63#include <linux/interrupt.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070064#include <linux/string.h>
65#include <linux/wait.h>
66#include <asm/io.h>
67#include <linux/if.h>
68#include <linux/config.h>
69#include <asm/uaccess.h>
70#include <linux/proc_fs.h>
71#include <linux/inetdevice.h>
72#include <linux/reboot.h>
73#include <linux/ethtool.h>
74#include <linux/mii.h>
75#include <linux/in.h>
76#include <linux/if_arp.h>
77#include <linux/ip.h>
78#include <linux/tcp.h>
79#include <linux/udp.h>
80#include <linux/crc-ccitt.h>
81#include <linux/crc32.h>
82
83#include "via-velocity.h"
84
85
86static int velocity_nics = 0;
87static int msglevel = MSG_LEVEL_INFO;
88
89
90static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
91static struct ethtool_ops velocity_ethtool_ops;
92
93/*
94 Define module options
95*/
96
97MODULE_AUTHOR("VIA Networking Technologies, Inc.");
98MODULE_LICENSE("GPL");
99MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
100
101#define VELOCITY_PARAM(N,D) \
102 static int N[MAX_UNITS]=OPTION_DEFAULT;\
103 module_param_array(N, int, NULL, 0); \
104 MODULE_PARM_DESC(N, D);
105
106#define RX_DESC_MIN 64
107#define RX_DESC_MAX 255
108#define RX_DESC_DEF 64
109VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
110
111#define TX_DESC_MIN 16
112#define TX_DESC_MAX 256
113#define TX_DESC_DEF 64
114VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
115
116#define VLAN_ID_MIN 0
117#define VLAN_ID_MAX 4095
118#define VLAN_ID_DEF 0
119/* VID_setting[] is used for setting the VID of NIC.
120 0: default VID.
121 1-4094: other VIDs.
122*/
123VELOCITY_PARAM(VID_setting, "802.1Q VLAN ID");
124
125#define RX_THRESH_MIN 0
126#define RX_THRESH_MAX 3
127#define RX_THRESH_DEF 0
128/* rx_thresh[] is used for controlling the receive fifo threshold.
129 0: indicate the rxfifo threshold is 128 bytes.
130 1: indicate the rxfifo threshold is 512 bytes.
131 2: indicate the rxfifo threshold is 1024 bytes.
132 3: indicate the rxfifo threshold is store & forward.
133*/
134VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
135
136#define DMA_LENGTH_MIN 0
137#define DMA_LENGTH_MAX 7
138#define DMA_LENGTH_DEF 0
139
140/* DMA_length[] is used for controlling the DMA length
141 0: 8 DWORDs
142 1: 16 DWORDs
143 2: 32 DWORDs
144 3: 64 DWORDs
145 4: 128 DWORDs
146 5: 256 DWORDs
147 6: SF(flush till emply)
148 7: SF(flush till emply)
149*/
150VELOCITY_PARAM(DMA_length, "DMA length");
151
152#define TAGGING_DEF 0
153/* enable_tagging[] is used for enabling 802.1Q VID tagging.
154 0: disable VID seeting(default).
155 1: enable VID setting.
156*/
157VELOCITY_PARAM(enable_tagging, "Enable 802.1Q tagging");
158
159#define IP_ALIG_DEF 0
160/* IP_byte_align[] is used for IP header DWORD byte aligned
161 0: indicate the IP header won't be DWORD byte aligned.(Default) .
162 1: indicate the IP header will be DWORD byte aligned.
163 In some enviroment, the IP header should be DWORD byte aligned,
164 or the packet will be droped when we receive it. (eg: IPVS)
165*/
166VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
167
168#define TX_CSUM_DEF 1
169/* txcsum_offload[] is used for setting the checksum offload ability of NIC.
170 (We only support RX checksum offload now)
171 0: disable csum_offload[checksum offload
172 1: enable checksum offload. (Default)
173*/
174VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
175
176#define FLOW_CNTL_DEF 1
177#define FLOW_CNTL_MIN 1
178#define FLOW_CNTL_MAX 5
179
180/* flow_control[] is used for setting the flow control ability of NIC.
181 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
182 2: enable TX flow control.
183 3: enable RX flow control.
184 4: enable RX/TX flow control.
185 5: disable
186*/
187VELOCITY_PARAM(flow_control, "Enable flow control ability");
188
189#define MED_LNK_DEF 0
190#define MED_LNK_MIN 0
191#define MED_LNK_MAX 4
192/* speed_duplex[] is used for setting the speed and duplex mode of NIC.
193 0: indicate autonegotiation for both speed and duplex mode
194 1: indicate 100Mbps half duplex mode
195 2: indicate 100Mbps full duplex mode
196 3: indicate 10Mbps half duplex mode
197 4: indicate 10Mbps full duplex mode
198
199 Note:
200 if EEPROM have been set to the force mode, this option is ignored
201 by driver.
202*/
203VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
204
205#define VAL_PKT_LEN_DEF 0
206/* ValPktLen[] is used for setting the checksum offload ability of NIC.
207 0: Receive frame with invalid layer 2 length (Default)
208 1: Drop frame with invalid layer 2 length
209*/
210VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
211
212#define WOL_OPT_DEF 0
213#define WOL_OPT_MIN 0
214#define WOL_OPT_MAX 7
215/* wol_opts[] is used for controlling wake on lan behavior.
216 0: Wake up if recevied a magic packet. (Default)
217 1: Wake up if link status is on/off.
218 2: Wake up if recevied an arp packet.
219 4: Wake up if recevied any unicast packet.
220 Those value can be sumed up to support more than one option.
221*/
222VELOCITY_PARAM(wol_opts, "Wake On Lan options");
223
224#define INT_WORKS_DEF 20
225#define INT_WORKS_MIN 10
226#define INT_WORKS_MAX 64
227
228VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
229
230static int rx_copybreak = 200;
231module_param(rx_copybreak, int, 0644);
232MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
233
234static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr, struct velocity_info_tbl *info);
235static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
236static void velocity_print_info(struct velocity_info *vptr);
237static int velocity_open(struct net_device *dev);
238static int velocity_change_mtu(struct net_device *dev, int mtu);
239static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
240static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs);
241static void velocity_set_multi(struct net_device *dev);
242static struct net_device_stats *velocity_get_stats(struct net_device *dev);
243static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
244static int velocity_close(struct net_device *dev);
245static int velocity_receive_frame(struct velocity_info *, int idx);
246static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
247static void velocity_free_rd_ring(struct velocity_info *vptr);
248static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
249static int velocity_soft_reset(struct velocity_info *vptr);
250static void mii_init(struct velocity_info *vptr, u32 mii_status);
251static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
252static void velocity_print_link_status(struct velocity_info *vptr);
253static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
254static void velocity_shutdown(struct velocity_info *vptr);
255static void enable_flow_control_ability(struct velocity_info *vptr);
256static void enable_mii_autopoll(struct mac_regs __iomem * regs);
257static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
258static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
259static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
260static u32 check_connection_type(struct mac_regs __iomem * regs);
261static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
262
263#ifdef CONFIG_PM
264
265static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
266static int velocity_resume(struct pci_dev *pdev);
267
268static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
269
270static struct notifier_block velocity_inetaddr_notifier = {
271 .notifier_call = velocity_netdev_event,
272};
273
274static DEFINE_SPINLOCK(velocity_dev_list_lock);
275static LIST_HEAD(velocity_dev_list);
276
277static void velocity_register_notifier(void)
278{
279 register_inetaddr_notifier(&velocity_inetaddr_notifier);
280}
281
282static void velocity_unregister_notifier(void)
283{
284 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
285}
286
287#else /* CONFIG_PM */
288
289#define velocity_register_notifier() do {} while (0)
290#define velocity_unregister_notifier() do {} while (0)
291
292#endif /* !CONFIG_PM */
293
294/*
295 * Internal board variants. At the moment we have only one
296 */
297
298static struct velocity_info_tbl chip_info_table[] = {
299 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 256, 1, 0x00FFFFFFUL},
300 {0, NULL}
301};
302
303/*
304 * Describe the PCI device identifiers that we support in this
305 * device driver. Used for hotplug autoloading.
306 */
307
308static struct pci_device_id velocity_id_table[] __devinitdata = {
309 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X,
310 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) chip_info_table},
311 {0, }
312};
313
314MODULE_DEVICE_TABLE(pci, velocity_id_table);
315
316/**
317 * get_chip_name - identifier to name
318 * @id: chip identifier
319 *
320 * Given a chip identifier return a suitable description. Returns
321 * a pointer a static string valid while the driver is loaded.
322 */
323
324static char __devinit *get_chip_name(enum chip_type chip_id)
325{
326 int i;
327 for (i = 0; chip_info_table[i].name != NULL; i++)
328 if (chip_info_table[i].chip_id == chip_id)
329 break;
330 return chip_info_table[i].name;
331}
332
333/**
334 * velocity_remove1 - device unplug
335 * @pdev: PCI device being removed
336 *
337 * Device unload callback. Called on an unplug or on module
338 * unload for each active device that is present. Disconnects
339 * the device from the network layer and frees all the resources
340 */
341
342static void __devexit velocity_remove1(struct pci_dev *pdev)
343{
344 struct net_device *dev = pci_get_drvdata(pdev);
345 struct velocity_info *vptr = dev->priv;
346
347#ifdef CONFIG_PM
348 unsigned long flags;
349
350 spin_lock_irqsave(&velocity_dev_list_lock, flags);
351 if (!list_empty(&velocity_dev_list))
352 list_del(&vptr->list);
353 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
354#endif
355 unregister_netdev(dev);
356 iounmap(vptr->mac_regs);
357 pci_release_regions(pdev);
358 pci_disable_device(pdev);
359 pci_set_drvdata(pdev, NULL);
360 free_netdev(dev);
361
362 velocity_nics--;
363}
364
365/**
366 * velocity_set_int_opt - parser for integer options
367 * @opt: pointer to option value
368 * @val: value the user requested (or -1 for default)
369 * @min: lowest value allowed
370 * @max: highest value allowed
371 * @def: default value
372 * @name: property name
373 * @dev: device name
374 *
375 * Set an integer property in the module options. This function does
376 * all the verification and checking as well as reporting so that
377 * we don't duplicate code for each option.
378 */
379
380static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, char *devname)
381{
382 if (val == -1)
383 *opt = def;
384 else if (val < min || val > max) {
385 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
386 devname, name, min, max);
387 *opt = def;
388 } else {
389 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
390 devname, name, val);
391 *opt = val;
392 }
393}
394
395/**
396 * velocity_set_bool_opt - parser for boolean options
397 * @opt: pointer to option value
398 * @val: value the user requested (or -1 for default)
399 * @def: default value (yes/no)
400 * @flag: numeric value to set for true.
401 * @name: property name
402 * @dev: device name
403 *
404 * Set a boolean property in the module options. This function does
405 * all the verification and checking as well as reporting so that
406 * we don't duplicate code for each option.
407 */
408
409static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, char *devname)
410{
411 (*opt) &= (~flag);
412 if (val == -1)
413 *opt |= (def ? flag : 0);
414 else if (val < 0 || val > 1) {
415 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
416 devname, name);
417 *opt |= (def ? flag : 0);
418 } else {
419 printk(KERN_INFO "%s: set parameter %s to %s\n",
420 devname, name, val ? "TRUE" : "FALSE");
421 *opt |= (val ? flag : 0);
422 }
423}
424
425/**
426 * velocity_get_options - set options on device
427 * @opts: option structure for the device
428 * @index: index of option to use in module options array
429 * @devname: device name
430 *
431 * Turn the module and command options into a single structure
432 * for the current device
433 */
434
435static void __devinit velocity_get_options(struct velocity_opt *opts, int index, char *devname)
436{
437
438 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
439 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
440 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
441 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
442 velocity_set_int_opt(&opts->vid, VID_setting[index], VLAN_ID_MIN, VLAN_ID_MAX, VLAN_ID_DEF, "VID_setting", devname);
443 velocity_set_bool_opt(&opts->flags, enable_tagging[index], TAGGING_DEF, VELOCITY_FLAGS_TAGGING, "enable_tagging", devname);
444 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
445 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
446 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
447 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
448 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
449 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
450 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
451 opts->numrx = (opts->numrx & ~3);
452}
453
454/**
455 * velocity_init_cam_filter - initialise CAM
456 * @vptr: velocity to program
457 *
458 * Initialize the content addressable memory used for filters. Load
459 * appropriately according to the presence of VLAN
460 */
461
462static void velocity_init_cam_filter(struct velocity_info *vptr)
463{
464 struct mac_regs __iomem * regs = vptr->mac_regs;
465
466 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
467 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
468 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
469
470 /* Disable all CAMs */
471 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
472 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
473 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
474 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
475
476 /* Enable first VCAM */
477 if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
478 /* If Tagging option is enabled and VLAN ID is not zero, then
479 turn on MCFG_RTGOPT also */
480 if (vptr->options.vid != 0)
481 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
482
483 mac_set_cam(regs, 0, (u8 *) & (vptr->options.vid), VELOCITY_VLAN_ID_CAM);
484 vptr->vCAMmask[0] |= 1;
485 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
486 } else {
487 u16 temp = 0;
488 mac_set_cam(regs, 0, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
489 temp = 1;
490 mac_set_cam_mask(regs, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
491 }
492}
493
494/**
495 * velocity_rx_reset - handle a receive reset
496 * @vptr: velocity we are resetting
497 *
498 * Reset the ownership and status for the receive ring side.
499 * Hand all the receive queue to the NIC.
500 */
501
502static void velocity_rx_reset(struct velocity_info *vptr)
503{
504
505 struct mac_regs __iomem * regs = vptr->mac_regs;
506 int i;
507
508 vptr->rd_dirty = vptr->rd_filled = vptr->rd_curr = 0;
509
510 /*
511 * Init state, all RD entries belong to the NIC
512 */
513 for (i = 0; i < vptr->options.numrx; ++i)
514 vptr->rd_ring[i].rdesc0.owner = OWNED_BY_NIC;
515
516 writew(vptr->options.numrx, &regs->RBRDU);
517 writel(vptr->rd_pool_dma, &regs->RDBaseLo);
518 writew(0, &regs->RDIdx);
519 writew(vptr->options.numrx - 1, &regs->RDCSize);
520}
521
522/**
523 * velocity_init_registers - initialise MAC registers
524 * @vptr: velocity to init
525 * @type: type of initialisation (hot or cold)
526 *
527 * Initialise the MAC on a reset or on first set up on the
528 * hardware.
529 */
530
531static void velocity_init_registers(struct velocity_info *vptr,
532 enum velocity_init_type type)
533{
534 struct mac_regs __iomem * regs = vptr->mac_regs;
535 int i, mii_status;
536
537 mac_wol_reset(regs);
538
539 switch (type) {
540 case VELOCITY_INIT_RESET:
541 case VELOCITY_INIT_WOL:
542
543 netif_stop_queue(vptr->dev);
544
545 /*
546 * Reset RX to prevent RX pointer not on the 4X location
547 */
548 velocity_rx_reset(vptr);
549 mac_rx_queue_run(regs);
550 mac_rx_queue_wake(regs);
551
552 mii_status = velocity_get_opt_media_mode(vptr);
553 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
554 velocity_print_link_status(vptr);
555 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
556 netif_wake_queue(vptr->dev);
557 }
558
559 enable_flow_control_ability(vptr);
560
561 mac_clear_isr(regs);
562 writel(CR0_STOP, &regs->CR0Clr);
563 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
564 &regs->CR0Set);
565
566 break;
567
568 case VELOCITY_INIT_COLD:
569 default:
570 /*
571 * Do reset
572 */
573 velocity_soft_reset(vptr);
574 mdelay(5);
575
576 mac_eeprom_reload(regs);
577 for (i = 0; i < 6; i++) {
578 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
579 }
580 /*
581 * clear Pre_ACPI bit.
582 */
583 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
584 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
585 mac_set_dma_length(regs, vptr->options.DMA_length);
586
587 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
588 /*
589 * Back off algorithm use original IEEE standard
590 */
591 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
592
593 /*
594 * Init CAM filter
595 */
596 velocity_init_cam_filter(vptr);
597
598 /*
599 * Set packet filter: Receive directed and broadcast address
600 */
601 velocity_set_multi(vptr->dev);
602
603 /*
604 * Enable MII auto-polling
605 */
606 enable_mii_autopoll(regs);
607
608 vptr->int_mask = INT_MASK_DEF;
609
610 writel(cpu_to_le32(vptr->rd_pool_dma), &regs->RDBaseLo);
611 writew(vptr->options.numrx - 1, &regs->RDCSize);
612 mac_rx_queue_run(regs);
613 mac_rx_queue_wake(regs);
614
615 writew(vptr->options.numtx - 1, &regs->TDCSize);
616
617 for (i = 0; i < vptr->num_txq; i++) {
618 writel(cpu_to_le32(vptr->td_pool_dma[i]), &(regs->TDBaseLo[i]));
619 mac_tx_queue_run(regs, i);
620 }
621
622 init_flow_control_register(vptr);
623
624 writel(CR0_STOP, &regs->CR0Clr);
625 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
626
627 mii_status = velocity_get_opt_media_mode(vptr);
628 netif_stop_queue(vptr->dev);
629
630 mii_init(vptr, mii_status);
631
632 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
633 velocity_print_link_status(vptr);
634 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
635 netif_wake_queue(vptr->dev);
636 }
637
638 enable_flow_control_ability(vptr);
639 mac_hw_mibs_init(regs);
640 mac_write_int_mask(vptr->int_mask, regs);
641 mac_clear_isr(regs);
642
643 }
644}
645
646/**
647 * velocity_soft_reset - soft reset
648 * @vptr: velocity to reset
649 *
650 * Kick off a soft reset of the velocity adapter and then poll
651 * until the reset sequence has completed before returning.
652 */
653
654static int velocity_soft_reset(struct velocity_info *vptr)
655{
656 struct mac_regs __iomem * regs = vptr->mac_regs;
657 int i = 0;
658
659 writel(CR0_SFRST, &regs->CR0Set);
660
661 for (i = 0; i < W_MAX_TIMEOUT; i++) {
662 udelay(5);
663 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
664 break;
665 }
666
667 if (i == W_MAX_TIMEOUT) {
668 writel(CR0_FORSRST, &regs->CR0Set);
669 /* FIXME: PCI POSTING */
670 /* delay 2ms */
671 mdelay(2);
672 }
673 return 0;
674}
675
676/**
677 * velocity_found1 - set up discovered velocity card
678 * @pdev: PCI device
679 * @ent: PCI device table entry that matched
680 *
681 * Configure a discovered adapter from scratch. Return a negative
682 * errno error code on failure paths.
683 */
684
685static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
686{
687 static int first = 1;
688 struct net_device *dev;
689 int i;
690 struct velocity_info_tbl *info = (struct velocity_info_tbl *) ent->driver_data;
691 struct velocity_info *vptr;
692 struct mac_regs __iomem * regs;
693 int ret = -ENOMEM;
694
695 if (velocity_nics >= MAX_UNITS) {
696 printk(KERN_NOTICE VELOCITY_NAME ": already found %d NICs.\n",
697 velocity_nics);
698 return -ENODEV;
699 }
700
701 dev = alloc_etherdev(sizeof(struct velocity_info));
702
703 if (dev == NULL) {
704 printk(KERN_ERR VELOCITY_NAME ": allocate net device failed.\n");
705 goto out;
706 }
707
708 /* Chain it all together */
709
710 SET_MODULE_OWNER(dev);
711 SET_NETDEV_DEV(dev, &pdev->dev);
712 vptr = dev->priv;
713
714
715 if (first) {
716 printk(KERN_INFO "%s Ver. %s\n",
717 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
718 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
719 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
720 first = 0;
721 }
722
723 velocity_init_info(pdev, vptr, info);
724
725 vptr->dev = dev;
726
727 dev->irq = pdev->irq;
728
729 ret = pci_enable_device(pdev);
730 if (ret < 0)
731 goto err_free_dev;
732
733 ret = velocity_get_pci_info(vptr, pdev);
734 if (ret < 0) {
735 printk(KERN_ERR VELOCITY_NAME ": Failed to find PCI device.\n");
736 goto err_disable;
737 }
738
739 ret = pci_request_regions(pdev, VELOCITY_NAME);
740 if (ret < 0) {
741 printk(KERN_ERR VELOCITY_NAME ": Failed to find PCI device.\n");
742 goto err_disable;
743 }
744
745 regs = ioremap(vptr->memaddr, vptr->io_size);
746 if (regs == NULL) {
747 ret = -EIO;
748 goto err_release_res;
749 }
750
751 vptr->mac_regs = regs;
752
753 mac_wol_reset(regs);
754
755 dev->base_addr = vptr->ioaddr;
756
757 for (i = 0; i < 6; i++)
758 dev->dev_addr[i] = readb(&regs->PAR[i]);
759
760
761 velocity_get_options(&vptr->options, velocity_nics, dev->name);
762
763 /*
764 * Mask out the options cannot be set to the chip
765 */
766
767 vptr->options.flags &= info->flags;
768
769 /*
770 * Enable the chip specified capbilities
771 */
772
773 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
774
775 vptr->wol_opts = vptr->options.wol_opts;
776 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
777
778 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
779
780 dev->irq = pdev->irq;
781 dev->open = velocity_open;
782 dev->hard_start_xmit = velocity_xmit;
783 dev->stop = velocity_close;
784 dev->get_stats = velocity_get_stats;
785 dev->set_multicast_list = velocity_set_multi;
786 dev->do_ioctl = velocity_ioctl;
787 dev->ethtool_ops = &velocity_ethtool_ops;
788 dev->change_mtu = velocity_change_mtu;
789#ifdef VELOCITY_ZERO_COPY_SUPPORT
790 dev->features |= NETIF_F_SG;
791#endif
792
793 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM) {
John W. Linville9f3f46b2005-12-09 10:36:09 -0500794 dev->features |= NETIF_F_IP_CSUM;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700795 }
796
797 ret = register_netdev(dev);
798 if (ret < 0)
799 goto err_iounmap;
800
801 velocity_print_info(vptr);
802 pci_set_drvdata(pdev, dev);
803
804 /* and leave the chip powered down */
805
806 pci_set_power_state(pdev, PCI_D3hot);
807#ifdef CONFIG_PM
808 {
809 unsigned long flags;
810
811 spin_lock_irqsave(&velocity_dev_list_lock, flags);
812 list_add(&vptr->list, &velocity_dev_list);
813 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
814 }
815#endif
816 velocity_nics++;
817out:
818 return ret;
819
820err_iounmap:
821 iounmap(regs);
822err_release_res:
823 pci_release_regions(pdev);
824err_disable:
825 pci_disable_device(pdev);
826err_free_dev:
827 free_netdev(dev);
828 goto out;
829}
830
831/**
832 * velocity_print_info - per driver data
833 * @vptr: velocity
834 *
835 * Print per driver data as the kernel driver finds Velocity
836 * hardware
837 */
838
839static void __devinit velocity_print_info(struct velocity_info *vptr)
840{
841 struct net_device *dev = vptr->dev;
842
843 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
844 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
845 dev->name,
846 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
847 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
848}
849
850/**
851 * velocity_init_info - init private data
852 * @pdev: PCI device
853 * @vptr: Velocity info
854 * @info: Board type
855 *
856 * Set up the initial velocity_info struct for the device that has been
857 * discovered.
858 */
859
860static void __devinit velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr, struct velocity_info_tbl *info)
861{
862 memset(vptr, 0, sizeof(struct velocity_info));
863
864 vptr->pdev = pdev;
865 vptr->chip_id = info->chip_id;
866 vptr->io_size = info->io_size;
867 vptr->num_txq = info->txqueue;
868 vptr->multicast_limit = MCAM_SIZE;
869 spin_lock_init(&vptr->lock);
870 INIT_LIST_HEAD(&vptr->list);
871}
872
873/**
874 * velocity_get_pci_info - retrieve PCI info for device
875 * @vptr: velocity device
876 * @pdev: PCI device it matches
877 *
878 * Retrieve the PCI configuration space data that interests us from
879 * the kernel PCI layer
880 */
881
882static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
883{
884
885 if(pci_read_config_byte(pdev, PCI_REVISION_ID, &vptr->rev_id) < 0)
886 return -EIO;
887
888 pci_set_master(pdev);
889
890 vptr->ioaddr = pci_resource_start(pdev, 0);
891 vptr->memaddr = pci_resource_start(pdev, 1);
892
893 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_IO))
894 {
895 printk(KERN_ERR "%s: region #0 is not an I/O resource, aborting.\n",
896 pci_name(pdev));
897 return -EINVAL;
898 }
899
900 if((pci_resource_flags(pdev, 1) & IORESOURCE_IO))
901 {
902 printk(KERN_ERR "%s: region #1 is an I/O resource, aborting.\n",
903 pci_name(pdev));
904 return -EINVAL;
905 }
906
907 if(pci_resource_len(pdev, 1) < 256)
908 {
909 printk(KERN_ERR "%s: region #1 is too small.\n",
910 pci_name(pdev));
911 return -EINVAL;
912 }
913 vptr->pdev = pdev;
914
915 return 0;
916}
917
918/**
919 * velocity_init_rings - set up DMA rings
920 * @vptr: Velocity to set up
921 *
922 * Allocate PCI mapped DMA rings for the receive and transmit layer
923 * to use.
924 */
925
926static int velocity_init_rings(struct velocity_info *vptr)
927{
928 int i;
929 unsigned int psize;
930 unsigned int tsize;
931 dma_addr_t pool_dma;
932 u8 *pool;
933
934 /*
935 * Allocate all RD/TD rings a single pool
936 */
937
938 psize = vptr->options.numrx * sizeof(struct rx_desc) +
939 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
940
941 /*
942 * pci_alloc_consistent() fulfills the requirement for 64 bytes
943 * alignment
944 */
945 pool = pci_alloc_consistent(vptr->pdev, psize, &pool_dma);
946
947 if (pool == NULL) {
948 printk(KERN_ERR "%s : DMA memory allocation failed.\n",
949 vptr->dev->name);
950 return -ENOMEM;
951 }
952
953 memset(pool, 0, psize);
954
955 vptr->rd_ring = (struct rx_desc *) pool;
956
957 vptr->rd_pool_dma = pool_dma;
958
959 tsize = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
960 vptr->tx_bufs = pci_alloc_consistent(vptr->pdev, tsize,
961 &vptr->tx_bufs_dma);
962
963 if (vptr->tx_bufs == NULL) {
964 printk(KERN_ERR "%s: DMA memory allocation failed.\n",
965 vptr->dev->name);
966 pci_free_consistent(vptr->pdev, psize, pool, pool_dma);
967 return -ENOMEM;
968 }
969
970 memset(vptr->tx_bufs, 0, vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq);
971
972 i = vptr->options.numrx * sizeof(struct rx_desc);
973 pool += i;
974 pool_dma += i;
975 for (i = 0; i < vptr->num_txq; i++) {
976 int offset = vptr->options.numtx * sizeof(struct tx_desc);
977
978 vptr->td_pool_dma[i] = pool_dma;
979 vptr->td_rings[i] = (struct tx_desc *) pool;
980 pool += offset;
981 pool_dma += offset;
982 }
983 return 0;
984}
985
986/**
987 * velocity_free_rings - free PCI ring pointers
988 * @vptr: Velocity to free from
989 *
990 * Clean up the PCI ring buffers allocated to this velocity.
991 */
992
993static void velocity_free_rings(struct velocity_info *vptr)
994{
995 int size;
996
997 size = vptr->options.numrx * sizeof(struct rx_desc) +
998 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
999
1000 pci_free_consistent(vptr->pdev, size, vptr->rd_ring, vptr->rd_pool_dma);
1001
1002 size = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
1003
1004 pci_free_consistent(vptr->pdev, size, vptr->tx_bufs, vptr->tx_bufs_dma);
1005}
1006
1007static inline void velocity_give_many_rx_descs(struct velocity_info *vptr)
1008{
1009 struct mac_regs __iomem *regs = vptr->mac_regs;
1010 int avail, dirty, unusable;
1011
1012 /*
1013 * RD number must be equal to 4X per hardware spec
1014 * (programming guide rev 1.20, p.13)
1015 */
1016 if (vptr->rd_filled < 4)
1017 return;
1018
1019 wmb();
1020
1021 unusable = vptr->rd_filled & 0x0003;
1022 dirty = vptr->rd_dirty - unusable;
1023 for (avail = vptr->rd_filled & 0xfffc; avail; avail--) {
1024 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1025 vptr->rd_ring[dirty].rdesc0.owner = OWNED_BY_NIC;
1026 }
1027
1028 writew(vptr->rd_filled & 0xfffc, &regs->RBRDU);
1029 vptr->rd_filled = unusable;
1030}
1031
1032static int velocity_rx_refill(struct velocity_info *vptr)
1033{
1034 int dirty = vptr->rd_dirty, done = 0, ret = 0;
1035
1036 do {
1037 struct rx_desc *rd = vptr->rd_ring + dirty;
1038
1039 /* Fine for an all zero Rx desc at init time as well */
1040 if (rd->rdesc0.owner == OWNED_BY_NIC)
1041 break;
1042
1043 if (!vptr->rd_info[dirty].skb) {
1044 ret = velocity_alloc_rx_buf(vptr, dirty);
1045 if (ret < 0)
1046 break;
1047 }
1048 done++;
1049 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1050 } while (dirty != vptr->rd_curr);
1051
1052 if (done) {
1053 vptr->rd_dirty = dirty;
1054 vptr->rd_filled += done;
1055 velocity_give_many_rx_descs(vptr);
1056 }
1057
1058 return ret;
1059}
1060
1061/**
1062 * velocity_init_rd_ring - set up receive ring
1063 * @vptr: velocity to configure
1064 *
1065 * Allocate and set up the receive buffers for each ring slot and
1066 * assign them to the network adapter.
1067 */
1068
1069static int velocity_init_rd_ring(struct velocity_info *vptr)
1070{
1071 int ret = -ENOMEM;
1072 unsigned int rsize = sizeof(struct velocity_rd_info) *
1073 vptr->options.numrx;
1074
1075 vptr->rd_info = kmalloc(rsize, GFP_KERNEL);
1076 if(vptr->rd_info == NULL)
1077 goto out;
1078 memset(vptr->rd_info, 0, rsize);
1079
1080 vptr->rd_filled = vptr->rd_dirty = vptr->rd_curr = 0;
1081
1082 ret = velocity_rx_refill(vptr);
1083 if (ret < 0) {
1084 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1085 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1086 velocity_free_rd_ring(vptr);
1087 }
1088out:
1089 return ret;
1090}
1091
1092/**
1093 * velocity_free_rd_ring - free receive ring
1094 * @vptr: velocity to clean up
1095 *
1096 * Free the receive buffers for each ring slot and any
1097 * attached socket buffers that need to go away.
1098 */
1099
1100static void velocity_free_rd_ring(struct velocity_info *vptr)
1101{
1102 int i;
1103
1104 if (vptr->rd_info == NULL)
1105 return;
1106
1107 for (i = 0; i < vptr->options.numrx; i++) {
1108 struct velocity_rd_info *rd_info = &(vptr->rd_info[i]);
1109
1110 if (!rd_info->skb)
1111 continue;
1112 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1113 PCI_DMA_FROMDEVICE);
1114 rd_info->skb_dma = (dma_addr_t) NULL;
1115
1116 dev_kfree_skb(rd_info->skb);
1117 rd_info->skb = NULL;
1118 }
1119
1120 kfree(vptr->rd_info);
1121 vptr->rd_info = NULL;
1122}
1123
1124/**
1125 * velocity_init_td_ring - set up transmit ring
1126 * @vptr: velocity
1127 *
1128 * Set up the transmit ring and chain the ring pointers together.
1129 * Returns zero on success or a negative posix errno code for
1130 * failure.
1131 */
1132
1133static int velocity_init_td_ring(struct velocity_info *vptr)
1134{
1135 int i, j;
1136 dma_addr_t curr;
1137 struct tx_desc *td;
1138 struct velocity_td_info *td_info;
1139 unsigned int tsize = sizeof(struct velocity_td_info) *
1140 vptr->options.numtx;
1141
1142 /* Init the TD ring entries */
1143 for (j = 0; j < vptr->num_txq; j++) {
1144 curr = vptr->td_pool_dma[j];
1145
1146 vptr->td_infos[j] = kmalloc(tsize, GFP_KERNEL);
1147 if(vptr->td_infos[j] == NULL)
1148 {
1149 while(--j >= 0)
1150 kfree(vptr->td_infos[j]);
1151 return -ENOMEM;
1152 }
1153 memset(vptr->td_infos[j], 0, tsize);
1154
1155 for (i = 0; i < vptr->options.numtx; i++, curr += sizeof(struct tx_desc)) {
1156 td = &(vptr->td_rings[j][i]);
1157 td_info = &(vptr->td_infos[j][i]);
1158 td_info->buf = vptr->tx_bufs +
1159 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1160 td_info->buf_dma = vptr->tx_bufs_dma +
1161 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1162 }
1163 vptr->td_tail[j] = vptr->td_curr[j] = vptr->td_used[j] = 0;
1164 }
1165 return 0;
1166}
1167
1168/*
1169 * FIXME: could we merge this with velocity_free_tx_buf ?
1170 */
1171
1172static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1173 int q, int n)
1174{
1175 struct velocity_td_info * td_info = &(vptr->td_infos[q][n]);
1176 int i;
1177
1178 if (td_info == NULL)
1179 return;
1180
1181 if (td_info->skb) {
1182 for (i = 0; i < td_info->nskb_dma; i++)
1183 {
1184 if (td_info->skb_dma[i]) {
1185 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1186 td_info->skb->len, PCI_DMA_TODEVICE);
1187 td_info->skb_dma[i] = (dma_addr_t) NULL;
1188 }
1189 }
1190 dev_kfree_skb(td_info->skb);
1191 td_info->skb = NULL;
1192 }
1193}
1194
1195/**
1196 * velocity_free_td_ring - free td ring
1197 * @vptr: velocity
1198 *
1199 * Free up the transmit ring for this particular velocity adapter.
1200 * We free the ring contents but not the ring itself.
1201 */
1202
1203static void velocity_free_td_ring(struct velocity_info *vptr)
1204{
1205 int i, j;
1206
1207 for (j = 0; j < vptr->num_txq; j++) {
1208 if (vptr->td_infos[j] == NULL)
1209 continue;
1210 for (i = 0; i < vptr->options.numtx; i++) {
1211 velocity_free_td_ring_entry(vptr, j, i);
1212
1213 }
Jesper Juhlb4558ea2005-10-28 16:53:13 -04001214 kfree(vptr->td_infos[j]);
1215 vptr->td_infos[j] = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001216 }
1217}
1218
1219/**
1220 * velocity_rx_srv - service RX interrupt
1221 * @vptr: velocity
1222 * @status: adapter status (unused)
1223 *
1224 * Walk the receive ring of the velocity adapter and remove
1225 * any received packets from the receive queue. Hand the ring
1226 * slots back to the adapter for reuse.
1227 */
1228
1229static int velocity_rx_srv(struct velocity_info *vptr, int status)
1230{
1231 struct net_device_stats *stats = &vptr->stats;
1232 int rd_curr = vptr->rd_curr;
1233 int works = 0;
1234
1235 do {
1236 struct rx_desc *rd = vptr->rd_ring + rd_curr;
1237
1238 if (!vptr->rd_info[rd_curr].skb)
1239 break;
1240
1241 if (rd->rdesc0.owner == OWNED_BY_NIC)
1242 break;
1243
1244 rmb();
1245
1246 /*
1247 * Don't drop CE or RL error frame although RXOK is off
1248 */
1249 if ((rd->rdesc0.RSR & RSR_RXOK) || (!(rd->rdesc0.RSR & RSR_RXOK) && (rd->rdesc0.RSR & (RSR_CE | RSR_RL)))) {
1250 if (velocity_receive_frame(vptr, rd_curr) < 0)
1251 stats->rx_dropped++;
1252 } else {
1253 if (rd->rdesc0.RSR & RSR_CRC)
1254 stats->rx_crc_errors++;
1255 if (rd->rdesc0.RSR & RSR_FAE)
1256 stats->rx_frame_errors++;
1257
1258 stats->rx_dropped++;
1259 }
1260
1261 rd->inten = 1;
1262
1263 vptr->dev->last_rx = jiffies;
1264
1265 rd_curr++;
1266 if (rd_curr >= vptr->options.numrx)
1267 rd_curr = 0;
1268 } while (++works <= 15);
1269
1270 vptr->rd_curr = rd_curr;
1271
1272 if (works > 0 && velocity_rx_refill(vptr) < 0) {
1273 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1274 "%s: rx buf allocation failure\n", vptr->dev->name);
1275 }
1276
1277 VAR_USED(stats);
1278 return works;
1279}
1280
1281/**
1282 * velocity_rx_csum - checksum process
1283 * @rd: receive packet descriptor
1284 * @skb: network layer packet buffer
1285 *
1286 * Process the status bits for the received packet and determine
1287 * if the checksum was computed and verified by the hardware
1288 */
1289
1290static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1291{
1292 skb->ip_summed = CHECKSUM_NONE;
1293
1294 if (rd->rdesc1.CSM & CSM_IPKT) {
1295 if (rd->rdesc1.CSM & CSM_IPOK) {
1296 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1297 (rd->rdesc1.CSM & CSM_UDPKT)) {
1298 if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
1299 return;
1300 }
1301 }
1302 skb->ip_summed = CHECKSUM_UNNECESSARY;
1303 }
1304 }
1305}
1306
1307/**
1308 * velocity_rx_copy - in place Rx copy for small packets
1309 * @rx_skb: network layer packet buffer candidate
1310 * @pkt_size: received data size
1311 * @rd: receive packet descriptor
1312 * @dev: network device
1313 *
1314 * Replace the current skb that is scheduled for Rx processing by a
1315 * shorter, immediatly allocated skb, if the received packet is small
1316 * enough. This function returns a negative value if the received
1317 * packet is too big or if memory is exhausted.
1318 */
1319static inline int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1320 struct velocity_info *vptr)
1321{
1322 int ret = -1;
1323
1324 if (pkt_size < rx_copybreak) {
1325 struct sk_buff *new_skb;
1326
1327 new_skb = dev_alloc_skb(pkt_size + 2);
1328 if (new_skb) {
1329 new_skb->dev = vptr->dev;
1330 new_skb->ip_summed = rx_skb[0]->ip_summed;
1331
1332 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN)
1333 skb_reserve(new_skb, 2);
1334
David S. Miller689be432005-06-28 15:25:31 -07001335 memcpy(new_skb->data, rx_skb[0]->data, pkt_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001336 *rx_skb = new_skb;
1337 ret = 0;
1338 }
1339
1340 }
1341 return ret;
1342}
1343
1344/**
1345 * velocity_iph_realign - IP header alignment
1346 * @vptr: velocity we are handling
1347 * @skb: network layer packet buffer
1348 * @pkt_size: received data size
1349 *
1350 * Align IP header on a 2 bytes boundary. This behavior can be
1351 * configured by the user.
1352 */
1353static inline void velocity_iph_realign(struct velocity_info *vptr,
1354 struct sk_buff *skb, int pkt_size)
1355{
1356 /* FIXME - memmove ? */
1357 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1358 int i;
1359
1360 for (i = pkt_size; i >= 0; i--)
1361 *(skb->data + i + 2) = *(skb->data + i);
1362 skb_reserve(skb, 2);
1363 }
1364}
1365
1366/**
1367 * velocity_receive_frame - received packet processor
1368 * @vptr: velocity we are handling
1369 * @idx: ring index
1370 *
1371 * A packet has arrived. We process the packet and if appropriate
1372 * pass the frame up the network stack
1373 */
1374
1375static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1376{
1377 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1378 struct net_device_stats *stats = &vptr->stats;
1379 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1380 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1381 int pkt_len = rd->rdesc0.len;
1382 struct sk_buff *skb;
1383
1384 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
1385 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
1386 stats->rx_length_errors++;
1387 return -EINVAL;
1388 }
1389
1390 if (rd->rdesc0.RSR & RSR_MAR)
1391 vptr->stats.multicast++;
1392
1393 skb = rd_info->skb;
1394 skb->dev = vptr->dev;
1395
1396 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
1397 vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1398
1399 /*
1400 * Drop frame not meeting IEEE 802.3
1401 */
1402
1403 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
1404 if (rd->rdesc0.RSR & RSR_RL) {
1405 stats->rx_length_errors++;
1406 return -EINVAL;
1407 }
1408 }
1409
1410 pci_action = pci_dma_sync_single_for_device;
1411
1412 velocity_rx_csum(rd, skb);
1413
1414 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
1415 velocity_iph_realign(vptr, skb, pkt_len);
1416 pci_action = pci_unmap_single;
1417 rd_info->skb = NULL;
1418 }
1419
1420 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1421 PCI_DMA_FROMDEVICE);
1422
1423 skb_put(skb, pkt_len - 4);
1424 skb->protocol = eth_type_trans(skb, skb->dev);
1425
1426 stats->rx_bytes += pkt_len;
1427 netif_rx(skb);
1428
1429 return 0;
1430}
1431
1432/**
1433 * velocity_alloc_rx_buf - allocate aligned receive buffer
1434 * @vptr: velocity
1435 * @idx: ring index
1436 *
1437 * Allocate a new full sized buffer for the reception of a frame and
1438 * map it into PCI space for the hardware to use. The hardware
1439 * requires *64* byte alignment of the buffer which makes life
1440 * less fun than would be ideal.
1441 */
1442
1443static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1444{
1445 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1446 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1447
1448 rd_info->skb = dev_alloc_skb(vptr->rx_buf_sz + 64);
1449 if (rd_info->skb == NULL)
1450 return -ENOMEM;
1451
1452 /*
1453 * Do the gymnastics to get the buffer head for data at
1454 * 64byte alignment.
1455 */
David S. Miller689be432005-06-28 15:25:31 -07001456 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001457 rd_info->skb->dev = vptr->dev;
David S. Miller689be432005-06-28 15:25:31 -07001458 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data, vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001459
1460 /*
1461 * Fill in the descriptor to match
1462 */
1463
1464 *((u32 *) & (rd->rdesc0)) = 0;
1465 rd->len = cpu_to_le32(vptr->rx_buf_sz);
1466 rd->inten = 1;
1467 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1468 rd->pa_high = 0;
1469 return 0;
1470}
1471
1472/**
1473 * tx_srv - transmit interrupt service
1474 * @vptr; Velocity
1475 * @status:
1476 *
1477 * Scan the queues looking for transmitted packets that
1478 * we can complete and clean up. Update any statistics as
1479 * neccessary/
1480 */
1481
1482static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1483{
1484 struct tx_desc *td;
1485 int qnum;
1486 int full = 0;
1487 int idx;
1488 int works = 0;
1489 struct velocity_td_info *tdinfo;
1490 struct net_device_stats *stats = &vptr->stats;
1491
1492 for (qnum = 0; qnum < vptr->num_txq; qnum++) {
1493 for (idx = vptr->td_tail[qnum]; vptr->td_used[qnum] > 0;
1494 idx = (idx + 1) % vptr->options.numtx) {
1495
1496 /*
1497 * Get Tx Descriptor
1498 */
1499 td = &(vptr->td_rings[qnum][idx]);
1500 tdinfo = &(vptr->td_infos[qnum][idx]);
1501
1502 if (td->tdesc0.owner == OWNED_BY_NIC)
1503 break;
1504
1505 if ((works++ > 15))
1506 break;
1507
1508 if (td->tdesc0.TSR & TSR0_TERR) {
1509 stats->tx_errors++;
1510 stats->tx_dropped++;
1511 if (td->tdesc0.TSR & TSR0_CDH)
1512 stats->tx_heartbeat_errors++;
1513 if (td->tdesc0.TSR & TSR0_CRS)
1514 stats->tx_carrier_errors++;
1515 if (td->tdesc0.TSR & TSR0_ABT)
1516 stats->tx_aborted_errors++;
1517 if (td->tdesc0.TSR & TSR0_OWC)
1518 stats->tx_window_errors++;
1519 } else {
1520 stats->tx_packets++;
1521 stats->tx_bytes += tdinfo->skb->len;
1522 }
1523 velocity_free_tx_buf(vptr, tdinfo);
1524 vptr->td_used[qnum]--;
1525 }
1526 vptr->td_tail[qnum] = idx;
1527
1528 if (AVAIL_TD(vptr, qnum) < 1) {
1529 full = 1;
1530 }
1531 }
1532 /*
1533 * Look to see if we should kick the transmit network
1534 * layer for more work.
1535 */
1536 if (netif_queue_stopped(vptr->dev) && (full == 0)
1537 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1538 netif_wake_queue(vptr->dev);
1539 }
1540 return works;
1541}
1542
1543/**
1544 * velocity_print_link_status - link status reporting
1545 * @vptr: velocity to report on
1546 *
1547 * Turn the link status of the velocity card into a kernel log
1548 * description of the new link state, detailing speed and duplex
1549 * status
1550 */
1551
1552static void velocity_print_link_status(struct velocity_info *vptr)
1553{
1554
1555 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1556 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1557 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1558 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link autonegation", vptr->dev->name);
1559
1560 if (vptr->mii_status & VELOCITY_SPEED_1000)
1561 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1562 else if (vptr->mii_status & VELOCITY_SPEED_100)
1563 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1564 else
1565 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1566
1567 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1568 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1569 else
1570 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1571 } else {
1572 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1573 switch (vptr->options.spd_dpx) {
1574 case SPD_DPX_100_HALF:
1575 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1576 break;
1577 case SPD_DPX_100_FULL:
1578 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1579 break;
1580 case SPD_DPX_10_HALF:
1581 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1582 break;
1583 case SPD_DPX_10_FULL:
1584 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1585 break;
1586 default:
1587 break;
1588 }
1589 }
1590}
1591
1592/**
1593 * velocity_error - handle error from controller
1594 * @vptr: velocity
1595 * @status: card status
1596 *
1597 * Process an error report from the hardware and attempt to recover
1598 * the card itself. At the moment we cannot recover from some
1599 * theoretically impossible errors but this could be fixed using
1600 * the pci_device_failed logic to bounce the hardware
1601 *
1602 */
1603
1604static void velocity_error(struct velocity_info *vptr, int status)
1605{
1606
1607 if (status & ISR_TXSTLI) {
1608 struct mac_regs __iomem * regs = vptr->mac_regs;
1609
1610 printk(KERN_ERR "TD structure errror TDindex=%hx\n", readw(&regs->TDIdx[0]));
1611 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1612 writew(TRDCSR_RUN, &regs->TDCSRClr);
1613 netif_stop_queue(vptr->dev);
1614
1615 /* FIXME: port over the pci_device_failed code and use it
1616 here */
1617 }
1618
1619 if (status & ISR_SRCI) {
1620 struct mac_regs __iomem * regs = vptr->mac_regs;
1621 int linked;
1622
1623 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1624 vptr->mii_status = check_connection_type(regs);
1625
1626 /*
1627 * If it is a 3119, disable frame bursting in
1628 * halfduplex mode and enable it in fullduplex
1629 * mode
1630 */
1631 if (vptr->rev_id < REV_ID_VT3216_A0) {
1632 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1633 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1634 else
1635 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1636 }
1637 /*
1638 * Only enable CD heart beat counter in 10HD mode
1639 */
1640 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
1641 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1642 } else {
1643 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1644 }
1645 }
1646 /*
1647 * Get link status from PHYSR0
1648 */
1649 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1650
1651 if (linked) {
1652 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1653 } else {
1654 vptr->mii_status |= VELOCITY_LINK_FAIL;
1655 }
1656
1657 velocity_print_link_status(vptr);
1658 enable_flow_control_ability(vptr);
1659
1660 /*
1661 * Re-enable auto-polling because SRCI will disable
1662 * auto-polling
1663 */
1664
1665 enable_mii_autopoll(regs);
1666
1667 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1668 netif_stop_queue(vptr->dev);
1669 else
1670 netif_wake_queue(vptr->dev);
1671
1672 };
1673 if (status & ISR_MIBFI)
1674 velocity_update_hw_mibs(vptr);
1675 if (status & ISR_LSTEI)
1676 mac_rx_queue_wake(vptr->mac_regs);
1677}
1678
1679/**
1680 * velocity_free_tx_buf - free transmit buffer
1681 * @vptr: velocity
1682 * @tdinfo: buffer
1683 *
1684 * Release an transmit buffer. If the buffer was preallocated then
1685 * recycle it, if not then unmap the buffer.
1686 */
1687
1688static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1689{
1690 struct sk_buff *skb = tdinfo->skb;
1691 int i;
1692
1693 /*
1694 * Don't unmap the pre-allocated tx_bufs
1695 */
1696 if (tdinfo->skb_dma && (tdinfo->skb_dma[0] != tdinfo->buf_dma)) {
1697
1698 for (i = 0; i < tdinfo->nskb_dma; i++) {
1699#ifdef VELOCITY_ZERO_COPY_SUPPORT
1700 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], td->tdesc1.len, PCI_DMA_TODEVICE);
1701#else
1702 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], skb->len, PCI_DMA_TODEVICE);
1703#endif
1704 tdinfo->skb_dma[i] = 0;
1705 }
1706 }
1707 dev_kfree_skb_irq(skb);
1708 tdinfo->skb = NULL;
1709}
1710
1711/**
1712 * velocity_open - interface activation callback
1713 * @dev: network layer device to open
1714 *
1715 * Called when the network layer brings the interface up. Returns
1716 * a negative posix error code on failure, or zero on success.
1717 *
1718 * All the ring allocation and set up is done on open for this
1719 * adapter to minimise memory usage when inactive
1720 */
1721
1722static int velocity_open(struct net_device *dev)
1723{
1724 struct velocity_info *vptr = dev->priv;
1725 int ret;
1726
1727 vptr->rx_buf_sz = (dev->mtu <= 1504 ? PKT_BUF_SZ : dev->mtu + 32);
1728
1729 ret = velocity_init_rings(vptr);
1730 if (ret < 0)
1731 goto out;
1732
1733 ret = velocity_init_rd_ring(vptr);
1734 if (ret < 0)
1735 goto err_free_desc_rings;
1736
1737 ret = velocity_init_td_ring(vptr);
1738 if (ret < 0)
1739 goto err_free_rd_ring;
1740
1741 /* Ensure chip is running */
1742 pci_set_power_state(vptr->pdev, PCI_D0);
1743
1744 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1745
1746 ret = request_irq(vptr->pdev->irq, &velocity_intr, SA_SHIRQ,
1747 dev->name, dev);
1748 if (ret < 0) {
1749 /* Power down the chip */
1750 pci_set_power_state(vptr->pdev, PCI_D3hot);
1751 goto err_free_td_ring;
1752 }
1753
1754 mac_enable_int(vptr->mac_regs);
1755 netif_start_queue(dev);
1756 vptr->flags |= VELOCITY_FLAGS_OPENED;
1757out:
1758 return ret;
1759
1760err_free_td_ring:
1761 velocity_free_td_ring(vptr);
1762err_free_rd_ring:
1763 velocity_free_rd_ring(vptr);
1764err_free_desc_rings:
1765 velocity_free_rings(vptr);
1766 goto out;
1767}
1768
1769/**
1770 * velocity_change_mtu - MTU change callback
1771 * @dev: network device
1772 * @new_mtu: desired MTU
1773 *
1774 * Handle requests from the networking layer for MTU change on
1775 * this interface. It gets called on a change by the network layer.
1776 * Return zero for success or negative posix error code.
1777 */
1778
1779static int velocity_change_mtu(struct net_device *dev, int new_mtu)
1780{
1781 struct velocity_info *vptr = dev->priv;
1782 unsigned long flags;
1783 int oldmtu = dev->mtu;
1784 int ret = 0;
1785
1786 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
1787 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
1788 vptr->dev->name);
1789 return -EINVAL;
1790 }
1791
1792 if (new_mtu != oldmtu) {
1793 spin_lock_irqsave(&vptr->lock, flags);
1794
1795 netif_stop_queue(dev);
1796 velocity_shutdown(vptr);
1797
1798 velocity_free_td_ring(vptr);
1799 velocity_free_rd_ring(vptr);
1800
1801 dev->mtu = new_mtu;
1802 if (new_mtu > 8192)
1803 vptr->rx_buf_sz = 9 * 1024;
1804 else if (new_mtu > 4096)
1805 vptr->rx_buf_sz = 8192;
1806 else
1807 vptr->rx_buf_sz = 4 * 1024;
1808
1809 ret = velocity_init_rd_ring(vptr);
1810 if (ret < 0)
1811 goto out_unlock;
1812
1813 ret = velocity_init_td_ring(vptr);
1814 if (ret < 0)
1815 goto out_unlock;
1816
1817 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1818
1819 mac_enable_int(vptr->mac_regs);
1820 netif_start_queue(dev);
1821out_unlock:
1822 spin_unlock_irqrestore(&vptr->lock, flags);
1823 }
1824
1825 return ret;
1826}
1827
1828/**
1829 * velocity_shutdown - shut down the chip
1830 * @vptr: velocity to deactivate
1831 *
1832 * Shuts down the internal operations of the velocity and
1833 * disables interrupts, autopolling, transmit and receive
1834 */
1835
1836static void velocity_shutdown(struct velocity_info *vptr)
1837{
1838 struct mac_regs __iomem * regs = vptr->mac_regs;
1839 mac_disable_int(regs);
1840 writel(CR0_STOP, &regs->CR0Set);
1841 writew(0xFFFF, &regs->TDCSRClr);
1842 writeb(0xFF, &regs->RDCSRClr);
1843 safe_disable_mii_autopoll(regs);
1844 mac_clear_isr(regs);
1845}
1846
1847/**
1848 * velocity_close - close adapter callback
1849 * @dev: network device
1850 *
1851 * Callback from the network layer when the velocity is being
1852 * deactivated by the network layer
1853 */
1854
1855static int velocity_close(struct net_device *dev)
1856{
1857 struct velocity_info *vptr = dev->priv;
1858
1859 netif_stop_queue(dev);
1860 velocity_shutdown(vptr);
1861
1862 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
1863 velocity_get_ip(vptr);
1864 if (dev->irq != 0)
1865 free_irq(dev->irq, dev);
1866
1867 /* Power down the chip */
1868 pci_set_power_state(vptr->pdev, PCI_D3hot);
1869
1870 /* Free the resources */
1871 velocity_free_td_ring(vptr);
1872 velocity_free_rd_ring(vptr);
1873 velocity_free_rings(vptr);
1874
1875 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
1876 return 0;
1877}
1878
1879/**
1880 * velocity_xmit - transmit packet callback
1881 * @skb: buffer to transmit
1882 * @dev: network device
1883 *
1884 * Called by the networ layer to request a packet is queued to
1885 * the velocity. Returns zero on success.
1886 */
1887
1888static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
1889{
1890 struct velocity_info *vptr = dev->priv;
1891 int qnum = 0;
1892 struct tx_desc *td_ptr;
1893 struct velocity_td_info *tdinfo;
1894 unsigned long flags;
1895 int index;
1896
1897 int pktlen = skb->len;
1898
1899 spin_lock_irqsave(&vptr->lock, flags);
1900
1901 index = vptr->td_curr[qnum];
1902 td_ptr = &(vptr->td_rings[qnum][index]);
1903 tdinfo = &(vptr->td_infos[qnum][index]);
1904
1905 td_ptr->tdesc1.TCPLS = TCPLS_NORMAL;
1906 td_ptr->tdesc1.TCR = TCR0_TIC;
1907 td_ptr->td_buf[0].queue = 0;
1908
1909 /*
1910 * Pad short frames.
1911 */
1912 if (pktlen < ETH_ZLEN) {
1913 /* Cannot occur until ZC support */
1914 if(skb_linearize(skb, GFP_ATOMIC))
1915 return 0;
1916 pktlen = ETH_ZLEN;
1917 memcpy(tdinfo->buf, skb->data, skb->len);
1918 memset(tdinfo->buf + skb->len, 0, ETH_ZLEN - skb->len);
1919 tdinfo->skb = skb;
1920 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1921 td_ptr->tdesc0.pktsize = pktlen;
1922 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1923 td_ptr->td_buf[0].pa_high = 0;
1924 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1925 tdinfo->nskb_dma = 1;
1926 td_ptr->tdesc1.CMDZ = 2;
1927 } else
1928#ifdef VELOCITY_ZERO_COPY_SUPPORT
1929 if (skb_shinfo(skb)->nr_frags > 0) {
1930 int nfrags = skb_shinfo(skb)->nr_frags;
1931 tdinfo->skb = skb;
1932 if (nfrags > 6) {
1933 skb_linearize(skb, GFP_ATOMIC);
1934 memcpy(tdinfo->buf, skb->data, skb->len);
1935 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1936 td_ptr->tdesc0.pktsize =
1937 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1938 td_ptr->td_buf[0].pa_high = 0;
1939 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1940 tdinfo->nskb_dma = 1;
1941 td_ptr->tdesc1.CMDZ = 2;
1942 } else {
1943 int i = 0;
1944 tdinfo->nskb_dma = 0;
1945 tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data, skb->len - skb->data_len, PCI_DMA_TODEVICE);
1946
1947 td_ptr->tdesc0.pktsize = pktlen;
1948
1949 /* FIXME: support 48bit DMA later */
1950 td_ptr->td_buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
1951 td_ptr->td_buf[i].pa_high = 0;
1952 td_ptr->td_buf[i].bufsize = skb->len->skb->data_len;
1953
1954 for (i = 0; i < nfrags; i++) {
1955 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1956 void *addr = ((void *) page_address(frag->page + frag->page_offset));
1957
1958 tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
1959
1960 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
1961 td_ptr->td_buf[i + 1].pa_high = 0;
1962 td_ptr->td_buf[i + 1].bufsize = frag->size;
1963 }
1964 tdinfo->nskb_dma = i - 1;
1965 td_ptr->tdesc1.CMDZ = i;
1966 }
1967
1968 } else
1969#endif
1970 {
1971 /*
1972 * Map the linear network buffer into PCI space and
1973 * add it to the transmit ring.
1974 */
1975 tdinfo->skb = skb;
1976 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
1977 td_ptr->tdesc0.pktsize = pktlen;
1978 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1979 td_ptr->td_buf[0].pa_high = 0;
1980 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1981 tdinfo->nskb_dma = 1;
1982 td_ptr->tdesc1.CMDZ = 2;
1983 }
1984
1985 if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
1986 td_ptr->tdesc1.pqinf.VID = (vptr->options.vid & 0xfff);
1987 td_ptr->tdesc1.pqinf.priority = 0;
1988 td_ptr->tdesc1.pqinf.CFI = 0;
1989 td_ptr->tdesc1.TCR |= TCR0_VETAG;
1990 }
1991
1992 /*
1993 * Handle hardware checksum
1994 */
1995 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
1996 && (skb->ip_summed == CHECKSUM_HW)) {
1997 struct iphdr *ip = skb->nh.iph;
1998 if (ip->protocol == IPPROTO_TCP)
1999 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2000 else if (ip->protocol == IPPROTO_UDP)
2001 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2002 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2003 }
2004 {
2005
2006 int prev = index - 1;
2007
2008 if (prev < 0)
2009 prev = vptr->options.numtx - 1;
2010 td_ptr->tdesc0.owner = OWNED_BY_NIC;
2011 vptr->td_used[qnum]++;
2012 vptr->td_curr[qnum] = (index + 1) % vptr->options.numtx;
2013
2014 if (AVAIL_TD(vptr, qnum) < 1)
2015 netif_stop_queue(dev);
2016
2017 td_ptr = &(vptr->td_rings[qnum][prev]);
2018 td_ptr->td_buf[0].queue = 1;
2019 mac_tx_queue_wake(vptr->mac_regs, qnum);
2020 }
2021 dev->trans_start = jiffies;
2022 spin_unlock_irqrestore(&vptr->lock, flags);
2023 return 0;
2024}
2025
2026/**
2027 * velocity_intr - interrupt callback
2028 * @irq: interrupt number
2029 * @dev_instance: interrupting device
2030 * @pt_regs: CPU register state at interrupt
2031 *
2032 * Called whenever an interrupt is generated by the velocity
2033 * adapter IRQ line. We may not be the source of the interrupt
2034 * and need to identify initially if we are, and if not exit as
2035 * efficiently as possible.
2036 */
2037
2038static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs)
2039{
2040 struct net_device *dev = dev_instance;
2041 struct velocity_info *vptr = dev->priv;
2042 u32 isr_status;
2043 int max_count = 0;
2044
2045
2046 spin_lock(&vptr->lock);
2047 isr_status = mac_read_isr(vptr->mac_regs);
2048
2049 /* Not us ? */
2050 if (isr_status == 0) {
2051 spin_unlock(&vptr->lock);
2052 return IRQ_NONE;
2053 }
2054
2055 mac_disable_int(vptr->mac_regs);
2056
2057 /*
2058 * Keep processing the ISR until we have completed
2059 * processing and the isr_status becomes zero
2060 */
2061
2062 while (isr_status != 0) {
2063 mac_write_isr(vptr->mac_regs, isr_status);
2064 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2065 velocity_error(vptr, isr_status);
2066 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2067 max_count += velocity_rx_srv(vptr, isr_status);
2068 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2069 max_count += velocity_tx_srv(vptr, isr_status);
2070 isr_status = mac_read_isr(vptr->mac_regs);
2071 if (max_count > vptr->options.int_works)
2072 {
2073 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2074 dev->name);
2075 max_count = 0;
2076 }
2077 }
2078 spin_unlock(&vptr->lock);
2079 mac_enable_int(vptr->mac_regs);
2080 return IRQ_HANDLED;
2081
2082}
2083
2084
2085/**
2086 * velocity_set_multi - filter list change callback
2087 * @dev: network device
2088 *
2089 * Called by the network layer when the filter lists need to change
2090 * for a velocity adapter. Reload the CAMs with the new address
2091 * filter ruleset.
2092 */
2093
2094static void velocity_set_multi(struct net_device *dev)
2095{
2096 struct velocity_info *vptr = dev->priv;
2097 struct mac_regs __iomem * regs = vptr->mac_regs;
2098 u8 rx_mode;
2099 int i;
2100 struct dev_mc_list *mclist;
2101
2102 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2103 /* Unconditionally log net taps. */
2104 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
2105 writel(0xffffffff, &regs->MARCAM[0]);
2106 writel(0xffffffff, &regs->MARCAM[4]);
2107 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
2108 } else if ((dev->mc_count > vptr->multicast_limit)
2109 || (dev->flags & IFF_ALLMULTI)) {
2110 writel(0xffffffff, &regs->MARCAM[0]);
2111 writel(0xffffffff, &regs->MARCAM[4]);
2112 rx_mode = (RCR_AM | RCR_AB);
2113 } else {
2114 int offset = MCAM_SIZE - vptr->multicast_limit;
2115 mac_get_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2116
2117 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
2118 mac_set_cam(regs, i + offset, mclist->dmi_addr, VELOCITY_MULTICAST_CAM);
2119 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
2120 }
2121
2122 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2123 rx_mode = (RCR_AM | RCR_AB);
2124 }
2125 if (dev->mtu > 1500)
2126 rx_mode |= RCR_AL;
2127
2128 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
2129
2130}
2131
2132/**
2133 * velocity_get_status - statistics callback
2134 * @dev: network device
2135 *
2136 * Callback from the network layer to allow driver statistics
2137 * to be resynchronized with hardware collected state. In the
2138 * case of the velocity we need to pull the MIB counters from
2139 * the hardware into the counters before letting the network
2140 * layer display them.
2141 */
2142
2143static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2144{
2145 struct velocity_info *vptr = dev->priv;
2146
2147 /* If the hardware is down, don't touch MII */
2148 if(!netif_running(dev))
2149 return &vptr->stats;
2150
2151 spin_lock_irq(&vptr->lock);
2152 velocity_update_hw_mibs(vptr);
2153 spin_unlock_irq(&vptr->lock);
2154
2155 vptr->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2156 vptr->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2157 vptr->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2158
2159// unsigned long rx_dropped; /* no space in linux buffers */
2160 vptr->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2161 /* detailed rx_errors: */
2162// unsigned long rx_length_errors;
2163// unsigned long rx_over_errors; /* receiver ring buff overflow */
2164 vptr->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2165// unsigned long rx_frame_errors; /* recv'd frame alignment error */
2166// unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2167// unsigned long rx_missed_errors; /* receiver missed packet */
2168
2169 /* detailed tx_errors */
2170// unsigned long tx_fifo_errors;
2171
2172 return &vptr->stats;
2173}
2174
2175
2176/**
2177 * velocity_ioctl - ioctl entry point
2178 * @dev: network device
2179 * @rq: interface request ioctl
2180 * @cmd: command code
2181 *
2182 * Called when the user issues an ioctl request to the network
2183 * device in question. The velocity interface supports MII.
2184 */
2185
2186static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2187{
2188 struct velocity_info *vptr = dev->priv;
2189 int ret;
2190
2191 /* If we are asked for information and the device is power
2192 saving then we need to bring the device back up to talk to it */
2193
2194 if (!netif_running(dev))
2195 pci_set_power_state(vptr->pdev, PCI_D0);
2196
2197 switch (cmd) {
2198 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2199 case SIOCGMIIREG: /* Read MII PHY register. */
2200 case SIOCSMIIREG: /* Write to MII PHY register. */
2201 ret = velocity_mii_ioctl(dev, rq, cmd);
2202 break;
2203
2204 default:
2205 ret = -EOPNOTSUPP;
2206 }
2207 if (!netif_running(dev))
2208 pci_set_power_state(vptr->pdev, PCI_D3hot);
2209
2210
2211 return ret;
2212}
2213
2214/*
2215 * Definition for our device driver. The PCI layer interface
2216 * uses this to handle all our card discover and plugging
2217 */
2218
2219static struct pci_driver velocity_driver = {
2220 .name = VELOCITY_NAME,
2221 .id_table = velocity_id_table,
2222 .probe = velocity_found1,
2223 .remove = __devexit_p(velocity_remove1),
2224#ifdef CONFIG_PM
2225 .suspend = velocity_suspend,
2226 .resume = velocity_resume,
2227#endif
2228};
2229
2230/**
2231 * velocity_init_module - load time function
2232 *
2233 * Called when the velocity module is loaded. The PCI driver
2234 * is registered with the PCI layer, and in turn will call
2235 * the probe functions for each velocity adapter installed
2236 * in the system.
2237 */
2238
2239static int __init velocity_init_module(void)
2240{
2241 int ret;
2242
2243 velocity_register_notifier();
2244 ret = pci_module_init(&velocity_driver);
2245 if (ret < 0)
2246 velocity_unregister_notifier();
2247 return ret;
2248}
2249
2250/**
2251 * velocity_cleanup - module unload
2252 *
2253 * When the velocity hardware is unloaded this function is called.
2254 * It will clean up the notifiers and the unregister the PCI
2255 * driver interface for this hardware. This in turn cleans up
2256 * all discovered interfaces before returning from the function
2257 */
2258
2259static void __exit velocity_cleanup_module(void)
2260{
2261 velocity_unregister_notifier();
2262 pci_unregister_driver(&velocity_driver);
2263}
2264
2265module_init(velocity_init_module);
2266module_exit(velocity_cleanup_module);
2267
2268
2269/*
2270 * MII access , media link mode setting functions
2271 */
2272
2273
2274/**
2275 * mii_init - set up MII
2276 * @vptr: velocity adapter
2277 * @mii_status: links tatus
2278 *
2279 * Set up the PHY for the current link state.
2280 */
2281
2282static void mii_init(struct velocity_info *vptr, u32 mii_status)
2283{
2284 u16 BMCR;
2285
2286 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
2287 case PHYID_CICADA_CS8201:
2288 /*
2289 * Reset to hardware default
2290 */
2291 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2292 /*
2293 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2294 * off it in NWay-forced half mode for NWay-forced v.s.
2295 * legacy-forced issue.
2296 */
2297 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2298 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2299 else
2300 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2301 /*
2302 * Turn on Link/Activity LED enable bit for CIS8201
2303 */
2304 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
2305 break;
2306 case PHYID_VT3216_32BIT:
2307 case PHYID_VT3216_64BIT:
2308 /*
2309 * Reset to hardware default
2310 */
2311 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2312 /*
2313 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2314 * off it in NWay-forced half mode for NWay-forced v.s.
2315 * legacy-forced issue
2316 */
2317 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2318 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2319 else
2320 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2321 break;
2322
2323 case PHYID_MARVELL_1000:
2324 case PHYID_MARVELL_1000S:
2325 /*
2326 * Assert CRS on Transmit
2327 */
2328 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
2329 /*
2330 * Reset to hardware default
2331 */
2332 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2333 break;
2334 default:
2335 ;
2336 }
2337 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
2338 if (BMCR & BMCR_ISO) {
2339 BMCR &= ~BMCR_ISO;
2340 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
2341 }
2342}
2343
2344/**
2345 * safe_disable_mii_autopoll - autopoll off
2346 * @regs: velocity registers
2347 *
2348 * Turn off the autopoll and wait for it to disable on the chip
2349 */
2350
2351static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
2352{
2353 u16 ww;
2354
2355 /* turn off MAUTO */
2356 writeb(0, &regs->MIICR);
2357 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2358 udelay(1);
2359 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2360 break;
2361 }
2362}
2363
2364/**
2365 * enable_mii_autopoll - turn on autopolling
2366 * @regs: velocity registers
2367 *
2368 * Enable the MII link status autopoll feature on the Velocity
2369 * hardware. Wait for it to enable.
2370 */
2371
2372static void enable_mii_autopoll(struct mac_regs __iomem * regs)
2373{
2374 int ii;
2375
2376 writeb(0, &(regs->MIICR));
2377 writeb(MIIADR_SWMPL, &regs->MIIADR);
2378
2379 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2380 udelay(1);
2381 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2382 break;
2383 }
2384
2385 writeb(MIICR_MAUTO, &regs->MIICR);
2386
2387 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2388 udelay(1);
2389 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2390 break;
2391 }
2392
2393}
2394
2395/**
2396 * velocity_mii_read - read MII data
2397 * @regs: velocity registers
2398 * @index: MII register index
2399 * @data: buffer for received data
2400 *
2401 * Perform a single read of an MII 16bit register. Returns zero
2402 * on success or -ETIMEDOUT if the PHY did not respond.
2403 */
2404
2405static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
2406{
2407 u16 ww;
2408
2409 /*
2410 * Disable MIICR_MAUTO, so that mii addr can be set normally
2411 */
2412 safe_disable_mii_autopoll(regs);
2413
2414 writeb(index, &regs->MIIADR);
2415
2416 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
2417
2418 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2419 if (!(readb(&regs->MIICR) & MIICR_RCMD))
2420 break;
2421 }
2422
2423 *data = readw(&regs->MIIDATA);
2424
2425 enable_mii_autopoll(regs);
2426 if (ww == W_MAX_TIMEOUT)
2427 return -ETIMEDOUT;
2428 return 0;
2429}
2430
2431/**
2432 * velocity_mii_write - write MII data
2433 * @regs: velocity registers
2434 * @index: MII register index
2435 * @data: 16bit data for the MII register
2436 *
2437 * Perform a single write to an MII 16bit register. Returns zero
2438 * on success or -ETIMEDOUT if the PHY did not respond.
2439 */
2440
2441static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
2442{
2443 u16 ww;
2444
2445 /*
2446 * Disable MIICR_MAUTO, so that mii addr can be set normally
2447 */
2448 safe_disable_mii_autopoll(regs);
2449
2450 /* MII reg offset */
2451 writeb(mii_addr, &regs->MIIADR);
2452 /* set MII data */
2453 writew(data, &regs->MIIDATA);
2454
2455 /* turn on MIICR_WCMD */
2456 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
2457
2458 /* W_MAX_TIMEOUT is the timeout period */
2459 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2460 udelay(5);
2461 if (!(readb(&regs->MIICR) & MIICR_WCMD))
2462 break;
2463 }
2464 enable_mii_autopoll(regs);
2465
2466 if (ww == W_MAX_TIMEOUT)
2467 return -ETIMEDOUT;
2468 return 0;
2469}
2470
2471/**
2472 * velocity_get_opt_media_mode - get media selection
2473 * @vptr: velocity adapter
2474 *
2475 * Get the media mode stored in EEPROM or module options and load
2476 * mii_status accordingly. The requested link state information
2477 * is also returned.
2478 */
2479
2480static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
2481{
2482 u32 status = 0;
2483
2484 switch (vptr->options.spd_dpx) {
2485 case SPD_DPX_AUTO:
2486 status = VELOCITY_AUTONEG_ENABLE;
2487 break;
2488 case SPD_DPX_100_FULL:
2489 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
2490 break;
2491 case SPD_DPX_10_FULL:
2492 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
2493 break;
2494 case SPD_DPX_100_HALF:
2495 status = VELOCITY_SPEED_100;
2496 break;
2497 case SPD_DPX_10_HALF:
2498 status = VELOCITY_SPEED_10;
2499 break;
2500 }
2501 vptr->mii_status = status;
2502 return status;
2503}
2504
2505/**
2506 * mii_set_auto_on - autonegotiate on
2507 * @vptr: velocity
2508 *
2509 * Enable autonegotation on this interface
2510 */
2511
2512static void mii_set_auto_on(struct velocity_info *vptr)
2513{
2514 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
2515 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2516 else
2517 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2518}
2519
2520
2521/*
2522static void mii_set_auto_off(struct velocity_info * vptr)
2523{
2524 MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2525}
2526*/
2527
2528/**
2529 * set_mii_flow_control - flow control setup
2530 * @vptr: velocity interface
2531 *
2532 * Set up the flow control on this interface according to
2533 * the supplied user/eeprom options.
2534 */
2535
2536static void set_mii_flow_control(struct velocity_info *vptr)
2537{
2538 /*Enable or Disable PAUSE in ANAR */
2539 switch (vptr->options.flow_cntl) {
2540 case FLOW_CNTL_TX:
2541 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2542 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2543 break;
2544
2545 case FLOW_CNTL_RX:
2546 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2547 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2548 break;
2549
2550 case FLOW_CNTL_TX_RX:
2551 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2552 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2553 break;
2554
2555 case FLOW_CNTL_DISABLE:
2556 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2557 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2558 break;
2559 default:
2560 break;
2561 }
2562}
2563
2564/**
2565 * velocity_set_media_mode - set media mode
2566 * @mii_status: old MII link state
2567 *
2568 * Check the media link state and configure the flow control
2569 * PHY and also velocity hardware setup accordingly. In particular
2570 * we need to set up CD polling and frame bursting.
2571 */
2572
2573static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
2574{
2575 u32 curr_status;
2576 struct mac_regs __iomem * regs = vptr->mac_regs;
2577
2578 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
2579 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
2580
2581 /* Set mii link status */
2582 set_mii_flow_control(vptr);
2583
2584 /*
2585 Check if new status is consisent with current status
2586 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
2587 || (mii_status==curr_status)) {
2588 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
2589 vptr->mii_status=check_connection_type(vptr->mac_regs);
2590 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
2591 return 0;
2592 }
2593 */
2594
2595 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
2596 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2597 }
2598
2599 /*
2600 * If connection type is AUTO
2601 */
2602 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
2603 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
2604 /* clear force MAC mode bit */
2605 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
2606 /* set duplex mode of MAC according to duplex mode of MII */
2607 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
2608 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2609 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
2610
2611 /* enable AUTO-NEGO mode */
2612 mii_set_auto_on(vptr);
2613 } else {
2614 u16 ANAR;
2615 u8 CHIPGCR;
2616
2617 /*
2618 * 1. if it's 3119, disable frame bursting in halfduplex mode
2619 * and enable it in fullduplex mode
2620 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
2621 * 3. only enable CD heart beat counter in 10HD mode
2622 */
2623
2624 /* set force MAC mode bit */
2625 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2626
2627 CHIPGCR = readb(&regs->CHIPGCR);
2628 CHIPGCR &= ~CHIPGCR_FCGMII;
2629
2630 if (mii_status & VELOCITY_DUPLEX_FULL) {
2631 CHIPGCR |= CHIPGCR_FCFDX;
2632 writeb(CHIPGCR, &regs->CHIPGCR);
2633 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
2634 if (vptr->rev_id < REV_ID_VT3216_A0)
2635 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
2636 } else {
2637 CHIPGCR &= ~CHIPGCR_FCFDX;
2638 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
2639 writeb(CHIPGCR, &regs->CHIPGCR);
2640 if (vptr->rev_id < REV_ID_VT3216_A0)
2641 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
2642 }
2643
2644 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2645
2646 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
2647 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
2648 } else {
2649 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
2650 }
2651 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
2652 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
2653 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
2654 if (mii_status & VELOCITY_SPEED_100) {
2655 if (mii_status & VELOCITY_DUPLEX_FULL)
2656 ANAR |= ANAR_TXFD;
2657 else
2658 ANAR |= ANAR_TX;
2659 } else {
2660 if (mii_status & VELOCITY_DUPLEX_FULL)
2661 ANAR |= ANAR_10FD;
2662 else
2663 ANAR |= ANAR_10;
2664 }
2665 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
2666 /* enable AUTO-NEGO mode */
2667 mii_set_auto_on(vptr);
2668 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
2669 }
2670 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
2671 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
2672 return VELOCITY_LINK_CHANGE;
2673}
2674
2675/**
2676 * mii_check_media_mode - check media state
2677 * @regs: velocity registers
2678 *
2679 * Check the current MII status and determine the link status
2680 * accordingly
2681 */
2682
2683static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
2684{
2685 u32 status = 0;
2686 u16 ANAR;
2687
2688 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
2689 status |= VELOCITY_LINK_FAIL;
2690
2691 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
2692 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
2693 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
2694 status |= (VELOCITY_SPEED_1000);
2695 else {
2696 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2697 if (ANAR & ANAR_TXFD)
2698 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
2699 else if (ANAR & ANAR_TX)
2700 status |= VELOCITY_SPEED_100;
2701 else if (ANAR & ANAR_10FD)
2702 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
2703 else
2704 status |= (VELOCITY_SPEED_10);
2705 }
2706
2707 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2708 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2709 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2710 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2711 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2712 status |= VELOCITY_AUTONEG_ENABLE;
2713 }
2714 }
2715
2716 return status;
2717}
2718
2719static u32 check_connection_type(struct mac_regs __iomem * regs)
2720{
2721 u32 status = 0;
2722 u8 PHYSR0;
2723 u16 ANAR;
2724 PHYSR0 = readb(&regs->PHYSR0);
2725
2726 /*
2727 if (!(PHYSR0 & PHYSR0_LINKGD))
2728 status|=VELOCITY_LINK_FAIL;
2729 */
2730
2731 if (PHYSR0 & PHYSR0_FDPX)
2732 status |= VELOCITY_DUPLEX_FULL;
2733
2734 if (PHYSR0 & PHYSR0_SPDG)
2735 status |= VELOCITY_SPEED_1000;
2736 if (PHYSR0 & PHYSR0_SPD10)
2737 status |= VELOCITY_SPEED_10;
2738 else
2739 status |= VELOCITY_SPEED_100;
2740
2741 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2742 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2743 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2744 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2745 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2746 status |= VELOCITY_AUTONEG_ENABLE;
2747 }
2748 }
2749
2750 return status;
2751}
2752
2753/**
2754 * enable_flow_control_ability - flow control
2755 * @vptr: veloity to configure
2756 *
2757 * Set up flow control according to the flow control options
2758 * determined by the eeprom/configuration.
2759 */
2760
2761static void enable_flow_control_ability(struct velocity_info *vptr)
2762{
2763
2764 struct mac_regs __iomem * regs = vptr->mac_regs;
2765
2766 switch (vptr->options.flow_cntl) {
2767
2768 case FLOW_CNTL_DEFAULT:
2769 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
2770 writel(CR0_FDXRFCEN, &regs->CR0Set);
2771 else
2772 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2773
2774 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
2775 writel(CR0_FDXTFCEN, &regs->CR0Set);
2776 else
2777 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2778 break;
2779
2780 case FLOW_CNTL_TX:
2781 writel(CR0_FDXTFCEN, &regs->CR0Set);
2782 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2783 break;
2784
2785 case FLOW_CNTL_RX:
2786 writel(CR0_FDXRFCEN, &regs->CR0Set);
2787 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2788 break;
2789
2790 case FLOW_CNTL_TX_RX:
2791 writel(CR0_FDXTFCEN, &regs->CR0Set);
2792 writel(CR0_FDXRFCEN, &regs->CR0Set);
2793 break;
2794
2795 case FLOW_CNTL_DISABLE:
2796 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2797 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2798 break;
2799
2800 default:
2801 break;
2802 }
2803
2804}
2805
2806
2807/**
2808 * velocity_ethtool_up - pre hook for ethtool
2809 * @dev: network device
2810 *
2811 * Called before an ethtool operation. We need to make sure the
2812 * chip is out of D3 state before we poke at it.
2813 */
2814
2815static int velocity_ethtool_up(struct net_device *dev)
2816{
2817 struct velocity_info *vptr = dev->priv;
2818 if (!netif_running(dev))
2819 pci_set_power_state(vptr->pdev, PCI_D0);
2820 return 0;
2821}
2822
2823/**
2824 * velocity_ethtool_down - post hook for ethtool
2825 * @dev: network device
2826 *
2827 * Called after an ethtool operation. Restore the chip back to D3
2828 * state if it isn't running.
2829 */
2830
2831static void velocity_ethtool_down(struct net_device *dev)
2832{
2833 struct velocity_info *vptr = dev->priv;
2834 if (!netif_running(dev))
2835 pci_set_power_state(vptr->pdev, PCI_D3hot);
2836}
2837
2838static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2839{
2840 struct velocity_info *vptr = dev->priv;
2841 struct mac_regs __iomem * regs = vptr->mac_regs;
2842 u32 status;
2843 status = check_connection_type(vptr->mac_regs);
2844
2845 cmd->supported = SUPPORTED_TP | SUPPORTED_Autoneg | SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full;
2846 if (status & VELOCITY_SPEED_100)
2847 cmd->speed = SPEED_100;
2848 else
2849 cmd->speed = SPEED_10;
2850 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2851 cmd->port = PORT_TP;
2852 cmd->transceiver = XCVR_INTERNAL;
2853 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
2854
2855 if (status & VELOCITY_DUPLEX_FULL)
2856 cmd->duplex = DUPLEX_FULL;
2857 else
2858 cmd->duplex = DUPLEX_HALF;
2859
2860 return 0;
2861}
2862
2863static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2864{
2865 struct velocity_info *vptr = dev->priv;
2866 u32 curr_status;
2867 u32 new_status = 0;
2868 int ret = 0;
2869
2870 curr_status = check_connection_type(vptr->mac_regs);
2871 curr_status &= (~VELOCITY_LINK_FAIL);
2872
2873 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
2874 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
2875 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
2876 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
2877
2878 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
2879 ret = -EINVAL;
2880 else
2881 velocity_set_media_mode(vptr, new_status);
2882
2883 return ret;
2884}
2885
2886static u32 velocity_get_link(struct net_device *dev)
2887{
2888 struct velocity_info *vptr = dev->priv;
2889 struct mac_regs __iomem * regs = vptr->mac_regs;
2890 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 0 : 1;
2891}
2892
2893static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2894{
2895 struct velocity_info *vptr = dev->priv;
2896 strcpy(info->driver, VELOCITY_NAME);
2897 strcpy(info->version, VELOCITY_VERSION);
2898 strcpy(info->bus_info, pci_name(vptr->pdev));
2899}
2900
2901static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2902{
2903 struct velocity_info *vptr = dev->priv;
2904 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
2905 wol->wolopts |= WAKE_MAGIC;
2906 /*
2907 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2908 wol.wolopts|=WAKE_PHY;
2909 */
2910 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2911 wol->wolopts |= WAKE_UCAST;
2912 if (vptr->wol_opts & VELOCITY_WOL_ARP)
2913 wol->wolopts |= WAKE_ARP;
2914 memcpy(&wol->sopass, vptr->wol_passwd, 6);
2915}
2916
2917static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2918{
2919 struct velocity_info *vptr = dev->priv;
2920
2921 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
2922 return -EFAULT;
2923 vptr->wol_opts = VELOCITY_WOL_MAGIC;
2924
2925 /*
2926 if (wol.wolopts & WAKE_PHY) {
2927 vptr->wol_opts|=VELOCITY_WOL_PHY;
2928 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
2929 }
2930 */
2931
2932 if (wol->wolopts & WAKE_MAGIC) {
2933 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
2934 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2935 }
2936 if (wol->wolopts & WAKE_UCAST) {
2937 vptr->wol_opts |= VELOCITY_WOL_UCAST;
2938 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2939 }
2940 if (wol->wolopts & WAKE_ARP) {
2941 vptr->wol_opts |= VELOCITY_WOL_ARP;
2942 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2943 }
2944 memcpy(vptr->wol_passwd, wol->sopass, 6);
2945 return 0;
2946}
2947
2948static u32 velocity_get_msglevel(struct net_device *dev)
2949{
2950 return msglevel;
2951}
2952
2953static void velocity_set_msglevel(struct net_device *dev, u32 value)
2954{
2955 msglevel = value;
2956}
2957
2958static struct ethtool_ops velocity_ethtool_ops = {
2959 .get_settings = velocity_get_settings,
2960 .set_settings = velocity_set_settings,
2961 .get_drvinfo = velocity_get_drvinfo,
2962 .get_wol = velocity_ethtool_get_wol,
2963 .set_wol = velocity_ethtool_set_wol,
2964 .get_msglevel = velocity_get_msglevel,
2965 .set_msglevel = velocity_set_msglevel,
2966 .get_link = velocity_get_link,
2967 .begin = velocity_ethtool_up,
2968 .complete = velocity_ethtool_down
2969};
2970
2971/**
2972 * velocity_mii_ioctl - MII ioctl handler
2973 * @dev: network device
2974 * @ifr: the ifreq block for the ioctl
2975 * @cmd: the command
2976 *
2977 * Process MII requests made via ioctl from the network layer. These
2978 * are used by tools like kudzu to interrogate the link state of the
2979 * hardware
2980 */
2981
2982static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2983{
2984 struct velocity_info *vptr = dev->priv;
2985 struct mac_regs __iomem * regs = vptr->mac_regs;
2986 unsigned long flags;
2987 struct mii_ioctl_data *miidata = if_mii(ifr);
2988 int err;
2989
2990 switch (cmd) {
2991 case SIOCGMIIPHY:
2992 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2993 break;
2994 case SIOCGMIIREG:
2995 if (!capable(CAP_NET_ADMIN))
2996 return -EPERM;
2997 if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2998 return -ETIMEDOUT;
2999 break;
3000 case SIOCSMIIREG:
3001 if (!capable(CAP_NET_ADMIN))
3002 return -EPERM;
3003 spin_lock_irqsave(&vptr->lock, flags);
3004 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
3005 spin_unlock_irqrestore(&vptr->lock, flags);
3006 check_connection_type(vptr->mac_regs);
3007 if(err)
3008 return err;
3009 break;
3010 default:
3011 return -EOPNOTSUPP;
3012 }
3013 return 0;
3014}
3015
3016#ifdef CONFIG_PM
3017
3018/**
3019 * velocity_save_context - save registers
3020 * @vptr: velocity
3021 * @context: buffer for stored context
3022 *
3023 * Retrieve the current configuration from the velocity hardware
3024 * and stash it in the context structure, for use by the context
3025 * restore functions. This allows us to save things we need across
3026 * power down states
3027 */
3028
3029static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
3030{
3031 struct mac_regs __iomem * regs = vptr->mac_regs;
3032 u16 i;
3033 u8 __iomem *ptr = (u8 __iomem *)regs;
3034
3035 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3036 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3037
3038 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3039 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3040
3041 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3042 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3043
3044}
3045
3046/**
3047 * velocity_restore_context - restore registers
3048 * @vptr: velocity
3049 * @context: buffer for stored context
3050 *
3051 * Reload the register configuration from the velocity context
3052 * created by velocity_save_context.
3053 */
3054
3055static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3056{
3057 struct mac_regs __iomem * regs = vptr->mac_regs;
3058 int i;
3059 u8 __iomem *ptr = (u8 __iomem *)regs;
3060
3061 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
3062 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3063 }
3064
3065 /* Just skip cr0 */
3066 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3067 /* Clear */
3068 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3069 /* Set */
3070 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3071 }
3072
3073 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
3074 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3075 }
3076
3077 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
3078 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3079 }
3080
3081 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
3082 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3083 }
3084
3085}
3086
3087/**
3088 * wol_calc_crc - WOL CRC
3089 * @pattern: data pattern
3090 * @mask_pattern: mask
3091 *
3092 * Compute the wake on lan crc hashes for the packet header
3093 * we are interested in.
3094 */
3095
3096static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
3097{
3098 u16 crc = 0xFFFF;
3099 u8 mask;
3100 int i, j;
3101
3102 for (i = 0; i < size; i++) {
3103 mask = mask_pattern[i];
3104
3105 /* Skip this loop if the mask equals to zero */
3106 if (mask == 0x00)
3107 continue;
3108
3109 for (j = 0; j < 8; j++) {
3110 if ((mask & 0x01) == 0) {
3111 mask >>= 1;
3112 continue;
3113 }
3114 mask >>= 1;
3115 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3116 }
3117 }
3118 /* Finally, invert the result once to get the correct data */
3119 crc = ~crc;
3120 return bitreverse(crc) >> 16;
3121}
3122
3123/**
3124 * velocity_set_wol - set up for wake on lan
3125 * @vptr: velocity to set WOL status on
3126 *
3127 * Set a card up for wake on lan either by unicast or by
3128 * ARP packet.
3129 *
3130 * FIXME: check static buffer is safe here
3131 */
3132
3133static int velocity_set_wol(struct velocity_info *vptr)
3134{
3135 struct mac_regs __iomem * regs = vptr->mac_regs;
3136 static u8 buf[256];
3137 int i;
3138
3139 static u32 mask_pattern[2][4] = {
3140 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3141 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3142 };
3143
3144 writew(0xFFFF, &regs->WOLCRClr);
3145 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3146 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3147
3148 /*
3149 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3150 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3151 */
3152
3153 if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
3154 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3155 }
3156
3157 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3158 struct arp_packet *arp = (struct arp_packet *) buf;
3159 u16 crc;
3160 memset(buf, 0, sizeof(struct arp_packet) + 7);
3161
3162 for (i = 0; i < 4; i++)
3163 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3164
3165 arp->type = htons(ETH_P_ARP);
3166 arp->ar_op = htons(1);
3167
3168 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3169
3170 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3171 (u8 *) & mask_pattern[0][0]);
3172
3173 writew(crc, &regs->PatternCRC[0]);
3174 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3175 }
3176
3177 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3178 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3179
3180 writew(0x0FFF, &regs->WOLSRClr);
3181
3182 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3183 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3184 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
3185
3186 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
3187 }
3188
3189 if (vptr->mii_status & VELOCITY_SPEED_1000)
3190 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
3191
3192 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3193
3194 {
3195 u8 GCR;
3196 GCR = readb(&regs->CHIPGCR);
3197 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3198 writeb(GCR, &regs->CHIPGCR);
3199 }
3200
3201 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3202 /* Turn on SWPTAG just before entering power mode */
3203 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3204 /* Go to bed ..... */
3205 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3206
3207 return 0;
3208}
3209
3210static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3211{
3212 struct net_device *dev = pci_get_drvdata(pdev);
3213 struct velocity_info *vptr = netdev_priv(dev);
3214 unsigned long flags;
3215
3216 if(!netif_running(vptr->dev))
3217 return 0;
3218
3219 netif_device_detach(vptr->dev);
3220
3221 spin_lock_irqsave(&vptr->lock, flags);
3222 pci_save_state(pdev);
3223#ifdef ETHTOOL_GWOL
3224 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3225 velocity_get_ip(vptr);
3226 velocity_save_context(vptr, &vptr->context);
3227 velocity_shutdown(vptr);
3228 velocity_set_wol(vptr);
3229 pci_enable_wake(pdev, 3, 1);
3230 pci_set_power_state(pdev, PCI_D3hot);
3231 } else {
3232 velocity_save_context(vptr, &vptr->context);
3233 velocity_shutdown(vptr);
3234 pci_disable_device(pdev);
3235 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3236 }
3237#else
3238 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3239#endif
3240 spin_unlock_irqrestore(&vptr->lock, flags);
3241 return 0;
3242}
3243
3244static int velocity_resume(struct pci_dev *pdev)
3245{
3246 struct net_device *dev = pci_get_drvdata(pdev);
3247 struct velocity_info *vptr = netdev_priv(dev);
3248 unsigned long flags;
3249 int i;
3250
3251 if(!netif_running(vptr->dev))
3252 return 0;
3253
3254 pci_set_power_state(pdev, PCI_D0);
3255 pci_enable_wake(pdev, 0, 0);
3256 pci_restore_state(pdev);
3257
3258 mac_wol_reset(vptr->mac_regs);
3259
3260 spin_lock_irqsave(&vptr->lock, flags);
3261 velocity_restore_context(vptr, &vptr->context);
3262 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3263 mac_disable_int(vptr->mac_regs);
3264
3265 velocity_tx_srv(vptr, 0);
3266
3267 for (i = 0; i < vptr->num_txq; i++) {
3268 if (vptr->td_used[i]) {
3269 mac_tx_queue_wake(vptr->mac_regs, i);
3270 }
3271 }
3272
3273 mac_enable_int(vptr->mac_regs);
3274 spin_unlock_irqrestore(&vptr->lock, flags);
3275 netif_device_attach(vptr->dev);
3276
3277 return 0;
3278}
3279
3280static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3281{
3282 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3283
3284 if (ifa) {
3285 struct net_device *dev = ifa->ifa_dev->dev;
3286 struct velocity_info *vptr;
3287 unsigned long flags;
3288
3289 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3290 list_for_each_entry(vptr, &velocity_dev_list, list) {
3291 if (vptr->dev == dev) {
3292 velocity_get_ip(vptr);
3293 break;
3294 }
3295 }
3296 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3297 }
3298 return NOTIFY_DONE;
3299}
3300#endif