David S. Miller | 0a625fd | 2010-05-19 14:14:04 +1000 | [diff] [blame] | 1 | /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support. |
| 2 | * |
| 3 | * Copyright (C) 2010 David S. Miller <davem@davemloft.net> |
| 4 | */ |
| 5 | |
| 6 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 7 | |
| 8 | #include <linux/kernel.h> |
| 9 | #include <linux/module.h> |
| 10 | #include <linux/of.h> |
| 11 | #include <linux/of_device.h> |
| 12 | #include <linux/cpumask.h> |
| 13 | #include <linux/slab.h> |
| 14 | #include <linux/interrupt.h> |
| 15 | #include <linux/crypto.h> |
| 16 | #include <crypto/md5.h> |
| 17 | #include <crypto/sha.h> |
| 18 | #include <crypto/aes.h> |
| 19 | #include <crypto/des.h> |
| 20 | #include <linux/mutex.h> |
| 21 | #include <linux/delay.h> |
| 22 | #include <linux/sched.h> |
| 23 | |
| 24 | #include <crypto/internal/hash.h> |
| 25 | #include <crypto/scatterwalk.h> |
| 26 | #include <crypto/algapi.h> |
| 27 | |
| 28 | #include <asm/hypervisor.h> |
| 29 | #include <asm/mdesc.h> |
| 30 | |
| 31 | #include "n2_core.h" |
| 32 | |
| 33 | #define DRV_MODULE_NAME "n2_crypto" |
| 34 | #define DRV_MODULE_VERSION "0.1" |
| 35 | #define DRV_MODULE_RELDATE "April 29, 2010" |
| 36 | |
| 37 | static char version[] __devinitdata = |
| 38 | DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; |
| 39 | |
| 40 | MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); |
| 41 | MODULE_DESCRIPTION("Niagara2 Crypto driver"); |
| 42 | MODULE_LICENSE("GPL"); |
| 43 | MODULE_VERSION(DRV_MODULE_VERSION); |
| 44 | |
| 45 | #define N2_CRA_PRIORITY 300 |
| 46 | |
| 47 | static DEFINE_MUTEX(spu_lock); |
| 48 | |
| 49 | struct spu_queue { |
| 50 | cpumask_t sharing; |
| 51 | unsigned long qhandle; |
| 52 | |
| 53 | spinlock_t lock; |
| 54 | u8 q_type; |
| 55 | void *q; |
| 56 | unsigned long head; |
| 57 | unsigned long tail; |
| 58 | struct list_head jobs; |
| 59 | |
| 60 | unsigned long devino; |
| 61 | |
| 62 | char irq_name[32]; |
| 63 | unsigned int irq; |
| 64 | |
| 65 | struct list_head list; |
| 66 | }; |
| 67 | |
| 68 | static struct spu_queue **cpu_to_cwq; |
| 69 | static struct spu_queue **cpu_to_mau; |
| 70 | |
| 71 | static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off) |
| 72 | { |
| 73 | if (q->q_type == HV_NCS_QTYPE_MAU) { |
| 74 | off += MAU_ENTRY_SIZE; |
| 75 | if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES)) |
| 76 | off = 0; |
| 77 | } else { |
| 78 | off += CWQ_ENTRY_SIZE; |
| 79 | if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES)) |
| 80 | off = 0; |
| 81 | } |
| 82 | return off; |
| 83 | } |
| 84 | |
| 85 | struct n2_request_common { |
| 86 | struct list_head entry; |
| 87 | unsigned int offset; |
| 88 | }; |
| 89 | #define OFFSET_NOT_RUNNING (~(unsigned int)0) |
| 90 | |
| 91 | /* An async job request records the final tail value it used in |
| 92 | * n2_request_common->offset, test to see if that offset is in |
| 93 | * the range old_head, new_head, inclusive. |
| 94 | */ |
| 95 | static inline bool job_finished(struct spu_queue *q, unsigned int offset, |
| 96 | unsigned long old_head, unsigned long new_head) |
| 97 | { |
| 98 | if (old_head <= new_head) { |
| 99 | if (offset > old_head && offset <= new_head) |
| 100 | return true; |
| 101 | } else { |
| 102 | if (offset > old_head || offset <= new_head) |
| 103 | return true; |
| 104 | } |
| 105 | return false; |
| 106 | } |
| 107 | |
| 108 | /* When the HEAD marker is unequal to the actual HEAD, we get |
| 109 | * a virtual device INO interrupt. We should process the |
| 110 | * completed CWQ entries and adjust the HEAD marker to clear |
| 111 | * the IRQ. |
| 112 | */ |
| 113 | static irqreturn_t cwq_intr(int irq, void *dev_id) |
| 114 | { |
| 115 | unsigned long off, new_head, hv_ret; |
| 116 | struct spu_queue *q = dev_id; |
| 117 | |
| 118 | pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n", |
| 119 | smp_processor_id(), q->qhandle); |
| 120 | |
| 121 | spin_lock(&q->lock); |
| 122 | |
| 123 | hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head); |
| 124 | |
| 125 | pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n", |
| 126 | smp_processor_id(), new_head, hv_ret); |
| 127 | |
| 128 | for (off = q->head; off != new_head; off = spu_next_offset(q, off)) { |
| 129 | /* XXX ... XXX */ |
| 130 | } |
| 131 | |
| 132 | hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head); |
| 133 | if (hv_ret == HV_EOK) |
| 134 | q->head = new_head; |
| 135 | |
| 136 | spin_unlock(&q->lock); |
| 137 | |
| 138 | return IRQ_HANDLED; |
| 139 | } |
| 140 | |
| 141 | static irqreturn_t mau_intr(int irq, void *dev_id) |
| 142 | { |
| 143 | struct spu_queue *q = dev_id; |
| 144 | unsigned long head, hv_ret; |
| 145 | |
| 146 | spin_lock(&q->lock); |
| 147 | |
| 148 | pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n", |
| 149 | smp_processor_id(), q->qhandle); |
| 150 | |
| 151 | hv_ret = sun4v_ncs_gethead(q->qhandle, &head); |
| 152 | |
| 153 | pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n", |
| 154 | smp_processor_id(), head, hv_ret); |
| 155 | |
| 156 | sun4v_ncs_sethead_marker(q->qhandle, head); |
| 157 | |
| 158 | spin_unlock(&q->lock); |
| 159 | |
| 160 | return IRQ_HANDLED; |
| 161 | } |
| 162 | |
| 163 | static void *spu_queue_next(struct spu_queue *q, void *cur) |
| 164 | { |
| 165 | return q->q + spu_next_offset(q, cur - q->q); |
| 166 | } |
| 167 | |
| 168 | static int spu_queue_num_free(struct spu_queue *q) |
| 169 | { |
| 170 | unsigned long head = q->head; |
| 171 | unsigned long tail = q->tail; |
| 172 | unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES); |
| 173 | unsigned long diff; |
| 174 | |
| 175 | if (head > tail) |
| 176 | diff = head - tail; |
| 177 | else |
| 178 | diff = (end - tail) + head; |
| 179 | |
| 180 | return (diff / CWQ_ENTRY_SIZE) - 1; |
| 181 | } |
| 182 | |
| 183 | static void *spu_queue_alloc(struct spu_queue *q, int num_entries) |
| 184 | { |
| 185 | int avail = spu_queue_num_free(q); |
| 186 | |
| 187 | if (avail >= num_entries) |
| 188 | return q->q + q->tail; |
| 189 | |
| 190 | return NULL; |
| 191 | } |
| 192 | |
| 193 | static unsigned long spu_queue_submit(struct spu_queue *q, void *last) |
| 194 | { |
| 195 | unsigned long hv_ret, new_tail; |
| 196 | |
| 197 | new_tail = spu_next_offset(q, last - q->q); |
| 198 | |
| 199 | hv_ret = sun4v_ncs_settail(q->qhandle, new_tail); |
| 200 | if (hv_ret == HV_EOK) |
| 201 | q->tail = new_tail; |
| 202 | return hv_ret; |
| 203 | } |
| 204 | |
| 205 | static u64 control_word_base(unsigned int len, unsigned int hmac_key_len, |
| 206 | int enc_type, int auth_type, |
| 207 | unsigned int hash_len, |
| 208 | bool sfas, bool sob, bool eob, bool encrypt, |
| 209 | int opcode) |
| 210 | { |
| 211 | u64 word = (len - 1) & CONTROL_LEN; |
| 212 | |
| 213 | word |= ((u64) opcode << CONTROL_OPCODE_SHIFT); |
| 214 | word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT); |
| 215 | word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT); |
| 216 | if (sfas) |
| 217 | word |= CONTROL_STORE_FINAL_AUTH_STATE; |
| 218 | if (sob) |
| 219 | word |= CONTROL_START_OF_BLOCK; |
| 220 | if (eob) |
| 221 | word |= CONTROL_END_OF_BLOCK; |
| 222 | if (encrypt) |
| 223 | word |= CONTROL_ENCRYPT; |
| 224 | if (hmac_key_len) |
| 225 | word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT; |
| 226 | if (hash_len) |
| 227 | word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT; |
| 228 | |
| 229 | return word; |
| 230 | } |
| 231 | |
| 232 | #if 0 |
| 233 | static inline bool n2_should_run_async(struct spu_queue *qp, int this_len) |
| 234 | { |
| 235 | if (this_len >= 64 || |
| 236 | qp->head != qp->tail) |
| 237 | return true; |
| 238 | return false; |
| 239 | } |
| 240 | #endif |
| 241 | |
| 242 | struct n2_base_ctx { |
| 243 | struct list_head list; |
| 244 | }; |
| 245 | |
| 246 | static void n2_base_ctx_init(struct n2_base_ctx *ctx) |
| 247 | { |
| 248 | INIT_LIST_HEAD(&ctx->list); |
| 249 | } |
| 250 | |
| 251 | struct n2_hash_ctx { |
| 252 | struct n2_base_ctx base; |
| 253 | |
| 254 | struct crypto_ahash *fallback; |
| 255 | |
| 256 | /* These next three members must match the layout created by |
| 257 | * crypto_init_shash_ops_async. This allows us to properly |
| 258 | * plumb requests we can't do in hardware down to the fallback |
| 259 | * operation, providing all of the data structures and layouts |
| 260 | * expected by those paths. |
| 261 | */ |
| 262 | struct ahash_request fallback_req; |
| 263 | struct shash_desc fallback_desc; |
| 264 | union { |
| 265 | struct md5_state md5; |
| 266 | struct sha1_state sha1; |
| 267 | struct sha256_state sha256; |
| 268 | } u; |
| 269 | |
| 270 | unsigned char hash_key[64]; |
| 271 | unsigned char keyed_zero_hash[32]; |
| 272 | }; |
| 273 | |
| 274 | static int n2_hash_async_init(struct ahash_request *req) |
| 275 | { |
| 276 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 277 | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| 278 | |
| 279 | ctx->fallback_req.base.tfm = crypto_ahash_tfm(ctx->fallback); |
| 280 | ctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| 281 | |
| 282 | return crypto_ahash_init(&ctx->fallback_req); |
| 283 | } |
| 284 | |
| 285 | static int n2_hash_async_update(struct ahash_request *req) |
| 286 | { |
| 287 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 288 | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| 289 | |
| 290 | ctx->fallback_req.base.tfm = crypto_ahash_tfm(ctx->fallback); |
| 291 | ctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| 292 | ctx->fallback_req.nbytes = req->nbytes; |
| 293 | ctx->fallback_req.src = req->src; |
| 294 | |
| 295 | return crypto_ahash_update(&ctx->fallback_req); |
| 296 | } |
| 297 | |
| 298 | static int n2_hash_async_final(struct ahash_request *req) |
| 299 | { |
| 300 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 301 | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| 302 | |
| 303 | ctx->fallback_req.base.tfm = crypto_ahash_tfm(ctx->fallback); |
| 304 | ctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| 305 | ctx->fallback_req.result = req->result; |
| 306 | |
| 307 | return crypto_ahash_final(&ctx->fallback_req); |
| 308 | } |
| 309 | |
| 310 | static int n2_hash_async_finup(struct ahash_request *req) |
| 311 | { |
| 312 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 313 | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| 314 | |
| 315 | ctx->fallback_req.base.tfm = crypto_ahash_tfm(ctx->fallback); |
| 316 | ctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| 317 | ctx->fallback_req.nbytes = req->nbytes; |
| 318 | ctx->fallback_req.src = req->src; |
| 319 | ctx->fallback_req.result = req->result; |
| 320 | |
| 321 | return crypto_ahash_finup(&ctx->fallback_req); |
| 322 | } |
| 323 | |
| 324 | static int n2_hash_cra_init(struct crypto_tfm *tfm) |
| 325 | { |
| 326 | const char *fallback_driver_name = tfm->__crt_alg->cra_name; |
| 327 | struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); |
| 328 | struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); |
| 329 | struct crypto_ahash *fallback_tfm; |
| 330 | int err; |
| 331 | |
| 332 | fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, |
| 333 | CRYPTO_ALG_NEED_FALLBACK); |
| 334 | if (IS_ERR(fallback_tfm)) { |
| 335 | pr_warning("Fallback driver '%s' could not be loaded!\n", |
| 336 | fallback_driver_name); |
| 337 | err = PTR_ERR(fallback_tfm); |
| 338 | goto out; |
| 339 | } |
| 340 | |
| 341 | ctx->fallback = fallback_tfm; |
| 342 | return 0; |
| 343 | |
| 344 | out: |
| 345 | return err; |
| 346 | } |
| 347 | |
| 348 | static void n2_hash_cra_exit(struct crypto_tfm *tfm) |
| 349 | { |
| 350 | struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); |
| 351 | struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); |
| 352 | |
| 353 | crypto_free_ahash(ctx->fallback); |
| 354 | } |
| 355 | |
| 356 | static unsigned long wait_for_tail(struct spu_queue *qp) |
| 357 | { |
| 358 | unsigned long head, hv_ret; |
| 359 | |
| 360 | do { |
| 361 | hv_ret = sun4v_ncs_gethead(qp->qhandle, &head); |
| 362 | if (hv_ret != HV_EOK) { |
| 363 | pr_err("Hypervisor error on gethead\n"); |
| 364 | break; |
| 365 | } |
| 366 | if (head == qp->tail) { |
| 367 | qp->head = head; |
| 368 | break; |
| 369 | } |
| 370 | } while (1); |
| 371 | return hv_ret; |
| 372 | } |
| 373 | |
| 374 | static unsigned long submit_and_wait_for_tail(struct spu_queue *qp, |
| 375 | struct cwq_initial_entry *ent) |
| 376 | { |
| 377 | unsigned long hv_ret = spu_queue_submit(qp, ent); |
| 378 | |
| 379 | if (hv_ret == HV_EOK) |
| 380 | hv_ret = wait_for_tail(qp); |
| 381 | |
| 382 | return hv_ret; |
| 383 | } |
| 384 | |
| 385 | static int n2_hash_async_digest(struct ahash_request *req, |
| 386 | unsigned int auth_type, unsigned int digest_size, |
| 387 | unsigned int result_size, void *hash_loc) |
| 388 | { |
| 389 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 390 | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| 391 | struct cwq_initial_entry *ent; |
| 392 | struct crypto_hash_walk walk; |
| 393 | struct spu_queue *qp; |
| 394 | unsigned long flags; |
| 395 | int err = -ENODEV; |
| 396 | int nbytes, cpu; |
| 397 | |
| 398 | /* The total effective length of the operation may not |
| 399 | * exceed 2^16. |
| 400 | */ |
| 401 | if (unlikely(req->nbytes > (1 << 16))) { |
| 402 | ctx->fallback_req.base.tfm = crypto_ahash_tfm(ctx->fallback); |
| 403 | ctx->fallback_req.base.flags = |
| 404 | req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; |
| 405 | ctx->fallback_req.nbytes = req->nbytes; |
| 406 | ctx->fallback_req.src = req->src; |
| 407 | ctx->fallback_req.result = req->result; |
| 408 | |
| 409 | return crypto_ahash_digest(&ctx->fallback_req); |
| 410 | } |
| 411 | |
| 412 | n2_base_ctx_init(&ctx->base); |
| 413 | |
| 414 | nbytes = crypto_hash_walk_first(req, &walk); |
| 415 | |
| 416 | cpu = get_cpu(); |
| 417 | qp = cpu_to_cwq[cpu]; |
| 418 | if (!qp) |
| 419 | goto out; |
| 420 | |
| 421 | spin_lock_irqsave(&qp->lock, flags); |
| 422 | |
| 423 | /* XXX can do better, improve this later by doing a by-hand scatterlist |
| 424 | * XXX walk, etc. |
| 425 | */ |
| 426 | ent = qp->q + qp->tail; |
| 427 | |
| 428 | ent->control = control_word_base(nbytes, 0, 0, |
| 429 | auth_type, digest_size, |
| 430 | false, true, false, false, |
| 431 | OPCODE_INPLACE_BIT | |
| 432 | OPCODE_AUTH_MAC); |
| 433 | ent->src_addr = __pa(walk.data); |
| 434 | ent->auth_key_addr = 0UL; |
| 435 | ent->auth_iv_addr = __pa(hash_loc); |
| 436 | ent->final_auth_state_addr = 0UL; |
| 437 | ent->enc_key_addr = 0UL; |
| 438 | ent->enc_iv_addr = 0UL; |
| 439 | ent->dest_addr = __pa(hash_loc); |
| 440 | |
| 441 | nbytes = crypto_hash_walk_done(&walk, 0); |
| 442 | while (nbytes > 0) { |
| 443 | ent = spu_queue_next(qp, ent); |
| 444 | |
| 445 | ent->control = (nbytes - 1); |
| 446 | ent->src_addr = __pa(walk.data); |
| 447 | ent->auth_key_addr = 0UL; |
| 448 | ent->auth_iv_addr = 0UL; |
| 449 | ent->final_auth_state_addr = 0UL; |
| 450 | ent->enc_key_addr = 0UL; |
| 451 | ent->enc_iv_addr = 0UL; |
| 452 | ent->dest_addr = 0UL; |
| 453 | |
| 454 | nbytes = crypto_hash_walk_done(&walk, 0); |
| 455 | } |
| 456 | ent->control |= CONTROL_END_OF_BLOCK; |
| 457 | |
| 458 | if (submit_and_wait_for_tail(qp, ent) != HV_EOK) |
| 459 | err = -EINVAL; |
| 460 | else |
| 461 | err = 0; |
| 462 | |
| 463 | spin_unlock_irqrestore(&qp->lock, flags); |
| 464 | |
| 465 | if (!err) |
| 466 | memcpy(req->result, hash_loc, result_size); |
| 467 | out: |
| 468 | put_cpu(); |
| 469 | |
| 470 | return err; |
| 471 | } |
| 472 | |
| 473 | static int n2_md5_async_digest(struct ahash_request *req) |
| 474 | { |
| 475 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 476 | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| 477 | struct md5_state *m = &ctx->u.md5; |
| 478 | |
| 479 | if (unlikely(req->nbytes == 0)) { |
| 480 | static const char md5_zero[MD5_DIGEST_SIZE] = { |
| 481 | 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, |
| 482 | 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e, |
| 483 | }; |
| 484 | |
| 485 | memcpy(req->result, md5_zero, MD5_DIGEST_SIZE); |
| 486 | return 0; |
| 487 | } |
| 488 | m->hash[0] = cpu_to_le32(0x67452301); |
| 489 | m->hash[1] = cpu_to_le32(0xefcdab89); |
| 490 | m->hash[2] = cpu_to_le32(0x98badcfe); |
| 491 | m->hash[3] = cpu_to_le32(0x10325476); |
| 492 | |
| 493 | return n2_hash_async_digest(req, AUTH_TYPE_MD5, |
| 494 | MD5_DIGEST_SIZE, MD5_DIGEST_SIZE, |
| 495 | m->hash); |
| 496 | } |
| 497 | |
| 498 | static int n2_sha1_async_digest(struct ahash_request *req) |
| 499 | { |
| 500 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 501 | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| 502 | struct sha1_state *s = &ctx->u.sha1; |
| 503 | |
| 504 | if (unlikely(req->nbytes == 0)) { |
| 505 | static const char sha1_zero[SHA1_DIGEST_SIZE] = { |
| 506 | 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32, |
| 507 | 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8, |
| 508 | 0x07, 0x09 |
| 509 | }; |
| 510 | |
| 511 | memcpy(req->result, sha1_zero, SHA1_DIGEST_SIZE); |
| 512 | return 0; |
| 513 | } |
| 514 | s->state[0] = SHA1_H0; |
| 515 | s->state[1] = SHA1_H1; |
| 516 | s->state[2] = SHA1_H2; |
| 517 | s->state[3] = SHA1_H3; |
| 518 | s->state[4] = SHA1_H4; |
| 519 | |
| 520 | return n2_hash_async_digest(req, AUTH_TYPE_SHA1, |
| 521 | SHA1_DIGEST_SIZE, SHA1_DIGEST_SIZE, |
| 522 | s->state); |
| 523 | } |
| 524 | |
| 525 | static int n2_sha256_async_digest(struct ahash_request *req) |
| 526 | { |
| 527 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 528 | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| 529 | struct sha256_state *s = &ctx->u.sha256; |
| 530 | |
| 531 | if (req->nbytes == 0) { |
| 532 | static const char sha256_zero[SHA256_DIGEST_SIZE] = { |
| 533 | 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, |
| 534 | 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, |
| 535 | 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, |
| 536 | 0x1b, 0x78, 0x52, 0xb8, 0x55 |
| 537 | }; |
| 538 | |
| 539 | memcpy(req->result, sha256_zero, SHA256_DIGEST_SIZE); |
| 540 | return 0; |
| 541 | } |
| 542 | s->state[0] = SHA256_H0; |
| 543 | s->state[1] = SHA256_H1; |
| 544 | s->state[2] = SHA256_H2; |
| 545 | s->state[3] = SHA256_H3; |
| 546 | s->state[4] = SHA256_H4; |
| 547 | s->state[5] = SHA256_H5; |
| 548 | s->state[6] = SHA256_H6; |
| 549 | s->state[7] = SHA256_H7; |
| 550 | |
| 551 | return n2_hash_async_digest(req, AUTH_TYPE_SHA256, |
| 552 | SHA256_DIGEST_SIZE, SHA256_DIGEST_SIZE, |
| 553 | s->state); |
| 554 | } |
| 555 | |
| 556 | static int n2_sha224_async_digest(struct ahash_request *req) |
| 557 | { |
| 558 | struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| 559 | struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); |
| 560 | struct sha256_state *s = &ctx->u.sha256; |
| 561 | |
| 562 | if (req->nbytes == 0) { |
| 563 | static const char sha224_zero[SHA224_DIGEST_SIZE] = { |
| 564 | 0xd1, 0x4a, 0x02, 0x8c, 0x2a, 0x3a, 0x2b, 0xc9, 0x47, |
| 565 | 0x61, 0x02, 0xbb, 0x28, 0x82, 0x34, 0xc4, 0x15, 0xa2, |
| 566 | 0xb0, 0x1f, 0x82, 0x8e, 0xa6, 0x2a, 0xc5, 0xb3, 0xe4, |
| 567 | 0x2f |
| 568 | }; |
| 569 | |
| 570 | memcpy(req->result, sha224_zero, SHA224_DIGEST_SIZE); |
| 571 | return 0; |
| 572 | } |
| 573 | s->state[0] = SHA224_H0; |
| 574 | s->state[1] = SHA224_H1; |
| 575 | s->state[2] = SHA224_H2; |
| 576 | s->state[3] = SHA224_H3; |
| 577 | s->state[4] = SHA224_H4; |
| 578 | s->state[5] = SHA224_H5; |
| 579 | s->state[6] = SHA224_H6; |
| 580 | s->state[7] = SHA224_H7; |
| 581 | |
| 582 | return n2_hash_async_digest(req, AUTH_TYPE_SHA256, |
| 583 | SHA256_DIGEST_SIZE, SHA224_DIGEST_SIZE, |
| 584 | s->state); |
| 585 | } |
| 586 | |
| 587 | struct n2_cipher_context { |
| 588 | int key_len; |
| 589 | int enc_type; |
| 590 | union { |
| 591 | u8 aes[AES_MAX_KEY_SIZE]; |
| 592 | u8 des[DES_KEY_SIZE]; |
| 593 | u8 des3[3 * DES_KEY_SIZE]; |
| 594 | u8 arc4[258]; /* S-box, X, Y */ |
| 595 | } key; |
| 596 | }; |
| 597 | |
| 598 | #define N2_CHUNK_ARR_LEN 16 |
| 599 | |
| 600 | struct n2_crypto_chunk { |
| 601 | struct list_head entry; |
| 602 | unsigned long iv_paddr : 44; |
| 603 | unsigned long arr_len : 20; |
| 604 | unsigned long dest_paddr; |
| 605 | unsigned long dest_final; |
| 606 | struct { |
| 607 | unsigned long src_paddr : 44; |
| 608 | unsigned long src_len : 20; |
| 609 | } arr[N2_CHUNK_ARR_LEN]; |
| 610 | }; |
| 611 | |
| 612 | struct n2_request_context { |
| 613 | struct ablkcipher_walk walk; |
| 614 | struct list_head chunk_list; |
| 615 | struct n2_crypto_chunk chunk; |
| 616 | u8 temp_iv[16]; |
| 617 | }; |
| 618 | |
| 619 | /* The SPU allows some level of flexibility for partial cipher blocks |
| 620 | * being specified in a descriptor. |
| 621 | * |
| 622 | * It merely requires that every descriptor's length field is at least |
| 623 | * as large as the cipher block size. This means that a cipher block |
| 624 | * can span at most 2 descriptors. However, this does not allow a |
| 625 | * partial block to span into the final descriptor as that would |
| 626 | * violate the rule (since every descriptor's length must be at lest |
| 627 | * the block size). So, for example, assuming an 8 byte block size: |
| 628 | * |
| 629 | * 0xe --> 0xa --> 0x8 |
| 630 | * |
| 631 | * is a valid length sequence, whereas: |
| 632 | * |
| 633 | * 0xe --> 0xb --> 0x7 |
| 634 | * |
| 635 | * is not a valid sequence. |
| 636 | */ |
| 637 | |
| 638 | struct n2_cipher_alg { |
| 639 | struct list_head entry; |
| 640 | u8 enc_type; |
| 641 | struct crypto_alg alg; |
| 642 | }; |
| 643 | |
| 644 | static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm) |
| 645 | { |
| 646 | struct crypto_alg *alg = tfm->__crt_alg; |
| 647 | |
| 648 | return container_of(alg, struct n2_cipher_alg, alg); |
| 649 | } |
| 650 | |
| 651 | struct n2_cipher_request_context { |
| 652 | struct ablkcipher_walk walk; |
| 653 | }; |
| 654 | |
| 655 | static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| 656 | unsigned int keylen) |
| 657 | { |
| 658 | struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| 659 | struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); |
| 660 | struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); |
| 661 | |
| 662 | ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK); |
| 663 | |
| 664 | switch (keylen) { |
| 665 | case AES_KEYSIZE_128: |
| 666 | ctx->enc_type |= ENC_TYPE_ALG_AES128; |
| 667 | break; |
| 668 | case AES_KEYSIZE_192: |
| 669 | ctx->enc_type |= ENC_TYPE_ALG_AES192; |
| 670 | break; |
| 671 | case AES_KEYSIZE_256: |
| 672 | ctx->enc_type |= ENC_TYPE_ALG_AES256; |
| 673 | break; |
| 674 | default: |
| 675 | crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 676 | return -EINVAL; |
| 677 | } |
| 678 | |
| 679 | ctx->key_len = keylen; |
| 680 | memcpy(ctx->key.aes, key, keylen); |
| 681 | return 0; |
| 682 | } |
| 683 | |
| 684 | static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| 685 | unsigned int keylen) |
| 686 | { |
| 687 | struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| 688 | struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); |
| 689 | struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); |
| 690 | u32 tmp[DES_EXPKEY_WORDS]; |
| 691 | int err; |
| 692 | |
| 693 | ctx->enc_type = n2alg->enc_type; |
| 694 | |
| 695 | if (keylen != DES_KEY_SIZE) { |
| 696 | crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 697 | return -EINVAL; |
| 698 | } |
| 699 | |
| 700 | err = des_ekey(tmp, key); |
| 701 | if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) { |
| 702 | tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; |
| 703 | return -EINVAL; |
| 704 | } |
| 705 | |
| 706 | ctx->key_len = keylen; |
| 707 | memcpy(ctx->key.des, key, keylen); |
| 708 | return 0; |
| 709 | } |
| 710 | |
| 711 | static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| 712 | unsigned int keylen) |
| 713 | { |
| 714 | struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| 715 | struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); |
| 716 | struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); |
| 717 | |
| 718 | ctx->enc_type = n2alg->enc_type; |
| 719 | |
| 720 | if (keylen != (3 * DES_KEY_SIZE)) { |
| 721 | crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 722 | return -EINVAL; |
| 723 | } |
| 724 | ctx->key_len = keylen; |
| 725 | memcpy(ctx->key.des3, key, keylen); |
| 726 | return 0; |
| 727 | } |
| 728 | |
| 729 | static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| 730 | unsigned int keylen) |
| 731 | { |
| 732 | struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); |
| 733 | struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); |
| 734 | struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm); |
| 735 | u8 *s = ctx->key.arc4; |
| 736 | u8 *x = s + 256; |
| 737 | u8 *y = x + 1; |
| 738 | int i, j, k; |
| 739 | |
| 740 | ctx->enc_type = n2alg->enc_type; |
| 741 | |
| 742 | j = k = 0; |
| 743 | *x = 0; |
| 744 | *y = 0; |
| 745 | for (i = 0; i < 256; i++) |
| 746 | s[i] = i; |
| 747 | for (i = 0; i < 256; i++) { |
| 748 | u8 a = s[i]; |
| 749 | j = (j + key[k] + a) & 0xff; |
| 750 | s[i] = s[j]; |
| 751 | s[j] = a; |
| 752 | if (++k >= keylen) |
| 753 | k = 0; |
| 754 | } |
| 755 | |
| 756 | return 0; |
| 757 | } |
| 758 | |
| 759 | static inline int cipher_descriptor_len(int nbytes, unsigned int block_size) |
| 760 | { |
| 761 | int this_len = nbytes; |
| 762 | |
| 763 | this_len -= (nbytes & (block_size - 1)); |
| 764 | return this_len > (1 << 16) ? (1 << 16) : this_len; |
| 765 | } |
| 766 | |
| 767 | static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp, |
| 768 | struct spu_queue *qp, bool encrypt) |
| 769 | { |
| 770 | struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm); |
| 771 | struct cwq_initial_entry *ent; |
| 772 | bool in_place; |
| 773 | int i; |
| 774 | |
| 775 | ent = spu_queue_alloc(qp, cp->arr_len); |
| 776 | if (!ent) { |
| 777 | pr_info("queue_alloc() of %d fails\n", |
| 778 | cp->arr_len); |
| 779 | return -EBUSY; |
| 780 | } |
| 781 | |
| 782 | in_place = (cp->dest_paddr == cp->arr[0].src_paddr); |
| 783 | |
| 784 | ent->control = control_word_base(cp->arr[0].src_len, |
| 785 | 0, ctx->enc_type, 0, 0, |
| 786 | false, true, false, encrypt, |
| 787 | OPCODE_ENCRYPT | |
| 788 | (in_place ? OPCODE_INPLACE_BIT : 0)); |
| 789 | ent->src_addr = cp->arr[0].src_paddr; |
| 790 | ent->auth_key_addr = 0UL; |
| 791 | ent->auth_iv_addr = 0UL; |
| 792 | ent->final_auth_state_addr = 0UL; |
| 793 | ent->enc_key_addr = __pa(&ctx->key); |
| 794 | ent->enc_iv_addr = cp->iv_paddr; |
| 795 | ent->dest_addr = (in_place ? 0UL : cp->dest_paddr); |
| 796 | |
| 797 | for (i = 1; i < cp->arr_len; i++) { |
| 798 | ent = spu_queue_next(qp, ent); |
| 799 | |
| 800 | ent->control = cp->arr[i].src_len - 1; |
| 801 | ent->src_addr = cp->arr[i].src_paddr; |
| 802 | ent->auth_key_addr = 0UL; |
| 803 | ent->auth_iv_addr = 0UL; |
| 804 | ent->final_auth_state_addr = 0UL; |
| 805 | ent->enc_key_addr = 0UL; |
| 806 | ent->enc_iv_addr = 0UL; |
| 807 | ent->dest_addr = 0UL; |
| 808 | } |
| 809 | ent->control |= CONTROL_END_OF_BLOCK; |
| 810 | |
| 811 | return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0; |
| 812 | } |
| 813 | |
| 814 | static int n2_compute_chunks(struct ablkcipher_request *req) |
| 815 | { |
| 816 | struct n2_request_context *rctx = ablkcipher_request_ctx(req); |
| 817 | struct ablkcipher_walk *walk = &rctx->walk; |
| 818 | struct n2_crypto_chunk *chunk; |
| 819 | unsigned long dest_prev; |
| 820 | unsigned int tot_len; |
| 821 | bool prev_in_place; |
| 822 | int err, nbytes; |
| 823 | |
| 824 | ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes); |
| 825 | err = ablkcipher_walk_phys(req, walk); |
| 826 | if (err) |
| 827 | return err; |
| 828 | |
| 829 | INIT_LIST_HEAD(&rctx->chunk_list); |
| 830 | |
| 831 | chunk = &rctx->chunk; |
| 832 | INIT_LIST_HEAD(&chunk->entry); |
| 833 | |
| 834 | chunk->iv_paddr = 0UL; |
| 835 | chunk->arr_len = 0; |
| 836 | chunk->dest_paddr = 0UL; |
| 837 | |
| 838 | prev_in_place = false; |
| 839 | dest_prev = ~0UL; |
| 840 | tot_len = 0; |
| 841 | |
| 842 | while ((nbytes = walk->nbytes) != 0) { |
| 843 | unsigned long dest_paddr, src_paddr; |
| 844 | bool in_place; |
| 845 | int this_len; |
| 846 | |
| 847 | src_paddr = (page_to_phys(walk->src.page) + |
| 848 | walk->src.offset); |
| 849 | dest_paddr = (page_to_phys(walk->dst.page) + |
| 850 | walk->dst.offset); |
| 851 | in_place = (src_paddr == dest_paddr); |
| 852 | this_len = cipher_descriptor_len(nbytes, walk->blocksize); |
| 853 | |
| 854 | if (chunk->arr_len != 0) { |
| 855 | if (in_place != prev_in_place || |
| 856 | (!prev_in_place && |
| 857 | dest_paddr != dest_prev) || |
| 858 | chunk->arr_len == N2_CHUNK_ARR_LEN || |
| 859 | tot_len + this_len > (1 << 16)) { |
| 860 | chunk->dest_final = dest_prev; |
| 861 | list_add_tail(&chunk->entry, |
| 862 | &rctx->chunk_list); |
| 863 | chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC); |
| 864 | if (!chunk) { |
| 865 | err = -ENOMEM; |
| 866 | break; |
| 867 | } |
| 868 | INIT_LIST_HEAD(&chunk->entry); |
| 869 | } |
| 870 | } |
| 871 | if (chunk->arr_len == 0) { |
| 872 | chunk->dest_paddr = dest_paddr; |
| 873 | tot_len = 0; |
| 874 | } |
| 875 | chunk->arr[chunk->arr_len].src_paddr = src_paddr; |
| 876 | chunk->arr[chunk->arr_len].src_len = this_len; |
| 877 | chunk->arr_len++; |
| 878 | |
| 879 | dest_prev = dest_paddr + this_len; |
| 880 | prev_in_place = in_place; |
| 881 | tot_len += this_len; |
| 882 | |
| 883 | err = ablkcipher_walk_done(req, walk, nbytes - this_len); |
| 884 | if (err) |
| 885 | break; |
| 886 | } |
| 887 | if (!err && chunk->arr_len != 0) { |
| 888 | chunk->dest_final = dest_prev; |
| 889 | list_add_tail(&chunk->entry, &rctx->chunk_list); |
| 890 | } |
| 891 | |
| 892 | return err; |
| 893 | } |
| 894 | |
| 895 | static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv) |
| 896 | { |
| 897 | struct n2_request_context *rctx = ablkcipher_request_ctx(req); |
| 898 | struct n2_crypto_chunk *c, *tmp; |
| 899 | |
| 900 | if (final_iv) |
| 901 | memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize); |
| 902 | |
| 903 | ablkcipher_walk_complete(&rctx->walk); |
| 904 | list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { |
| 905 | list_del(&c->entry); |
| 906 | if (unlikely(c != &rctx->chunk)) |
| 907 | kfree(c); |
| 908 | } |
| 909 | |
| 910 | } |
| 911 | |
| 912 | static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt) |
| 913 | { |
| 914 | struct n2_request_context *rctx = ablkcipher_request_ctx(req); |
| 915 | struct crypto_tfm *tfm = req->base.tfm; |
| 916 | int err = n2_compute_chunks(req); |
| 917 | struct n2_crypto_chunk *c, *tmp; |
| 918 | unsigned long flags, hv_ret; |
| 919 | struct spu_queue *qp; |
| 920 | |
| 921 | if (err) |
| 922 | return err; |
| 923 | |
| 924 | qp = cpu_to_cwq[get_cpu()]; |
| 925 | err = -ENODEV; |
| 926 | if (!qp) |
| 927 | goto out; |
| 928 | |
| 929 | spin_lock_irqsave(&qp->lock, flags); |
| 930 | |
| 931 | list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { |
| 932 | err = __n2_crypt_chunk(tfm, c, qp, encrypt); |
| 933 | if (err) |
| 934 | break; |
| 935 | list_del(&c->entry); |
| 936 | if (unlikely(c != &rctx->chunk)) |
| 937 | kfree(c); |
| 938 | } |
| 939 | if (!err) { |
| 940 | hv_ret = wait_for_tail(qp); |
| 941 | if (hv_ret != HV_EOK) |
| 942 | err = -EINVAL; |
| 943 | } |
| 944 | |
| 945 | spin_unlock_irqrestore(&qp->lock, flags); |
| 946 | |
| 947 | put_cpu(); |
| 948 | |
| 949 | out: |
| 950 | n2_chunk_complete(req, NULL); |
| 951 | return err; |
| 952 | } |
| 953 | |
| 954 | static int n2_encrypt_ecb(struct ablkcipher_request *req) |
| 955 | { |
| 956 | return n2_do_ecb(req, true); |
| 957 | } |
| 958 | |
| 959 | static int n2_decrypt_ecb(struct ablkcipher_request *req) |
| 960 | { |
| 961 | return n2_do_ecb(req, false); |
| 962 | } |
| 963 | |
| 964 | static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt) |
| 965 | { |
| 966 | struct n2_request_context *rctx = ablkcipher_request_ctx(req); |
| 967 | struct crypto_tfm *tfm = req->base.tfm; |
| 968 | unsigned long flags, hv_ret, iv_paddr; |
| 969 | int err = n2_compute_chunks(req); |
| 970 | struct n2_crypto_chunk *c, *tmp; |
| 971 | struct spu_queue *qp; |
| 972 | void *final_iv_addr; |
| 973 | |
| 974 | final_iv_addr = NULL; |
| 975 | |
| 976 | if (err) |
| 977 | return err; |
| 978 | |
| 979 | qp = cpu_to_cwq[get_cpu()]; |
| 980 | err = -ENODEV; |
| 981 | if (!qp) |
| 982 | goto out; |
| 983 | |
| 984 | spin_lock_irqsave(&qp->lock, flags); |
| 985 | |
| 986 | if (encrypt) { |
| 987 | iv_paddr = __pa(rctx->walk.iv); |
| 988 | list_for_each_entry_safe(c, tmp, &rctx->chunk_list, |
| 989 | entry) { |
| 990 | c->iv_paddr = iv_paddr; |
| 991 | err = __n2_crypt_chunk(tfm, c, qp, true); |
| 992 | if (err) |
| 993 | break; |
| 994 | iv_paddr = c->dest_final - rctx->walk.blocksize; |
| 995 | list_del(&c->entry); |
| 996 | if (unlikely(c != &rctx->chunk)) |
| 997 | kfree(c); |
| 998 | } |
| 999 | final_iv_addr = __va(iv_paddr); |
| 1000 | } else { |
| 1001 | list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list, |
| 1002 | entry) { |
| 1003 | if (c == &rctx->chunk) { |
| 1004 | iv_paddr = __pa(rctx->walk.iv); |
| 1005 | } else { |
| 1006 | iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr + |
| 1007 | tmp->arr[tmp->arr_len-1].src_len - |
| 1008 | rctx->walk.blocksize); |
| 1009 | } |
| 1010 | if (!final_iv_addr) { |
| 1011 | unsigned long pa; |
| 1012 | |
| 1013 | pa = (c->arr[c->arr_len-1].src_paddr + |
| 1014 | c->arr[c->arr_len-1].src_len - |
| 1015 | rctx->walk.blocksize); |
| 1016 | final_iv_addr = rctx->temp_iv; |
| 1017 | memcpy(rctx->temp_iv, __va(pa), |
| 1018 | rctx->walk.blocksize); |
| 1019 | } |
| 1020 | c->iv_paddr = iv_paddr; |
| 1021 | err = __n2_crypt_chunk(tfm, c, qp, false); |
| 1022 | if (err) |
| 1023 | break; |
| 1024 | list_del(&c->entry); |
| 1025 | if (unlikely(c != &rctx->chunk)) |
| 1026 | kfree(c); |
| 1027 | } |
| 1028 | } |
| 1029 | if (!err) { |
| 1030 | hv_ret = wait_for_tail(qp); |
| 1031 | if (hv_ret != HV_EOK) |
| 1032 | err = -EINVAL; |
| 1033 | } |
| 1034 | |
| 1035 | spin_unlock_irqrestore(&qp->lock, flags); |
| 1036 | |
| 1037 | put_cpu(); |
| 1038 | |
| 1039 | out: |
| 1040 | n2_chunk_complete(req, err ? NULL : final_iv_addr); |
| 1041 | return err; |
| 1042 | } |
| 1043 | |
| 1044 | static int n2_encrypt_chaining(struct ablkcipher_request *req) |
| 1045 | { |
| 1046 | return n2_do_chaining(req, true); |
| 1047 | } |
| 1048 | |
| 1049 | static int n2_decrypt_chaining(struct ablkcipher_request *req) |
| 1050 | { |
| 1051 | return n2_do_chaining(req, false); |
| 1052 | } |
| 1053 | |
| 1054 | struct n2_cipher_tmpl { |
| 1055 | const char *name; |
| 1056 | const char *drv_name; |
| 1057 | u8 block_size; |
| 1058 | u8 enc_type; |
| 1059 | struct ablkcipher_alg ablkcipher; |
| 1060 | }; |
| 1061 | |
| 1062 | static const struct n2_cipher_tmpl cipher_tmpls[] = { |
| 1063 | /* ARC4: only ECB is supported (chaining bits ignored) */ |
| 1064 | { .name = "ecb(arc4)", |
| 1065 | .drv_name = "ecb-arc4", |
| 1066 | .block_size = 1, |
| 1067 | .enc_type = (ENC_TYPE_ALG_RC4_STREAM | |
| 1068 | ENC_TYPE_CHAINING_ECB), |
| 1069 | .ablkcipher = { |
| 1070 | .min_keysize = 1, |
| 1071 | .max_keysize = 256, |
| 1072 | .setkey = n2_arc4_setkey, |
| 1073 | .encrypt = n2_encrypt_ecb, |
| 1074 | .decrypt = n2_decrypt_ecb, |
| 1075 | }, |
| 1076 | }, |
| 1077 | |
| 1078 | /* DES: ECB CBC and CFB are supported */ |
| 1079 | { .name = "ecb(des)", |
| 1080 | .drv_name = "ecb-des", |
| 1081 | .block_size = DES_BLOCK_SIZE, |
| 1082 | .enc_type = (ENC_TYPE_ALG_DES | |
| 1083 | ENC_TYPE_CHAINING_ECB), |
| 1084 | .ablkcipher = { |
| 1085 | .min_keysize = DES_KEY_SIZE, |
| 1086 | .max_keysize = DES_KEY_SIZE, |
| 1087 | .setkey = n2_des_setkey, |
| 1088 | .encrypt = n2_encrypt_ecb, |
| 1089 | .decrypt = n2_decrypt_ecb, |
| 1090 | }, |
| 1091 | }, |
| 1092 | { .name = "cbc(des)", |
| 1093 | .drv_name = "cbc-des", |
| 1094 | .block_size = DES_BLOCK_SIZE, |
| 1095 | .enc_type = (ENC_TYPE_ALG_DES | |
| 1096 | ENC_TYPE_CHAINING_CBC), |
| 1097 | .ablkcipher = { |
| 1098 | .ivsize = DES_BLOCK_SIZE, |
| 1099 | .min_keysize = DES_KEY_SIZE, |
| 1100 | .max_keysize = DES_KEY_SIZE, |
| 1101 | .setkey = n2_des_setkey, |
| 1102 | .encrypt = n2_encrypt_chaining, |
| 1103 | .decrypt = n2_decrypt_chaining, |
| 1104 | }, |
| 1105 | }, |
| 1106 | { .name = "cfb(des)", |
| 1107 | .drv_name = "cfb-des", |
| 1108 | .block_size = DES_BLOCK_SIZE, |
| 1109 | .enc_type = (ENC_TYPE_ALG_DES | |
| 1110 | ENC_TYPE_CHAINING_CFB), |
| 1111 | .ablkcipher = { |
| 1112 | .min_keysize = DES_KEY_SIZE, |
| 1113 | .max_keysize = DES_KEY_SIZE, |
| 1114 | .setkey = n2_des_setkey, |
| 1115 | .encrypt = n2_encrypt_chaining, |
| 1116 | .decrypt = n2_decrypt_chaining, |
| 1117 | }, |
| 1118 | }, |
| 1119 | |
| 1120 | /* 3DES: ECB CBC and CFB are supported */ |
| 1121 | { .name = "ecb(des3_ede)", |
| 1122 | .drv_name = "ecb-3des", |
| 1123 | .block_size = DES_BLOCK_SIZE, |
| 1124 | .enc_type = (ENC_TYPE_ALG_3DES | |
| 1125 | ENC_TYPE_CHAINING_ECB), |
| 1126 | .ablkcipher = { |
| 1127 | .min_keysize = 3 * DES_KEY_SIZE, |
| 1128 | .max_keysize = 3 * DES_KEY_SIZE, |
| 1129 | .setkey = n2_3des_setkey, |
| 1130 | .encrypt = n2_encrypt_ecb, |
| 1131 | .decrypt = n2_decrypt_ecb, |
| 1132 | }, |
| 1133 | }, |
| 1134 | { .name = "cbc(des3_ede)", |
| 1135 | .drv_name = "cbc-3des", |
| 1136 | .block_size = DES_BLOCK_SIZE, |
| 1137 | .enc_type = (ENC_TYPE_ALG_3DES | |
| 1138 | ENC_TYPE_CHAINING_CBC), |
| 1139 | .ablkcipher = { |
| 1140 | .ivsize = DES_BLOCK_SIZE, |
| 1141 | .min_keysize = 3 * DES_KEY_SIZE, |
| 1142 | .max_keysize = 3 * DES_KEY_SIZE, |
| 1143 | .setkey = n2_3des_setkey, |
| 1144 | .encrypt = n2_encrypt_chaining, |
| 1145 | .decrypt = n2_decrypt_chaining, |
| 1146 | }, |
| 1147 | }, |
| 1148 | { .name = "cfb(des3_ede)", |
| 1149 | .drv_name = "cfb-3des", |
| 1150 | .block_size = DES_BLOCK_SIZE, |
| 1151 | .enc_type = (ENC_TYPE_ALG_3DES | |
| 1152 | ENC_TYPE_CHAINING_CFB), |
| 1153 | .ablkcipher = { |
| 1154 | .min_keysize = 3 * DES_KEY_SIZE, |
| 1155 | .max_keysize = 3 * DES_KEY_SIZE, |
| 1156 | .setkey = n2_3des_setkey, |
| 1157 | .encrypt = n2_encrypt_chaining, |
| 1158 | .decrypt = n2_decrypt_chaining, |
| 1159 | }, |
| 1160 | }, |
| 1161 | /* AES: ECB CBC and CTR are supported */ |
| 1162 | { .name = "ecb(aes)", |
| 1163 | .drv_name = "ecb-aes", |
| 1164 | .block_size = AES_BLOCK_SIZE, |
| 1165 | .enc_type = (ENC_TYPE_ALG_AES128 | |
| 1166 | ENC_TYPE_CHAINING_ECB), |
| 1167 | .ablkcipher = { |
| 1168 | .min_keysize = AES_MIN_KEY_SIZE, |
| 1169 | .max_keysize = AES_MAX_KEY_SIZE, |
| 1170 | .setkey = n2_aes_setkey, |
| 1171 | .encrypt = n2_encrypt_ecb, |
| 1172 | .decrypt = n2_decrypt_ecb, |
| 1173 | }, |
| 1174 | }, |
| 1175 | { .name = "cbc(aes)", |
| 1176 | .drv_name = "cbc-aes", |
| 1177 | .block_size = AES_BLOCK_SIZE, |
| 1178 | .enc_type = (ENC_TYPE_ALG_AES128 | |
| 1179 | ENC_TYPE_CHAINING_CBC), |
| 1180 | .ablkcipher = { |
| 1181 | .ivsize = AES_BLOCK_SIZE, |
| 1182 | .min_keysize = AES_MIN_KEY_SIZE, |
| 1183 | .max_keysize = AES_MAX_KEY_SIZE, |
| 1184 | .setkey = n2_aes_setkey, |
| 1185 | .encrypt = n2_encrypt_chaining, |
| 1186 | .decrypt = n2_decrypt_chaining, |
| 1187 | }, |
| 1188 | }, |
| 1189 | { .name = "ctr(aes)", |
| 1190 | .drv_name = "ctr-aes", |
| 1191 | .block_size = AES_BLOCK_SIZE, |
| 1192 | .enc_type = (ENC_TYPE_ALG_AES128 | |
| 1193 | ENC_TYPE_CHAINING_COUNTER), |
| 1194 | .ablkcipher = { |
| 1195 | .ivsize = AES_BLOCK_SIZE, |
| 1196 | .min_keysize = AES_MIN_KEY_SIZE, |
| 1197 | .max_keysize = AES_MAX_KEY_SIZE, |
| 1198 | .setkey = n2_aes_setkey, |
| 1199 | .encrypt = n2_encrypt_chaining, |
| 1200 | .decrypt = n2_encrypt_chaining, |
| 1201 | }, |
| 1202 | }, |
| 1203 | |
| 1204 | }; |
| 1205 | #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls) |
| 1206 | |
| 1207 | static LIST_HEAD(cipher_algs); |
| 1208 | |
| 1209 | struct n2_hash_tmpl { |
| 1210 | const char *name; |
| 1211 | int (*digest)(struct ahash_request *req); |
| 1212 | u8 digest_size; |
| 1213 | u8 block_size; |
| 1214 | }; |
| 1215 | static const struct n2_hash_tmpl hash_tmpls[] = { |
| 1216 | { .name = "md5", |
| 1217 | .digest = n2_md5_async_digest, |
| 1218 | .digest_size = MD5_DIGEST_SIZE, |
| 1219 | .block_size = MD5_HMAC_BLOCK_SIZE }, |
| 1220 | { .name = "sha1", |
| 1221 | .digest = n2_sha1_async_digest, |
| 1222 | .digest_size = SHA1_DIGEST_SIZE, |
| 1223 | .block_size = SHA1_BLOCK_SIZE }, |
| 1224 | { .name = "sha256", |
| 1225 | .digest = n2_sha256_async_digest, |
| 1226 | .digest_size = SHA256_DIGEST_SIZE, |
| 1227 | .block_size = SHA256_BLOCK_SIZE }, |
| 1228 | { .name = "sha224", |
| 1229 | .digest = n2_sha224_async_digest, |
| 1230 | .digest_size = SHA224_DIGEST_SIZE, |
| 1231 | .block_size = SHA224_BLOCK_SIZE }, |
| 1232 | }; |
| 1233 | #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls) |
| 1234 | |
| 1235 | struct n2_ahash_alg { |
| 1236 | struct list_head entry; |
| 1237 | struct ahash_alg alg; |
| 1238 | }; |
| 1239 | static LIST_HEAD(ahash_algs); |
| 1240 | |
| 1241 | static int algs_registered; |
| 1242 | |
| 1243 | static void __n2_unregister_algs(void) |
| 1244 | { |
| 1245 | struct n2_cipher_alg *cipher, *cipher_tmp; |
| 1246 | struct n2_ahash_alg *alg, *alg_tmp; |
| 1247 | |
| 1248 | list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) { |
| 1249 | crypto_unregister_alg(&cipher->alg); |
| 1250 | list_del(&cipher->entry); |
| 1251 | kfree(cipher); |
| 1252 | } |
| 1253 | list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) { |
| 1254 | crypto_unregister_ahash(&alg->alg); |
| 1255 | list_del(&alg->entry); |
| 1256 | kfree(alg); |
| 1257 | } |
| 1258 | } |
| 1259 | |
| 1260 | static int n2_cipher_cra_init(struct crypto_tfm *tfm) |
| 1261 | { |
| 1262 | tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context); |
| 1263 | return 0; |
| 1264 | } |
| 1265 | |
| 1266 | static int __devinit __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl) |
| 1267 | { |
| 1268 | struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); |
| 1269 | struct crypto_alg *alg; |
| 1270 | int err; |
| 1271 | |
| 1272 | if (!p) |
| 1273 | return -ENOMEM; |
| 1274 | |
| 1275 | alg = &p->alg; |
| 1276 | |
| 1277 | snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); |
| 1278 | snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name); |
| 1279 | alg->cra_priority = N2_CRA_PRIORITY; |
| 1280 | alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC; |
| 1281 | alg->cra_blocksize = tmpl->block_size; |
| 1282 | p->enc_type = tmpl->enc_type; |
| 1283 | alg->cra_ctxsize = sizeof(struct n2_cipher_context); |
| 1284 | alg->cra_type = &crypto_ablkcipher_type; |
| 1285 | alg->cra_u.ablkcipher = tmpl->ablkcipher; |
| 1286 | alg->cra_init = n2_cipher_cra_init; |
| 1287 | alg->cra_module = THIS_MODULE; |
| 1288 | |
| 1289 | list_add(&p->entry, &cipher_algs); |
| 1290 | err = crypto_register_alg(alg); |
| 1291 | if (err) { |
| 1292 | list_del(&p->entry); |
| 1293 | kfree(p); |
| 1294 | } |
| 1295 | return err; |
| 1296 | } |
| 1297 | |
| 1298 | static int __devinit __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl) |
| 1299 | { |
| 1300 | struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); |
| 1301 | struct hash_alg_common *halg; |
| 1302 | struct crypto_alg *base; |
| 1303 | struct ahash_alg *ahash; |
| 1304 | int err; |
| 1305 | |
| 1306 | if (!p) |
| 1307 | return -ENOMEM; |
| 1308 | |
| 1309 | ahash = &p->alg; |
| 1310 | ahash->init = n2_hash_async_init; |
| 1311 | ahash->update = n2_hash_async_update; |
| 1312 | ahash->final = n2_hash_async_final; |
| 1313 | ahash->finup = n2_hash_async_finup; |
| 1314 | ahash->digest = tmpl->digest; |
| 1315 | |
| 1316 | halg = &ahash->halg; |
| 1317 | halg->digestsize = tmpl->digest_size; |
| 1318 | |
| 1319 | base = &halg->base; |
| 1320 | snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); |
| 1321 | snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name); |
| 1322 | base->cra_priority = N2_CRA_PRIORITY; |
| 1323 | base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_NEED_FALLBACK; |
| 1324 | base->cra_blocksize = tmpl->block_size; |
| 1325 | base->cra_ctxsize = sizeof(struct n2_hash_ctx); |
| 1326 | base->cra_module = THIS_MODULE; |
| 1327 | base->cra_init = n2_hash_cra_init; |
| 1328 | base->cra_exit = n2_hash_cra_exit; |
| 1329 | |
| 1330 | list_add(&p->entry, &ahash_algs); |
| 1331 | err = crypto_register_ahash(ahash); |
| 1332 | if (err) { |
| 1333 | list_del(&p->entry); |
| 1334 | kfree(p); |
| 1335 | } |
| 1336 | return err; |
| 1337 | } |
| 1338 | |
| 1339 | static int __devinit n2_register_algs(void) |
| 1340 | { |
| 1341 | int i, err = 0; |
| 1342 | |
| 1343 | mutex_lock(&spu_lock); |
| 1344 | if (algs_registered++) |
| 1345 | goto out; |
| 1346 | |
| 1347 | for (i = 0; i < NUM_HASH_TMPLS; i++) { |
| 1348 | err = __n2_register_one_ahash(&hash_tmpls[i]); |
| 1349 | if (err) { |
| 1350 | __n2_unregister_algs(); |
| 1351 | goto out; |
| 1352 | } |
| 1353 | } |
| 1354 | for (i = 0; i < NUM_CIPHER_TMPLS; i++) { |
| 1355 | err = __n2_register_one_cipher(&cipher_tmpls[i]); |
| 1356 | if (err) { |
| 1357 | __n2_unregister_algs(); |
| 1358 | goto out; |
| 1359 | } |
| 1360 | } |
| 1361 | |
| 1362 | out: |
| 1363 | mutex_unlock(&spu_lock); |
| 1364 | return err; |
| 1365 | } |
| 1366 | |
| 1367 | static void __exit n2_unregister_algs(void) |
| 1368 | { |
| 1369 | mutex_lock(&spu_lock); |
| 1370 | if (!--algs_registered) |
| 1371 | __n2_unregister_algs(); |
| 1372 | mutex_unlock(&spu_lock); |
| 1373 | } |
| 1374 | |
| 1375 | /* To map CWQ queues to interrupt sources, the hypervisor API provides |
| 1376 | * a devino. This isn't very useful to us because all of the |
| 1377 | * interrupts listed in the of_device node have been translated to |
| 1378 | * Linux virtual IRQ cookie numbers. |
| 1379 | * |
| 1380 | * So we have to back-translate, going through the 'intr' and 'ino' |
| 1381 | * property tables of the n2cp MDESC node, matching it with the OF |
| 1382 | * 'interrupts' property entries, in order to to figure out which |
| 1383 | * devino goes to which already-translated IRQ. |
| 1384 | */ |
| 1385 | static int find_devino_index(struct of_device *dev, struct spu_mdesc_info *ip, |
| 1386 | unsigned long dev_ino) |
| 1387 | { |
| 1388 | const unsigned int *dev_intrs; |
| 1389 | unsigned int intr; |
| 1390 | int i; |
| 1391 | |
| 1392 | for (i = 0; i < ip->num_intrs; i++) { |
| 1393 | if (ip->ino_table[i].ino == dev_ino) |
| 1394 | break; |
| 1395 | } |
| 1396 | if (i == ip->num_intrs) |
| 1397 | return -ENODEV; |
| 1398 | |
| 1399 | intr = ip->ino_table[i].intr; |
| 1400 | |
| 1401 | dev_intrs = of_get_property(dev->node, "interrupts", NULL); |
| 1402 | if (!dev_intrs) |
| 1403 | return -ENODEV; |
| 1404 | |
| 1405 | for (i = 0; i < dev->num_irqs; i++) { |
| 1406 | if (dev_intrs[i] == intr) |
| 1407 | return i; |
| 1408 | } |
| 1409 | |
| 1410 | return -ENODEV; |
| 1411 | } |
| 1412 | |
| 1413 | static int spu_map_ino(struct of_device *dev, struct spu_mdesc_info *ip, |
| 1414 | const char *irq_name, struct spu_queue *p, |
| 1415 | irq_handler_t handler) |
| 1416 | { |
| 1417 | unsigned long herr; |
| 1418 | int index; |
| 1419 | |
| 1420 | herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino); |
| 1421 | if (herr) |
| 1422 | return -EINVAL; |
| 1423 | |
| 1424 | index = find_devino_index(dev, ip, p->devino); |
| 1425 | if (index < 0) |
| 1426 | return index; |
| 1427 | |
| 1428 | p->irq = dev->irqs[index]; |
| 1429 | |
| 1430 | sprintf(p->irq_name, "%s-%d", irq_name, index); |
| 1431 | |
| 1432 | return request_irq(p->irq, handler, IRQF_SAMPLE_RANDOM, |
| 1433 | p->irq_name, p); |
| 1434 | } |
| 1435 | |
| 1436 | static struct kmem_cache *queue_cache[2]; |
| 1437 | |
| 1438 | static void *new_queue(unsigned long q_type) |
| 1439 | { |
| 1440 | return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL); |
| 1441 | } |
| 1442 | |
| 1443 | static void free_queue(void *p, unsigned long q_type) |
| 1444 | { |
| 1445 | return kmem_cache_free(queue_cache[q_type - 1], p); |
| 1446 | } |
| 1447 | |
| 1448 | static int queue_cache_init(void) |
| 1449 | { |
| 1450 | if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) |
| 1451 | queue_cache[HV_NCS_QTYPE_MAU - 1] = |
| 1452 | kmem_cache_create("cwq_queue", |
| 1453 | (MAU_NUM_ENTRIES * |
| 1454 | MAU_ENTRY_SIZE), |
| 1455 | MAU_ENTRY_SIZE, 0, NULL); |
| 1456 | if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) |
| 1457 | return -ENOMEM; |
| 1458 | |
| 1459 | if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) |
| 1460 | queue_cache[HV_NCS_QTYPE_CWQ - 1] = |
| 1461 | kmem_cache_create("cwq_queue", |
| 1462 | (CWQ_NUM_ENTRIES * |
| 1463 | CWQ_ENTRY_SIZE), |
| 1464 | CWQ_ENTRY_SIZE, 0, NULL); |
| 1465 | if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) { |
| 1466 | kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); |
| 1467 | return -ENOMEM; |
| 1468 | } |
| 1469 | return 0; |
| 1470 | } |
| 1471 | |
| 1472 | static void queue_cache_destroy(void) |
| 1473 | { |
| 1474 | kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); |
| 1475 | kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]); |
| 1476 | } |
| 1477 | |
| 1478 | static int spu_queue_register(struct spu_queue *p, unsigned long q_type) |
| 1479 | { |
| 1480 | cpumask_var_t old_allowed; |
| 1481 | unsigned long hv_ret; |
| 1482 | |
| 1483 | if (cpumask_empty(&p->sharing)) |
| 1484 | return -EINVAL; |
| 1485 | |
| 1486 | if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL)) |
| 1487 | return -ENOMEM; |
| 1488 | |
| 1489 | cpumask_copy(old_allowed, ¤t->cpus_allowed); |
| 1490 | |
| 1491 | set_cpus_allowed_ptr(current, &p->sharing); |
| 1492 | |
| 1493 | hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q), |
| 1494 | CWQ_NUM_ENTRIES, &p->qhandle); |
| 1495 | if (!hv_ret) |
| 1496 | sun4v_ncs_sethead_marker(p->qhandle, 0); |
| 1497 | |
| 1498 | set_cpus_allowed_ptr(current, old_allowed); |
| 1499 | |
| 1500 | free_cpumask_var(old_allowed); |
| 1501 | |
| 1502 | return (hv_ret ? -EINVAL : 0); |
| 1503 | } |
| 1504 | |
| 1505 | static int spu_queue_setup(struct spu_queue *p) |
| 1506 | { |
| 1507 | int err; |
| 1508 | |
| 1509 | p->q = new_queue(p->q_type); |
| 1510 | if (!p->q) |
| 1511 | return -ENOMEM; |
| 1512 | |
| 1513 | err = spu_queue_register(p, p->q_type); |
| 1514 | if (err) { |
| 1515 | free_queue(p->q, p->q_type); |
| 1516 | p->q = NULL; |
| 1517 | } |
| 1518 | |
| 1519 | return err; |
| 1520 | } |
| 1521 | |
| 1522 | static void spu_queue_destroy(struct spu_queue *p) |
| 1523 | { |
| 1524 | unsigned long hv_ret; |
| 1525 | |
| 1526 | if (!p->q) |
| 1527 | return; |
| 1528 | |
| 1529 | hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle); |
| 1530 | |
| 1531 | if (!hv_ret) |
| 1532 | free_queue(p->q, p->q_type); |
| 1533 | } |
| 1534 | |
| 1535 | static void spu_list_destroy(struct list_head *list) |
| 1536 | { |
| 1537 | struct spu_queue *p, *n; |
| 1538 | |
| 1539 | list_for_each_entry_safe(p, n, list, list) { |
| 1540 | int i; |
| 1541 | |
| 1542 | for (i = 0; i < NR_CPUS; i++) { |
| 1543 | if (cpu_to_cwq[i] == p) |
| 1544 | cpu_to_cwq[i] = NULL; |
| 1545 | } |
| 1546 | |
| 1547 | if (p->irq) { |
| 1548 | free_irq(p->irq, p); |
| 1549 | p->irq = 0; |
| 1550 | } |
| 1551 | spu_queue_destroy(p); |
| 1552 | list_del(&p->list); |
| 1553 | kfree(p); |
| 1554 | } |
| 1555 | } |
| 1556 | |
| 1557 | /* Walk the backward arcs of a CWQ 'exec-unit' node, |
| 1558 | * gathering cpu membership information. |
| 1559 | */ |
| 1560 | static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc, |
| 1561 | struct of_device *dev, |
| 1562 | u64 node, struct spu_queue *p, |
| 1563 | struct spu_queue **table) |
| 1564 | { |
| 1565 | u64 arc; |
| 1566 | |
| 1567 | mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) { |
| 1568 | u64 tgt = mdesc_arc_target(mdesc, arc); |
| 1569 | const char *name = mdesc_node_name(mdesc, tgt); |
| 1570 | const u64 *id; |
| 1571 | |
| 1572 | if (strcmp(name, "cpu")) |
| 1573 | continue; |
| 1574 | id = mdesc_get_property(mdesc, tgt, "id", NULL); |
| 1575 | if (table[*id] != NULL) { |
| 1576 | dev_err(&dev->dev, "%s: SPU cpu slot already set.\n", |
| 1577 | dev->node->full_name); |
| 1578 | return -EINVAL; |
| 1579 | } |
| 1580 | cpu_set(*id, p->sharing); |
| 1581 | table[*id] = p; |
| 1582 | } |
| 1583 | return 0; |
| 1584 | } |
| 1585 | |
| 1586 | /* Process an 'exec-unit' MDESC node of type 'cwq'. */ |
| 1587 | static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list, |
| 1588 | struct of_device *dev, struct mdesc_handle *mdesc, |
| 1589 | u64 node, const char *iname, unsigned long q_type, |
| 1590 | irq_handler_t handler, struct spu_queue **table) |
| 1591 | { |
| 1592 | struct spu_queue *p; |
| 1593 | int err; |
| 1594 | |
| 1595 | p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL); |
| 1596 | if (!p) { |
| 1597 | dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n", |
| 1598 | dev->node->full_name); |
| 1599 | return -ENOMEM; |
| 1600 | } |
| 1601 | |
| 1602 | cpus_clear(p->sharing); |
| 1603 | spin_lock_init(&p->lock); |
| 1604 | p->q_type = q_type; |
| 1605 | INIT_LIST_HEAD(&p->jobs); |
| 1606 | list_add(&p->list, list); |
| 1607 | |
| 1608 | err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table); |
| 1609 | if (err) |
| 1610 | return err; |
| 1611 | |
| 1612 | err = spu_queue_setup(p); |
| 1613 | if (err) |
| 1614 | return err; |
| 1615 | |
| 1616 | return spu_map_ino(dev, ip, iname, p, handler); |
| 1617 | } |
| 1618 | |
| 1619 | static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct of_device *dev, |
| 1620 | struct spu_mdesc_info *ip, struct list_head *list, |
| 1621 | const char *exec_name, unsigned long q_type, |
| 1622 | irq_handler_t handler, struct spu_queue **table) |
| 1623 | { |
| 1624 | int err = 0; |
| 1625 | u64 node; |
| 1626 | |
| 1627 | mdesc_for_each_node_by_name(mdesc, node, "exec-unit") { |
| 1628 | const char *type; |
| 1629 | |
| 1630 | type = mdesc_get_property(mdesc, node, "type", NULL); |
| 1631 | if (!type || strcmp(type, exec_name)) |
| 1632 | continue; |
| 1633 | |
| 1634 | err = handle_exec_unit(ip, list, dev, mdesc, node, |
| 1635 | exec_name, q_type, handler, table); |
| 1636 | if (err) { |
| 1637 | spu_list_destroy(list); |
| 1638 | break; |
| 1639 | } |
| 1640 | } |
| 1641 | |
| 1642 | return err; |
| 1643 | } |
| 1644 | |
| 1645 | static int __devinit get_irq_props(struct mdesc_handle *mdesc, u64 node, |
| 1646 | struct spu_mdesc_info *ip) |
| 1647 | { |
| 1648 | const u64 *intr, *ino; |
| 1649 | int intr_len, ino_len; |
| 1650 | int i; |
| 1651 | |
| 1652 | intr = mdesc_get_property(mdesc, node, "intr", &intr_len); |
| 1653 | if (!intr) |
| 1654 | return -ENODEV; |
| 1655 | |
| 1656 | ino = mdesc_get_property(mdesc, node, "ino", &ino_len); |
| 1657 | if (!intr) |
| 1658 | return -ENODEV; |
| 1659 | |
| 1660 | if (intr_len != ino_len) |
| 1661 | return -EINVAL; |
| 1662 | |
| 1663 | ip->num_intrs = intr_len / sizeof(u64); |
| 1664 | ip->ino_table = kzalloc((sizeof(struct ino_blob) * |
| 1665 | ip->num_intrs), |
| 1666 | GFP_KERNEL); |
| 1667 | if (!ip->ino_table) |
| 1668 | return -ENOMEM; |
| 1669 | |
| 1670 | for (i = 0; i < ip->num_intrs; i++) { |
| 1671 | struct ino_blob *b = &ip->ino_table[i]; |
| 1672 | b->intr = intr[i]; |
| 1673 | b->ino = ino[i]; |
| 1674 | } |
| 1675 | |
| 1676 | return 0; |
| 1677 | } |
| 1678 | |
| 1679 | static int __devinit grab_mdesc_irq_props(struct mdesc_handle *mdesc, |
| 1680 | struct of_device *dev, |
| 1681 | struct spu_mdesc_info *ip, |
| 1682 | const char *node_name) |
| 1683 | { |
| 1684 | const unsigned int *reg; |
| 1685 | u64 node; |
| 1686 | |
| 1687 | reg = of_get_property(dev->node, "reg", NULL); |
| 1688 | if (!reg) |
| 1689 | return -ENODEV; |
| 1690 | |
| 1691 | mdesc_for_each_node_by_name(mdesc, node, "virtual-device") { |
| 1692 | const char *name; |
| 1693 | const u64 *chdl; |
| 1694 | |
| 1695 | name = mdesc_get_property(mdesc, node, "name", NULL); |
| 1696 | if (!name || strcmp(name, node_name)) |
| 1697 | continue; |
| 1698 | chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL); |
| 1699 | if (!chdl || (*chdl != *reg)) |
| 1700 | continue; |
| 1701 | ip->cfg_handle = *chdl; |
| 1702 | return get_irq_props(mdesc, node, ip); |
| 1703 | } |
| 1704 | |
| 1705 | return -ENODEV; |
| 1706 | } |
| 1707 | |
| 1708 | static unsigned long n2_spu_hvapi_major; |
| 1709 | static unsigned long n2_spu_hvapi_minor; |
| 1710 | |
| 1711 | static int __devinit n2_spu_hvapi_register(void) |
| 1712 | { |
| 1713 | int err; |
| 1714 | |
| 1715 | n2_spu_hvapi_major = 2; |
| 1716 | n2_spu_hvapi_minor = 0; |
| 1717 | |
| 1718 | err = sun4v_hvapi_register(HV_GRP_NCS, |
| 1719 | n2_spu_hvapi_major, |
| 1720 | &n2_spu_hvapi_minor); |
| 1721 | |
| 1722 | if (!err) |
| 1723 | pr_info("Registered NCS HVAPI version %lu.%lu\n", |
| 1724 | n2_spu_hvapi_major, |
| 1725 | n2_spu_hvapi_minor); |
| 1726 | |
| 1727 | return err; |
| 1728 | } |
| 1729 | |
| 1730 | static void n2_spu_hvapi_unregister(void) |
| 1731 | { |
| 1732 | sun4v_hvapi_unregister(HV_GRP_NCS); |
| 1733 | } |
| 1734 | |
| 1735 | static int global_ref; |
| 1736 | |
| 1737 | static int __devinit grab_global_resources(void) |
| 1738 | { |
| 1739 | int err = 0; |
| 1740 | |
| 1741 | mutex_lock(&spu_lock); |
| 1742 | |
| 1743 | if (global_ref++) |
| 1744 | goto out; |
| 1745 | |
| 1746 | err = n2_spu_hvapi_register(); |
| 1747 | if (err) |
| 1748 | goto out; |
| 1749 | |
| 1750 | err = queue_cache_init(); |
| 1751 | if (err) |
| 1752 | goto out_hvapi_release; |
| 1753 | |
| 1754 | err = -ENOMEM; |
| 1755 | cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS, |
| 1756 | GFP_KERNEL); |
| 1757 | if (!cpu_to_cwq) |
| 1758 | goto out_queue_cache_destroy; |
| 1759 | |
| 1760 | cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS, |
| 1761 | GFP_KERNEL); |
| 1762 | if (!cpu_to_mau) |
| 1763 | goto out_free_cwq_table; |
| 1764 | |
| 1765 | err = 0; |
| 1766 | |
| 1767 | out: |
| 1768 | if (err) |
| 1769 | global_ref--; |
| 1770 | mutex_unlock(&spu_lock); |
| 1771 | return err; |
| 1772 | |
| 1773 | out_free_cwq_table: |
| 1774 | kfree(cpu_to_cwq); |
| 1775 | cpu_to_cwq = NULL; |
| 1776 | |
| 1777 | out_queue_cache_destroy: |
| 1778 | queue_cache_destroy(); |
| 1779 | |
| 1780 | out_hvapi_release: |
| 1781 | n2_spu_hvapi_unregister(); |
| 1782 | goto out; |
| 1783 | } |
| 1784 | |
| 1785 | static void release_global_resources(void) |
| 1786 | { |
| 1787 | mutex_lock(&spu_lock); |
| 1788 | if (!--global_ref) { |
| 1789 | kfree(cpu_to_cwq); |
| 1790 | cpu_to_cwq = NULL; |
| 1791 | |
| 1792 | kfree(cpu_to_mau); |
| 1793 | cpu_to_mau = NULL; |
| 1794 | |
| 1795 | queue_cache_destroy(); |
| 1796 | n2_spu_hvapi_unregister(); |
| 1797 | } |
| 1798 | mutex_unlock(&spu_lock); |
| 1799 | } |
| 1800 | |
| 1801 | static struct n2_crypto * __devinit alloc_n2cp(void) |
| 1802 | { |
| 1803 | struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL); |
| 1804 | |
| 1805 | if (np) |
| 1806 | INIT_LIST_HEAD(&np->cwq_list); |
| 1807 | |
| 1808 | return np; |
| 1809 | } |
| 1810 | |
| 1811 | static void free_n2cp(struct n2_crypto *np) |
| 1812 | { |
| 1813 | if (np->cwq_info.ino_table) { |
| 1814 | kfree(np->cwq_info.ino_table); |
| 1815 | np->cwq_info.ino_table = NULL; |
| 1816 | } |
| 1817 | |
| 1818 | kfree(np); |
| 1819 | } |
| 1820 | |
| 1821 | static void __devinit n2_spu_driver_version(void) |
| 1822 | { |
| 1823 | static int n2_spu_version_printed; |
| 1824 | |
| 1825 | if (n2_spu_version_printed++ == 0) |
| 1826 | pr_info("%s", version); |
| 1827 | } |
| 1828 | |
| 1829 | static int __devinit n2_crypto_probe(struct of_device *dev, |
| 1830 | const struct of_device_id *match) |
| 1831 | { |
| 1832 | struct mdesc_handle *mdesc; |
| 1833 | const char *full_name; |
| 1834 | struct n2_crypto *np; |
| 1835 | int err; |
| 1836 | |
| 1837 | n2_spu_driver_version(); |
| 1838 | |
| 1839 | full_name = dev->node->full_name; |
| 1840 | pr_info("Found N2CP at %s\n", full_name); |
| 1841 | |
| 1842 | np = alloc_n2cp(); |
| 1843 | if (!np) { |
| 1844 | dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n", |
| 1845 | full_name); |
| 1846 | return -ENOMEM; |
| 1847 | } |
| 1848 | |
| 1849 | err = grab_global_resources(); |
| 1850 | if (err) { |
| 1851 | dev_err(&dev->dev, "%s: Unable to grab " |
| 1852 | "global resources.\n", full_name); |
| 1853 | goto out_free_n2cp; |
| 1854 | } |
| 1855 | |
| 1856 | mdesc = mdesc_grab(); |
| 1857 | |
| 1858 | if (!mdesc) { |
| 1859 | dev_err(&dev->dev, "%s: Unable to grab MDESC.\n", |
| 1860 | full_name); |
| 1861 | err = -ENODEV; |
| 1862 | goto out_free_global; |
| 1863 | } |
| 1864 | err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp"); |
| 1865 | if (err) { |
| 1866 | dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n", |
| 1867 | full_name); |
| 1868 | mdesc_release(mdesc); |
| 1869 | goto out_free_global; |
| 1870 | } |
| 1871 | |
| 1872 | err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list, |
| 1873 | "cwq", HV_NCS_QTYPE_CWQ, cwq_intr, |
| 1874 | cpu_to_cwq); |
| 1875 | mdesc_release(mdesc); |
| 1876 | |
| 1877 | if (err) { |
| 1878 | dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n", |
| 1879 | full_name); |
| 1880 | goto out_free_global; |
| 1881 | } |
| 1882 | |
| 1883 | err = n2_register_algs(); |
| 1884 | if (err) { |
| 1885 | dev_err(&dev->dev, "%s: Unable to register algorithms.\n", |
| 1886 | full_name); |
| 1887 | goto out_free_spu_list; |
| 1888 | } |
| 1889 | |
| 1890 | dev_set_drvdata(&dev->dev, np); |
| 1891 | |
| 1892 | return 0; |
| 1893 | |
| 1894 | out_free_spu_list: |
| 1895 | spu_list_destroy(&np->cwq_list); |
| 1896 | |
| 1897 | out_free_global: |
| 1898 | release_global_resources(); |
| 1899 | |
| 1900 | out_free_n2cp: |
| 1901 | free_n2cp(np); |
| 1902 | |
| 1903 | return err; |
| 1904 | } |
| 1905 | |
| 1906 | static int __devexit n2_crypto_remove(struct of_device *dev) |
| 1907 | { |
| 1908 | struct n2_crypto *np = dev_get_drvdata(&dev->dev); |
| 1909 | |
| 1910 | n2_unregister_algs(); |
| 1911 | |
| 1912 | spu_list_destroy(&np->cwq_list); |
| 1913 | |
| 1914 | release_global_resources(); |
| 1915 | |
| 1916 | free_n2cp(np); |
| 1917 | |
| 1918 | return 0; |
| 1919 | } |
| 1920 | |
| 1921 | static struct n2_mau * __devinit alloc_ncp(void) |
| 1922 | { |
| 1923 | struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL); |
| 1924 | |
| 1925 | if (mp) |
| 1926 | INIT_LIST_HEAD(&mp->mau_list); |
| 1927 | |
| 1928 | return mp; |
| 1929 | } |
| 1930 | |
| 1931 | static void free_ncp(struct n2_mau *mp) |
| 1932 | { |
| 1933 | if (mp->mau_info.ino_table) { |
| 1934 | kfree(mp->mau_info.ino_table); |
| 1935 | mp->mau_info.ino_table = NULL; |
| 1936 | } |
| 1937 | |
| 1938 | kfree(mp); |
| 1939 | } |
| 1940 | |
| 1941 | static int __devinit n2_mau_probe(struct of_device *dev, |
| 1942 | const struct of_device_id *match) |
| 1943 | { |
| 1944 | struct mdesc_handle *mdesc; |
| 1945 | const char *full_name; |
| 1946 | struct n2_mau *mp; |
| 1947 | int err; |
| 1948 | |
| 1949 | n2_spu_driver_version(); |
| 1950 | |
| 1951 | full_name = dev->node->full_name; |
| 1952 | pr_info("Found NCP at %s\n", full_name); |
| 1953 | |
| 1954 | mp = alloc_ncp(); |
| 1955 | if (!mp) { |
| 1956 | dev_err(&dev->dev, "%s: Unable to allocate ncp.\n", |
| 1957 | full_name); |
| 1958 | return -ENOMEM; |
| 1959 | } |
| 1960 | |
| 1961 | err = grab_global_resources(); |
| 1962 | if (err) { |
| 1963 | dev_err(&dev->dev, "%s: Unable to grab " |
| 1964 | "global resources.\n", full_name); |
| 1965 | goto out_free_ncp; |
| 1966 | } |
| 1967 | |
| 1968 | mdesc = mdesc_grab(); |
| 1969 | |
| 1970 | if (!mdesc) { |
| 1971 | dev_err(&dev->dev, "%s: Unable to grab MDESC.\n", |
| 1972 | full_name); |
| 1973 | err = -ENODEV; |
| 1974 | goto out_free_global; |
| 1975 | } |
| 1976 | |
| 1977 | err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp"); |
| 1978 | if (err) { |
| 1979 | dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n", |
| 1980 | full_name); |
| 1981 | mdesc_release(mdesc); |
| 1982 | goto out_free_global; |
| 1983 | } |
| 1984 | |
| 1985 | err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list, |
| 1986 | "mau", HV_NCS_QTYPE_MAU, mau_intr, |
| 1987 | cpu_to_mau); |
| 1988 | mdesc_release(mdesc); |
| 1989 | |
| 1990 | if (err) { |
| 1991 | dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n", |
| 1992 | full_name); |
| 1993 | goto out_free_global; |
| 1994 | } |
| 1995 | |
| 1996 | dev_set_drvdata(&dev->dev, mp); |
| 1997 | |
| 1998 | return 0; |
| 1999 | |
| 2000 | out_free_global: |
| 2001 | release_global_resources(); |
| 2002 | |
| 2003 | out_free_ncp: |
| 2004 | free_ncp(mp); |
| 2005 | |
| 2006 | return err; |
| 2007 | } |
| 2008 | |
| 2009 | static int __devexit n2_mau_remove(struct of_device *dev) |
| 2010 | { |
| 2011 | struct n2_mau *mp = dev_get_drvdata(&dev->dev); |
| 2012 | |
| 2013 | spu_list_destroy(&mp->mau_list); |
| 2014 | |
| 2015 | release_global_resources(); |
| 2016 | |
| 2017 | free_ncp(mp); |
| 2018 | |
| 2019 | return 0; |
| 2020 | } |
| 2021 | |
| 2022 | static struct of_device_id n2_crypto_match[] = { |
| 2023 | { |
| 2024 | .name = "n2cp", |
| 2025 | .compatible = "SUNW,n2-cwq", |
| 2026 | }, |
| 2027 | { |
| 2028 | .name = "n2cp", |
| 2029 | .compatible = "SUNW,vf-cwq", |
| 2030 | }, |
| 2031 | {}, |
| 2032 | }; |
| 2033 | |
| 2034 | MODULE_DEVICE_TABLE(of, n2_crypto_match); |
| 2035 | |
| 2036 | static struct of_platform_driver n2_crypto_driver = { |
| 2037 | .name = "n2cp", |
| 2038 | .match_table = n2_crypto_match, |
| 2039 | .probe = n2_crypto_probe, |
| 2040 | .remove = __devexit_p(n2_crypto_remove), |
| 2041 | }; |
| 2042 | |
| 2043 | static struct of_device_id n2_mau_match[] = { |
| 2044 | { |
| 2045 | .name = "ncp", |
| 2046 | .compatible = "SUNW,n2-mau", |
| 2047 | }, |
| 2048 | { |
| 2049 | .name = "ncp", |
| 2050 | .compatible = "SUNW,vf-mau", |
| 2051 | }, |
| 2052 | {}, |
| 2053 | }; |
| 2054 | |
| 2055 | MODULE_DEVICE_TABLE(of, n2_mau_match); |
| 2056 | |
| 2057 | static struct of_platform_driver n2_mau_driver = { |
| 2058 | .name = "ncp", |
| 2059 | .match_table = n2_mau_match, |
| 2060 | .probe = n2_mau_probe, |
| 2061 | .remove = __devexit_p(n2_mau_remove), |
| 2062 | }; |
| 2063 | |
| 2064 | static int __init n2_init(void) |
| 2065 | { |
| 2066 | int err = of_register_driver(&n2_crypto_driver, &of_bus_type); |
| 2067 | |
| 2068 | if (!err) { |
| 2069 | err = of_register_driver(&n2_mau_driver, &of_bus_type); |
| 2070 | if (err) |
| 2071 | of_unregister_driver(&n2_crypto_driver); |
| 2072 | } |
| 2073 | return err; |
| 2074 | } |
| 2075 | |
| 2076 | static void __exit n2_exit(void) |
| 2077 | { |
| 2078 | of_unregister_driver(&n2_mau_driver); |
| 2079 | of_unregister_driver(&n2_crypto_driver); |
| 2080 | } |
| 2081 | |
| 2082 | module_init(n2_init); |
| 2083 | module_exit(n2_exit); |