Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Interface for the 93C66/56/46/26/06 serial eeprom parts. |
| 3 | * |
| 4 | * Copyright (c) 1995, 1996 Daniel M. Eischen |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * modification, are permitted provided that the following conditions |
| 9 | * are met: |
| 10 | * 1. Redistributions of source code must retain the above copyright |
| 11 | * notice, this list of conditions, and the following disclaimer, |
| 12 | * without modification. |
| 13 | * 2. The name of the author may not be used to endorse or promote products |
| 14 | * derived from this software without specific prior written permission. |
| 15 | * |
| 16 | * Alternatively, this software may be distributed under the terms of the |
| 17 | * GNU General Public License ("GPL"). |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 20 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 21 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 22 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR |
| 23 | * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 24 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 25 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 26 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 27 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 28 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 29 | * SUCH DAMAGE. |
| 30 | * |
| 31 | * $Id: //depot/aic7xxx/aic7xxx/aic7xxx_93cx6.c#17 $ |
| 32 | * |
| 33 | * $FreeBSD$ |
| 34 | */ |
| 35 | |
| 36 | /* |
| 37 | * The instruction set of the 93C66/56/46/26/06 chips are as follows: |
| 38 | * |
| 39 | * Start OP * |
| 40 | * Function Bit Code Address** Data Description |
| 41 | * ------------------------------------------------------------------- |
| 42 | * READ 1 10 A5 - A0 Reads data stored in memory, |
| 43 | * starting at specified address |
| 44 | * EWEN 1 00 11XXXX Write enable must precede |
| 45 | * all programming modes |
| 46 | * ERASE 1 11 A5 - A0 Erase register A5A4A3A2A1A0 |
| 47 | * WRITE 1 01 A5 - A0 D15 - D0 Writes register |
| 48 | * ERAL 1 00 10XXXX Erase all registers |
| 49 | * WRAL 1 00 01XXXX D15 - D0 Writes to all registers |
| 50 | * EWDS 1 00 00XXXX Disables all programming |
| 51 | * instructions |
| 52 | * *Note: A value of X for address is a don't care condition. |
| 53 | * **Note: There are 8 address bits for the 93C56/66 chips unlike |
| 54 | * the 93C46/26/06 chips which have 6 address bits. |
| 55 | * |
| 56 | * The 93C46 has a four wire interface: clock, chip select, data in, and |
| 57 | * data out. In order to perform one of the above functions, you need |
| 58 | * to enable the chip select for a clock period (typically a minimum of |
| 59 | * 1 usec, with the clock high and low a minimum of 750 and 250 nsec |
| 60 | * respectively). While the chip select remains high, you can clock in |
| 61 | * the instructions (above) starting with the start bit, followed by the |
| 62 | * OP code, Address, and Data (if needed). For the READ instruction, the |
| 63 | * requested 16-bit register contents is read from the data out line but |
| 64 | * is preceded by an initial zero (leading 0, followed by 16-bits, MSB |
| 65 | * first). The clock cycling from low to high initiates the next data |
| 66 | * bit to be sent from the chip. |
| 67 | * |
| 68 | */ |
| 69 | |
| 70 | #ifdef __linux__ |
| 71 | #include "aic7xxx_osm.h" |
| 72 | #include "aic7xxx_inline.h" |
| 73 | #include "aic7xxx_93cx6.h" |
| 74 | #else |
| 75 | #include <dev/aic7xxx/aic7xxx_osm.h> |
| 76 | #include <dev/aic7xxx/aic7xxx_inline.h> |
| 77 | #include <dev/aic7xxx/aic7xxx_93cx6.h> |
| 78 | #endif |
| 79 | |
| 80 | /* |
| 81 | * Right now, we only have to read the SEEPROM. But we make it easier to |
| 82 | * add other 93Cx6 functions. |
| 83 | */ |
| 84 | static struct seeprom_cmd { |
| 85 | uint8_t len; |
| 86 | uint8_t bits[9]; |
| 87 | } seeprom_read = {3, {1, 1, 0}}; |
| 88 | |
| 89 | static struct seeprom_cmd seeprom_ewen = {9, {1, 0, 0, 1, 1, 0, 0, 0, 0}}; |
| 90 | static struct seeprom_cmd seeprom_ewds = {9, {1, 0, 0, 0, 0, 0, 0, 0, 0}}; |
| 91 | static struct seeprom_cmd seeprom_write = {3, {1, 0, 1}}; |
| 92 | |
| 93 | /* |
| 94 | * Wait for the SEERDY to go high; about 800 ns. |
| 95 | */ |
| 96 | #define CLOCK_PULSE(sd, rdy) \ |
| 97 | while ((SEEPROM_STATUS_INB(sd) & rdy) == 0) { \ |
| 98 | ; /* Do nothing */ \ |
| 99 | } \ |
| 100 | (void)SEEPROM_INB(sd); /* Clear clock */ |
| 101 | |
| 102 | /* |
| 103 | * Send a START condition and the given command |
| 104 | */ |
| 105 | static void |
| 106 | send_seeprom_cmd(struct seeprom_descriptor *sd, struct seeprom_cmd *cmd) |
| 107 | { |
| 108 | uint8_t temp; |
| 109 | int i = 0; |
| 110 | |
| 111 | /* Send chip select for one clock cycle. */ |
| 112 | temp = sd->sd_MS ^ sd->sd_CS; |
| 113 | SEEPROM_OUTB(sd, temp ^ sd->sd_CK); |
| 114 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 115 | |
| 116 | for (i = 0; i < cmd->len; i++) { |
| 117 | if (cmd->bits[i] != 0) |
| 118 | temp ^= sd->sd_DO; |
| 119 | SEEPROM_OUTB(sd, temp); |
| 120 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 121 | SEEPROM_OUTB(sd, temp ^ sd->sd_CK); |
| 122 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 123 | if (cmd->bits[i] != 0) |
| 124 | temp ^= sd->sd_DO; |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | /* |
| 129 | * Clear CS put the chip in the reset state, where it can wait for new commands. |
| 130 | */ |
| 131 | static void |
| 132 | reset_seeprom(struct seeprom_descriptor *sd) |
| 133 | { |
| 134 | uint8_t temp; |
| 135 | |
| 136 | temp = sd->sd_MS; |
| 137 | SEEPROM_OUTB(sd, temp); |
| 138 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 139 | SEEPROM_OUTB(sd, temp ^ sd->sd_CK); |
| 140 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 141 | SEEPROM_OUTB(sd, temp); |
| 142 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * Read the serial EEPROM and returns 1 if successful and 0 if |
| 147 | * not successful. |
| 148 | */ |
| 149 | int |
| 150 | ahc_read_seeprom(struct seeprom_descriptor *sd, uint16_t *buf, |
| 151 | u_int start_addr, u_int count) |
| 152 | { |
| 153 | int i = 0; |
| 154 | u_int k = 0; |
| 155 | uint16_t v; |
| 156 | uint8_t temp; |
| 157 | |
| 158 | /* |
| 159 | * Read the requested registers of the seeprom. The loop |
| 160 | * will range from 0 to count-1. |
| 161 | */ |
| 162 | for (k = start_addr; k < count + start_addr; k++) { |
| 163 | /* |
| 164 | * Now we're ready to send the read command followed by the |
| 165 | * address of the 16-bit register we want to read. |
| 166 | */ |
| 167 | send_seeprom_cmd(sd, &seeprom_read); |
| 168 | |
| 169 | /* Send the 6 or 8 bit address (MSB first, LSB last). */ |
| 170 | temp = sd->sd_MS ^ sd->sd_CS; |
| 171 | for (i = (sd->sd_chip - 1); i >= 0; i--) { |
| 172 | if ((k & (1 << i)) != 0) |
| 173 | temp ^= sd->sd_DO; |
| 174 | SEEPROM_OUTB(sd, temp); |
| 175 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 176 | SEEPROM_OUTB(sd, temp ^ sd->sd_CK); |
| 177 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 178 | if ((k & (1 << i)) != 0) |
| 179 | temp ^= sd->sd_DO; |
| 180 | } |
| 181 | |
| 182 | /* |
| 183 | * Now read the 16 bit register. An initial 0 precedes the |
| 184 | * register contents which begins with bit 15 (MSB) and ends |
| 185 | * with bit 0 (LSB). The initial 0 will be shifted off the |
| 186 | * top of our word as we let the loop run from 0 to 16. |
| 187 | */ |
| 188 | v = 0; |
| 189 | for (i = 16; i >= 0; i--) { |
| 190 | SEEPROM_OUTB(sd, temp); |
| 191 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 192 | v <<= 1; |
| 193 | if (SEEPROM_DATA_INB(sd) & sd->sd_DI) |
| 194 | v |= 1; |
| 195 | SEEPROM_OUTB(sd, temp ^ sd->sd_CK); |
| 196 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 197 | } |
| 198 | |
| 199 | buf[k - start_addr] = v; |
| 200 | |
| 201 | /* Reset the chip select for the next command cycle. */ |
| 202 | reset_seeprom(sd); |
| 203 | } |
| 204 | #ifdef AHC_DUMP_EEPROM |
| 205 | printf("\nSerial EEPROM:\n\t"); |
| 206 | for (k = 0; k < count; k = k + 1) { |
| 207 | if (((k % 8) == 0) && (k != 0)) { |
| 208 | printf ("\n\t"); |
| 209 | } |
| 210 | printf (" 0x%x", buf[k]); |
| 211 | } |
| 212 | printf ("\n"); |
| 213 | #endif |
| 214 | return (1); |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * Write the serial EEPROM and return 1 if successful and 0 if |
| 219 | * not successful. |
| 220 | */ |
| 221 | int |
| 222 | ahc_write_seeprom(struct seeprom_descriptor *sd, uint16_t *buf, |
| 223 | u_int start_addr, u_int count) |
| 224 | { |
| 225 | uint16_t v; |
| 226 | uint8_t temp; |
| 227 | int i, k; |
| 228 | |
| 229 | /* Place the chip into write-enable mode */ |
| 230 | send_seeprom_cmd(sd, &seeprom_ewen); |
| 231 | reset_seeprom(sd); |
| 232 | |
| 233 | /* Write all requested data out to the seeprom. */ |
| 234 | temp = sd->sd_MS ^ sd->sd_CS; |
| 235 | for (k = start_addr; k < count + start_addr; k++) { |
| 236 | /* Send the write command */ |
| 237 | send_seeprom_cmd(sd, &seeprom_write); |
| 238 | |
| 239 | /* Send the 6 or 8 bit address (MSB first). */ |
| 240 | for (i = (sd->sd_chip - 1); i >= 0; i--) { |
| 241 | if ((k & (1 << i)) != 0) |
| 242 | temp ^= sd->sd_DO; |
| 243 | SEEPROM_OUTB(sd, temp); |
| 244 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 245 | SEEPROM_OUTB(sd, temp ^ sd->sd_CK); |
| 246 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 247 | if ((k & (1 << i)) != 0) |
| 248 | temp ^= sd->sd_DO; |
| 249 | } |
| 250 | |
| 251 | /* Write the 16 bit value, MSB first */ |
| 252 | v = buf[k - start_addr]; |
| 253 | for (i = 15; i >= 0; i--) { |
| 254 | if ((v & (1 << i)) != 0) |
| 255 | temp ^= sd->sd_DO; |
| 256 | SEEPROM_OUTB(sd, temp); |
| 257 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 258 | SEEPROM_OUTB(sd, temp ^ sd->sd_CK); |
| 259 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 260 | if ((v & (1 << i)) != 0) |
| 261 | temp ^= sd->sd_DO; |
| 262 | } |
| 263 | |
| 264 | /* Wait for the chip to complete the write */ |
| 265 | temp = sd->sd_MS; |
| 266 | SEEPROM_OUTB(sd, temp); |
| 267 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 268 | temp = sd->sd_MS ^ sd->sd_CS; |
| 269 | do { |
| 270 | SEEPROM_OUTB(sd, temp); |
| 271 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 272 | SEEPROM_OUTB(sd, temp ^ sd->sd_CK); |
| 273 | CLOCK_PULSE(sd, sd->sd_RDY); |
| 274 | } while ((SEEPROM_DATA_INB(sd) & sd->sd_DI) == 0); |
| 275 | |
| 276 | reset_seeprom(sd); |
| 277 | } |
| 278 | |
| 279 | /* Put the chip back into write-protect mode */ |
| 280 | send_seeprom_cmd(sd, &seeprom_ewds); |
| 281 | reset_seeprom(sd); |
| 282 | |
| 283 | return (1); |
| 284 | } |
| 285 | |
| 286 | int |
| 287 | ahc_verify_cksum(struct seeprom_config *sc) |
| 288 | { |
| 289 | int i; |
| 290 | int maxaddr; |
| 291 | uint32_t checksum; |
| 292 | uint16_t *scarray; |
| 293 | |
| 294 | maxaddr = (sizeof(*sc)/2) - 1; |
| 295 | checksum = 0; |
| 296 | scarray = (uint16_t *)sc; |
| 297 | |
| 298 | for (i = 0; i < maxaddr; i++) |
| 299 | checksum = checksum + scarray[i]; |
| 300 | if (checksum == 0 |
| 301 | || (checksum & 0xFFFF) != sc->checksum) { |
| 302 | return (0); |
| 303 | } else { |
| 304 | return(1); |
| 305 | } |
| 306 | } |