Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/mm/bootmem.c |
| 3 | * |
| 4 | * Copyright (C) 1999 Ingo Molnar |
| 5 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 |
| 6 | * |
| 7 | * simple boot-time physical memory area allocator and |
| 8 | * free memory collector. It's used to deal with reserved |
| 9 | * system memory and memory holes as well. |
| 10 | */ |
| 11 | |
| 12 | #include <linux/mm.h> |
| 13 | #include <linux/kernel_stat.h> |
| 14 | #include <linux/swap.h> |
| 15 | #include <linux/interrupt.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/bootmem.h> |
| 18 | #include <linux/mmzone.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <asm/dma.h> |
| 21 | #include <asm/io.h> |
| 22 | #include "internal.h" |
| 23 | |
| 24 | /* |
| 25 | * Access to this subsystem has to be serialized externally. (this is |
| 26 | * true for the boot process anyway) |
| 27 | */ |
| 28 | unsigned long max_low_pfn; |
| 29 | unsigned long min_low_pfn; |
| 30 | unsigned long max_pfn; |
| 31 | |
| 32 | EXPORT_SYMBOL(max_pfn); /* This is exported so |
| 33 | * dma_get_required_mask(), which uses |
| 34 | * it, can be an inline function */ |
| 35 | |
| 36 | /* return the number of _pages_ that will be allocated for the boot bitmap */ |
| 37 | unsigned long __init bootmem_bootmap_pages (unsigned long pages) |
| 38 | { |
| 39 | unsigned long mapsize; |
| 40 | |
| 41 | mapsize = (pages+7)/8; |
| 42 | mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK; |
| 43 | mapsize >>= PAGE_SHIFT; |
| 44 | |
| 45 | return mapsize; |
| 46 | } |
| 47 | |
| 48 | /* |
| 49 | * Called once to set up the allocator itself. |
| 50 | */ |
| 51 | static unsigned long __init init_bootmem_core (pg_data_t *pgdat, |
| 52 | unsigned long mapstart, unsigned long start, unsigned long end) |
| 53 | { |
| 54 | bootmem_data_t *bdata = pgdat->bdata; |
| 55 | unsigned long mapsize = ((end - start)+7)/8; |
| 56 | |
| 57 | pgdat->pgdat_next = pgdat_list; |
| 58 | pgdat_list = pgdat; |
| 59 | |
| 60 | mapsize = (mapsize + (sizeof(long) - 1UL)) & ~(sizeof(long) - 1UL); |
| 61 | bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT); |
| 62 | bdata->node_boot_start = (start << PAGE_SHIFT); |
| 63 | bdata->node_low_pfn = end; |
| 64 | |
| 65 | /* |
| 66 | * Initially all pages are reserved - setup_arch() has to |
| 67 | * register free RAM areas explicitly. |
| 68 | */ |
| 69 | memset(bdata->node_bootmem_map, 0xff, mapsize); |
| 70 | |
| 71 | return mapsize; |
| 72 | } |
| 73 | |
| 74 | /* |
| 75 | * Marks a particular physical memory range as unallocatable. Usable RAM |
| 76 | * might be used for boot-time allocations - or it might get added |
| 77 | * to the free page pool later on. |
| 78 | */ |
| 79 | static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size) |
| 80 | { |
| 81 | unsigned long i; |
| 82 | /* |
| 83 | * round up, partially reserved pages are considered |
| 84 | * fully reserved. |
| 85 | */ |
| 86 | unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE; |
| 87 | unsigned long eidx = (addr + size - bdata->node_boot_start + |
| 88 | PAGE_SIZE-1)/PAGE_SIZE; |
| 89 | unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE; |
| 90 | |
| 91 | BUG_ON(!size); |
| 92 | BUG_ON(sidx >= eidx); |
| 93 | BUG_ON((addr >> PAGE_SHIFT) >= bdata->node_low_pfn); |
| 94 | BUG_ON(end > bdata->node_low_pfn); |
| 95 | |
| 96 | for (i = sidx; i < eidx; i++) |
| 97 | if (test_and_set_bit(i, bdata->node_bootmem_map)) { |
| 98 | #ifdef CONFIG_DEBUG_BOOTMEM |
| 99 | printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE); |
| 100 | #endif |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size) |
| 105 | { |
| 106 | unsigned long i; |
| 107 | unsigned long start; |
| 108 | /* |
| 109 | * round down end of usable mem, partially free pages are |
| 110 | * considered reserved. |
| 111 | */ |
| 112 | unsigned long sidx; |
| 113 | unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE; |
| 114 | unsigned long end = (addr + size)/PAGE_SIZE; |
| 115 | |
| 116 | BUG_ON(!size); |
| 117 | BUG_ON(end > bdata->node_low_pfn); |
| 118 | |
| 119 | if (addr < bdata->last_success) |
| 120 | bdata->last_success = addr; |
| 121 | |
| 122 | /* |
| 123 | * Round up the beginning of the address. |
| 124 | */ |
| 125 | start = (addr + PAGE_SIZE-1) / PAGE_SIZE; |
| 126 | sidx = start - (bdata->node_boot_start/PAGE_SIZE); |
| 127 | |
| 128 | for (i = sidx; i < eidx; i++) { |
| 129 | if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map))) |
| 130 | BUG(); |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * We 'merge' subsequent allocations to save space. We might 'lose' |
| 136 | * some fraction of a page if allocations cannot be satisfied due to |
| 137 | * size constraints on boxes where there is physical RAM space |
| 138 | * fragmentation - in these cases (mostly large memory boxes) this |
| 139 | * is not a problem. |
| 140 | * |
| 141 | * On low memory boxes we get it right in 100% of the cases. |
| 142 | * |
| 143 | * alignment has to be a power of 2 value. |
| 144 | * |
| 145 | * NOTE: This function is _not_ reentrant. |
| 146 | */ |
| 147 | static void * __init |
| 148 | __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size, |
| 149 | unsigned long align, unsigned long goal) |
| 150 | { |
| 151 | unsigned long offset, remaining_size, areasize, preferred; |
| 152 | unsigned long i, start = 0, incr, eidx; |
| 153 | void *ret; |
| 154 | |
| 155 | if(!size) { |
| 156 | printk("__alloc_bootmem_core(): zero-sized request\n"); |
| 157 | BUG(); |
| 158 | } |
| 159 | BUG_ON(align & (align-1)); |
| 160 | |
| 161 | eidx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT); |
| 162 | offset = 0; |
| 163 | if (align && |
| 164 | (bdata->node_boot_start & (align - 1UL)) != 0) |
| 165 | offset = (align - (bdata->node_boot_start & (align - 1UL))); |
| 166 | offset >>= PAGE_SHIFT; |
| 167 | |
| 168 | /* |
| 169 | * We try to allocate bootmem pages above 'goal' |
| 170 | * first, then we try to allocate lower pages. |
| 171 | */ |
| 172 | if (goal && (goal >= bdata->node_boot_start) && |
| 173 | ((goal >> PAGE_SHIFT) < bdata->node_low_pfn)) { |
| 174 | preferred = goal - bdata->node_boot_start; |
| 175 | |
| 176 | if (bdata->last_success >= preferred) |
| 177 | preferred = bdata->last_success; |
| 178 | } else |
| 179 | preferred = 0; |
| 180 | |
| 181 | preferred = ((preferred + align - 1) & ~(align - 1)) >> PAGE_SHIFT; |
| 182 | preferred += offset; |
| 183 | areasize = (size+PAGE_SIZE-1)/PAGE_SIZE; |
| 184 | incr = align >> PAGE_SHIFT ? : 1; |
| 185 | |
| 186 | restart_scan: |
| 187 | for (i = preferred; i < eidx; i += incr) { |
| 188 | unsigned long j; |
| 189 | i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i); |
| 190 | i = ALIGN(i, incr); |
| 191 | if (test_bit(i, bdata->node_bootmem_map)) |
| 192 | continue; |
| 193 | for (j = i + 1; j < i + areasize; ++j) { |
| 194 | if (j >= eidx) |
| 195 | goto fail_block; |
| 196 | if (test_bit (j, bdata->node_bootmem_map)) |
| 197 | goto fail_block; |
| 198 | } |
| 199 | start = i; |
| 200 | goto found; |
| 201 | fail_block: |
| 202 | i = ALIGN(j, incr); |
| 203 | } |
| 204 | |
| 205 | if (preferred > offset) { |
| 206 | preferred = offset; |
| 207 | goto restart_scan; |
| 208 | } |
| 209 | return NULL; |
| 210 | |
| 211 | found: |
| 212 | bdata->last_success = start << PAGE_SHIFT; |
| 213 | BUG_ON(start >= eidx); |
| 214 | |
| 215 | /* |
| 216 | * Is the next page of the previous allocation-end the start |
| 217 | * of this allocation's buffer? If yes then we can 'merge' |
| 218 | * the previous partial page with this allocation. |
| 219 | */ |
| 220 | if (align < PAGE_SIZE && |
| 221 | bdata->last_offset && bdata->last_pos+1 == start) { |
| 222 | offset = (bdata->last_offset+align-1) & ~(align-1); |
| 223 | BUG_ON(offset > PAGE_SIZE); |
| 224 | remaining_size = PAGE_SIZE-offset; |
| 225 | if (size < remaining_size) { |
| 226 | areasize = 0; |
| 227 | /* last_pos unchanged */ |
| 228 | bdata->last_offset = offset+size; |
| 229 | ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset + |
| 230 | bdata->node_boot_start); |
| 231 | } else { |
| 232 | remaining_size = size - remaining_size; |
| 233 | areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE; |
| 234 | ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset + |
| 235 | bdata->node_boot_start); |
| 236 | bdata->last_pos = start+areasize-1; |
| 237 | bdata->last_offset = remaining_size; |
| 238 | } |
| 239 | bdata->last_offset &= ~PAGE_MASK; |
| 240 | } else { |
| 241 | bdata->last_pos = start + areasize - 1; |
| 242 | bdata->last_offset = size & ~PAGE_MASK; |
| 243 | ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start); |
| 244 | } |
| 245 | |
| 246 | /* |
| 247 | * Reserve the area now: |
| 248 | */ |
| 249 | for (i = start; i < start+areasize; i++) |
| 250 | if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map))) |
| 251 | BUG(); |
| 252 | memset(ret, 0, size); |
| 253 | return ret; |
| 254 | } |
| 255 | |
| 256 | static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat) |
| 257 | { |
| 258 | struct page *page; |
| 259 | bootmem_data_t *bdata = pgdat->bdata; |
| 260 | unsigned long i, count, total = 0; |
| 261 | unsigned long idx; |
| 262 | unsigned long *map; |
| 263 | int gofast = 0; |
| 264 | |
| 265 | BUG_ON(!bdata->node_bootmem_map); |
| 266 | |
| 267 | count = 0; |
| 268 | /* first extant page of the node */ |
| 269 | page = virt_to_page(phys_to_virt(bdata->node_boot_start)); |
| 270 | idx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT); |
| 271 | map = bdata->node_bootmem_map; |
| 272 | /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */ |
| 273 | if (bdata->node_boot_start == 0 || |
| 274 | ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG)) |
| 275 | gofast = 1; |
| 276 | for (i = 0; i < idx; ) { |
| 277 | unsigned long v = ~map[i / BITS_PER_LONG]; |
| 278 | if (gofast && v == ~0UL) { |
| 279 | int j, order; |
| 280 | |
| 281 | count += BITS_PER_LONG; |
| 282 | __ClearPageReserved(page); |
| 283 | order = ffs(BITS_PER_LONG) - 1; |
| 284 | set_page_refs(page, order); |
| 285 | for (j = 1; j < BITS_PER_LONG; j++) { |
| 286 | if (j + 16 < BITS_PER_LONG) |
| 287 | prefetchw(page + j + 16); |
| 288 | __ClearPageReserved(page + j); |
| 289 | } |
| 290 | __free_pages(page, order); |
| 291 | i += BITS_PER_LONG; |
| 292 | page += BITS_PER_LONG; |
| 293 | } else if (v) { |
| 294 | unsigned long m; |
| 295 | for (m = 1; m && i < idx; m<<=1, page++, i++) { |
| 296 | if (v & m) { |
| 297 | count++; |
| 298 | __ClearPageReserved(page); |
| 299 | set_page_refs(page, 0); |
| 300 | __free_page(page); |
| 301 | } |
| 302 | } |
| 303 | } else { |
| 304 | i+=BITS_PER_LONG; |
| 305 | page += BITS_PER_LONG; |
| 306 | } |
| 307 | } |
| 308 | total += count; |
| 309 | |
| 310 | /* |
| 311 | * Now free the allocator bitmap itself, it's not |
| 312 | * needed anymore: |
| 313 | */ |
| 314 | page = virt_to_page(bdata->node_bootmem_map); |
| 315 | count = 0; |
| 316 | for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) { |
| 317 | count++; |
| 318 | __ClearPageReserved(page); |
| 319 | set_page_count(page, 1); |
| 320 | __free_page(page); |
| 321 | } |
| 322 | total += count; |
| 323 | bdata->node_bootmem_map = NULL; |
| 324 | |
| 325 | return total; |
| 326 | } |
| 327 | |
| 328 | unsigned long __init init_bootmem_node (pg_data_t *pgdat, unsigned long freepfn, unsigned long startpfn, unsigned long endpfn) |
| 329 | { |
| 330 | return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn)); |
| 331 | } |
| 332 | |
| 333 | void __init reserve_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size) |
| 334 | { |
| 335 | reserve_bootmem_core(pgdat->bdata, physaddr, size); |
| 336 | } |
| 337 | |
| 338 | void __init free_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size) |
| 339 | { |
| 340 | free_bootmem_core(pgdat->bdata, physaddr, size); |
| 341 | } |
| 342 | |
| 343 | unsigned long __init free_all_bootmem_node (pg_data_t *pgdat) |
| 344 | { |
| 345 | return(free_all_bootmem_core(pgdat)); |
| 346 | } |
| 347 | |
| 348 | unsigned long __init init_bootmem (unsigned long start, unsigned long pages) |
| 349 | { |
| 350 | max_low_pfn = pages; |
| 351 | min_low_pfn = start; |
| 352 | return(init_bootmem_core(NODE_DATA(0), start, 0, pages)); |
| 353 | } |
| 354 | |
| 355 | #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE |
| 356 | void __init reserve_bootmem (unsigned long addr, unsigned long size) |
| 357 | { |
| 358 | reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size); |
| 359 | } |
| 360 | #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ |
| 361 | |
| 362 | void __init free_bootmem (unsigned long addr, unsigned long size) |
| 363 | { |
| 364 | free_bootmem_core(NODE_DATA(0)->bdata, addr, size); |
| 365 | } |
| 366 | |
| 367 | unsigned long __init free_all_bootmem (void) |
| 368 | { |
| 369 | return(free_all_bootmem_core(NODE_DATA(0))); |
| 370 | } |
| 371 | |
| 372 | void * __init __alloc_bootmem (unsigned long size, unsigned long align, unsigned long goal) |
| 373 | { |
| 374 | pg_data_t *pgdat = pgdat_list; |
| 375 | void *ptr; |
| 376 | |
| 377 | for_each_pgdat(pgdat) |
| 378 | if ((ptr = __alloc_bootmem_core(pgdat->bdata, size, |
| 379 | align, goal))) |
| 380 | return(ptr); |
| 381 | |
| 382 | /* |
| 383 | * Whoops, we cannot satisfy the allocation request. |
| 384 | */ |
| 385 | printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size); |
| 386 | panic("Out of memory"); |
| 387 | return NULL; |
| 388 | } |
| 389 | |
| 390 | void * __init __alloc_bootmem_node (pg_data_t *pgdat, unsigned long size, unsigned long align, unsigned long goal) |
| 391 | { |
| 392 | void *ptr; |
| 393 | |
| 394 | ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal); |
| 395 | if (ptr) |
| 396 | return (ptr); |
| 397 | |
| 398 | return __alloc_bootmem(size, align, goal); |
| 399 | } |
| 400 | |