blob: f477acfb732f00efbd48a062df55da33c84ed41c [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/seq_file.h>
98#include <linux/notifier.h>
99#include <linux/kallsyms.h>
100#include <linux/cpu.h>
101#include <linux/sysctl.h>
102#include <linux/module.h>
103#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700104#include <linux/string.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700105#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800106#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800107#include <linux/mutex.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700108
109#include <asm/uaccess.h>
110#include <asm/cacheflush.h>
111#include <asm/tlbflush.h>
112#include <asm/page.h>
113
114/*
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
118 *
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 */
124
125#ifdef CONFIG_DEBUG_SLAB
126#define DEBUG 1
127#define STATS 1
128#define FORCED_DEBUG 1
129#else
130#define DEBUG 0
131#define STATS 0
132#define FORCED_DEBUG 0
133#endif
134
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135/* Shouldn't this be in a header file somewhere? */
136#define BYTES_PER_WORD sizeof(void *)
137
138#ifndef cache_line_size
139#define cache_line_size() L1_CACHE_BYTES
140#endif
141
142#ifndef ARCH_KMALLOC_MINALIGN
143/*
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
150 */
151#define ARCH_KMALLOC_MINALIGN 0
152#endif
153
154#ifndef ARCH_SLAB_MINALIGN
155/*
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
161 */
162#define ARCH_SLAB_MINALIGN 0
163#endif
164
165#ifndef ARCH_KMALLOC_FLAGS
166#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167#endif
168
169/* Legal flag mask for kmem_cache_create(). */
170#if DEBUG
171# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
Christoph Lameterac2b8982006-03-22 00:08:15 -0800173 SLAB_CACHE_DMA | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177#else
Christoph Lameterac2b8982006-03-22 00:08:15 -0800178# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182#endif
183
184/*
185 * kmem_bufctl_t:
186 *
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
189 *
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
201 */
202
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700203typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700204#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
207
208/* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
210 */
211static unsigned long offslab_limit;
212
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800246 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800247 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800248 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249};
250
251/*
252 * struct array_cache
253 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700268 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275};
276
Andrew Mortona737b3e2006-03-22 00:08:11 -0800277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800284 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285};
286
287/*
Christoph Lametere498be72005-09-09 13:03:32 -0700288 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289 */
290struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned long next_reap;
296 int free_touched;
297 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800298 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700302};
303
Christoph Lametere498be72005-09-09 13:03:32 -0700304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700312
Christoph Lametere498be72005-09-09 13:03:32 -0700313/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800314 * This function must be completely optimized away if a constant is passed to
315 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700316 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700317static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700318{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800319 extern void __bad_size(void);
320
Christoph Lametere498be72005-09-09 13:03:32 -0700321 if (__builtin_constant_p(size)) {
322 int i = 0;
323
324#define CACHE(x) \
325 if (size <=x) \
326 return i; \
327 else \
328 i++;
329#include "linux/kmalloc_sizes.h"
330#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800331 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700332 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800333 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700334 return 0;
335}
336
337#define INDEX_AC index_of(sizeof(struct arraycache_init))
338#define INDEX_L3 index_of(sizeof(struct kmem_list3))
339
Pekka Enberg5295a742006-02-01 03:05:48 -0800340static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700341{
342 INIT_LIST_HEAD(&parent->slabs_full);
343 INIT_LIST_HEAD(&parent->slabs_partial);
344 INIT_LIST_HEAD(&parent->slabs_free);
345 parent->shared = NULL;
346 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800347 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700348 spin_lock_init(&parent->list_lock);
349 parent->free_objects = 0;
350 parent->free_touched = 0;
351}
352
Andrew Mortona737b3e2006-03-22 00:08:11 -0800353#define MAKE_LIST(cachep, listp, slab, nodeid) \
354 do { \
355 INIT_LIST_HEAD(listp); \
356 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700357 } while (0)
358
Andrew Mortona737b3e2006-03-22 00:08:11 -0800359#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
360 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700361 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
364 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700365
366/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800367 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700368 *
369 * manages a cache.
370 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800371
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800372struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700373/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800374 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800375/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800376 unsigned int batchcount;
377 unsigned int limit;
378 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800379
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800380 unsigned int buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800381/* 3) touched by every alloc & free from the backend */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800382 struct kmem_list3 *nodelists[MAX_NUMNODES];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800383
Andrew Mortona737b3e2006-03-22 00:08:11 -0800384 unsigned int flags; /* constant flags */
385 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700386
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800387/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800389 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390
391 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800392 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700393
Andrew Mortona737b3e2006-03-22 00:08:11 -0800394 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800395 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800396 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800397 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800398 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399
400 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800401 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402
403 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800404 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700405
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800406/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800407 const char *name;
408 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700409
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800410/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800412 unsigned long num_active;
413 unsigned long num_allocations;
414 unsigned long high_mark;
415 unsigned long grown;
416 unsigned long reaped;
417 unsigned long errors;
418 unsigned long max_freeable;
419 unsigned long node_allocs;
420 unsigned long node_frees;
421 atomic_t allochit;
422 atomic_t allocmiss;
423 atomic_t freehit;
424 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425#endif
426#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800427 /*
428 * If debugging is enabled, then the allocator can add additional
429 * fields and/or padding to every object. buffer_size contains the total
430 * object size including these internal fields, the following two
431 * variables contain the offset to the user object and its size.
432 */
433 int obj_offset;
434 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435#endif
436};
437
438#define CFLGS_OFF_SLAB (0x80000000UL)
439#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
440
441#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800442/*
443 * Optimization question: fewer reaps means less probability for unnessary
444 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700445 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100446 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700447 * which could lock up otherwise freeable slabs.
448 */
449#define REAPTIMEOUT_CPUC (2*HZ)
450#define REAPTIMEOUT_LIST3 (4*HZ)
451
452#if STATS
453#define STATS_INC_ACTIVE(x) ((x)->num_active++)
454#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
455#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
456#define STATS_INC_GROWN(x) ((x)->grown++)
457#define STATS_INC_REAPED(x) ((x)->reaped++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800458#define STATS_SET_HIGH(x) \
459 do { \
460 if ((x)->num_active > (x)->high_mark) \
461 (x)->high_mark = (x)->num_active; \
462 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700463#define STATS_INC_ERR(x) ((x)->errors++)
464#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700465#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800466#define STATS_SET_FREEABLE(x, i) \
467 do { \
468 if ((x)->max_freeable < i) \
469 (x)->max_freeable = i; \
470 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700471#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
472#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
473#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
474#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
475#else
476#define STATS_INC_ACTIVE(x) do { } while (0)
477#define STATS_DEC_ACTIVE(x) do { } while (0)
478#define STATS_INC_ALLOCED(x) do { } while (0)
479#define STATS_INC_GROWN(x) do { } while (0)
480#define STATS_INC_REAPED(x) do { } while (0)
481#define STATS_SET_HIGH(x) do { } while (0)
482#define STATS_INC_ERR(x) do { } while (0)
483#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700484#define STATS_INC_NODEFREES(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800485#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700486#define STATS_INC_ALLOCHIT(x) do { } while (0)
487#define STATS_INC_ALLOCMISS(x) do { } while (0)
488#define STATS_INC_FREEHIT(x) do { } while (0)
489#define STATS_INC_FREEMISS(x) do { } while (0)
490#endif
491
492#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -0800493/*
494 * Magic nums for obj red zoning.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700495 * Placed in the first word before and the first word after an obj.
496 */
497#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
498#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
499
500/* ...and for poisoning */
501#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
502#define POISON_FREE 0x6b /* for use-after-free poisoning */
503#define POISON_END 0xa5 /* end-byte of poisoning */
504
Andrew Mortona737b3e2006-03-22 00:08:11 -0800505/*
506 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700507 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800518static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800520 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521}
522
Pekka Enberg343e0d72006-02-01 03:05:50 -0800523static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800525 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526}
527
Pekka Enberg343e0d72006-02-01 03:05:50 -0800528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700532}
533
Pekka Enberg343e0d72006-02-01 03:05:50 -0800534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800538 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800539 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700541}
542
Pekka Enberg343e0d72006-02-01 03:05:50 -0800543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547}
548
549#else
550
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
Andrew Mortona737b3e2006-03-22 00:08:11 -0800581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700585 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
593 return (struct kmem_cache *)page->lru.next;
594}
595
596static inline void page_set_slab(struct page *page, struct slab *slab)
597{
598 page->lru.prev = (struct list_head *)slab;
599}
600
601static inline struct slab *page_get_slab(struct page *page)
602{
603 return (struct slab *)page->lru.prev;
604}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700605
Pekka Enberg6ed5eb22006-02-01 03:05:49 -0800606static inline struct kmem_cache *virt_to_cache(const void *obj)
607{
608 struct page *page = virt_to_page(obj);
609 return page_get_cache(page);
610}
611
612static inline struct slab *virt_to_slab(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_slab(page);
616}
617
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800618static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619 unsigned int idx)
620{
621 return slab->s_mem + cache->buffer_size * idx;
622}
623
624static inline unsigned int obj_to_index(struct kmem_cache *cache,
625 struct slab *slab, void *obj)
626{
627 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
628}
629
Andrew Mortona737b3e2006-03-22 00:08:11 -0800630/*
631 * These are the default caches for kmalloc. Custom caches can have other sizes.
632 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700633struct cache_sizes malloc_sizes[] = {
634#define CACHE(x) { .cs_size = (x) },
635#include <linux/kmalloc_sizes.h>
636 CACHE(ULONG_MAX)
637#undef CACHE
638};
639EXPORT_SYMBOL(malloc_sizes);
640
641/* Must match cache_sizes above. Out of line to keep cache footprint low. */
642struct cache_names {
643 char *name;
644 char *name_dma;
645};
646
647static struct cache_names __initdata cache_names[] = {
648#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
649#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800650 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700651#undef CACHE
652};
653
654static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800655 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700656static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800657 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700658
659/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800660static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800661 .batchcount = 1,
662 .limit = BOOT_CPUCACHE_ENTRIES,
663 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800664 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800665 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700666#if DEBUG
Pekka Enberg343e0d72006-02-01 03:05:50 -0800667 .obj_size = sizeof(struct kmem_cache),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700668#endif
669};
670
671/* Guard access to the cache-chain. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800672static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673static struct list_head cache_chain;
674
675/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800676 * vm_enough_memory() looks at this to determine how many slab-allocated pages
677 * are possibly freeable under pressure
Linus Torvalds1da177e2005-04-16 15:20:36 -0700678 *
679 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
680 */
681atomic_t slab_reclaim_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700682
683/*
684 * chicken and egg problem: delay the per-cpu array allocation
685 * until the general caches are up.
686 */
687static enum {
688 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700689 PARTIAL_AC,
690 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700691 FULL
692} g_cpucache_up;
693
694static DEFINE_PER_CPU(struct work_struct, reap_work);
695
Andrew Mortona737b3e2006-03-22 00:08:11 -0800696static void free_block(struct kmem_cache *cachep, void **objpp, int len,
697 int node);
Pekka Enberg343e0d72006-02-01 03:05:50 -0800698static void enable_cpucache(struct kmem_cache *cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800699static void cache_reap(void *unused);
Pekka Enberg343e0d72006-02-01 03:05:50 -0800700static int __node_shrink(struct kmem_cache *cachep, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700701
Pekka Enberg343e0d72006-02-01 03:05:50 -0800702static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700703{
704 return cachep->array[smp_processor_id()];
705}
706
Andrew Mortona737b3e2006-03-22 00:08:11 -0800707static inline struct kmem_cache *__find_general_cachep(size_t size,
708 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700709{
710 struct cache_sizes *csizep = malloc_sizes;
711
712#if DEBUG
713 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800714 * kmem_cache_create(), or __kmalloc(), before
715 * the generic caches are initialized.
716 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700717 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700718#endif
719 while (size > csizep->cs_size)
720 csizep++;
721
722 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700723 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700724 * has cs_{dma,}cachep==NULL. Thus no special case
725 * for large kmalloc calls required.
726 */
727 if (unlikely(gfpflags & GFP_DMA))
728 return csizep->cs_dmacachep;
729 return csizep->cs_cachep;
730}
731
Pekka Enberg343e0d72006-02-01 03:05:50 -0800732struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700733{
734 return __find_general_cachep(size, gfpflags);
735}
736EXPORT_SYMBOL(kmem_find_general_cachep);
737
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800738static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700739{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800740 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
741}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700742
Andrew Mortona737b3e2006-03-22 00:08:11 -0800743/*
744 * Calculate the number of objects and left-over bytes for a given buffer size.
745 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800746static void cache_estimate(unsigned long gfporder, size_t buffer_size,
747 size_t align, int flags, size_t *left_over,
748 unsigned int *num)
749{
750 int nr_objs;
751 size_t mgmt_size;
752 size_t slab_size = PAGE_SIZE << gfporder;
753
754 /*
755 * The slab management structure can be either off the slab or
756 * on it. For the latter case, the memory allocated for a
757 * slab is used for:
758 *
759 * - The struct slab
760 * - One kmem_bufctl_t for each object
761 * - Padding to respect alignment of @align
762 * - @buffer_size bytes for each object
763 *
764 * If the slab management structure is off the slab, then the
765 * alignment will already be calculated into the size. Because
766 * the slabs are all pages aligned, the objects will be at the
767 * correct alignment when allocated.
768 */
769 if (flags & CFLGS_OFF_SLAB) {
770 mgmt_size = 0;
771 nr_objs = slab_size / buffer_size;
772
773 if (nr_objs > SLAB_LIMIT)
774 nr_objs = SLAB_LIMIT;
775 } else {
776 /*
777 * Ignore padding for the initial guess. The padding
778 * is at most @align-1 bytes, and @buffer_size is at
779 * least @align. In the worst case, this result will
780 * be one greater than the number of objects that fit
781 * into the memory allocation when taking the padding
782 * into account.
783 */
784 nr_objs = (slab_size - sizeof(struct slab)) /
785 (buffer_size + sizeof(kmem_bufctl_t));
786
787 /*
788 * This calculated number will be either the right
789 * amount, or one greater than what we want.
790 */
791 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
792 > slab_size)
793 nr_objs--;
794
795 if (nr_objs > SLAB_LIMIT)
796 nr_objs = SLAB_LIMIT;
797
798 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700799 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800800 *num = nr_objs;
801 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700802}
803
804#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
805
Andrew Mortona737b3e2006-03-22 00:08:11 -0800806static void __slab_error(const char *function, struct kmem_cache *cachep,
807 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700808{
809 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800810 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700811 dump_stack();
812}
813
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800814#ifdef CONFIG_NUMA
815/*
816 * Special reaping functions for NUMA systems called from cache_reap().
817 * These take care of doing round robin flushing of alien caches (containing
818 * objects freed on different nodes from which they were allocated) and the
819 * flushing of remote pcps by calling drain_node_pages.
820 */
821static DEFINE_PER_CPU(unsigned long, reap_node);
822
823static void init_reap_node(int cpu)
824{
825 int node;
826
827 node = next_node(cpu_to_node(cpu), node_online_map);
828 if (node == MAX_NUMNODES)
829 node = 0;
830
831 __get_cpu_var(reap_node) = node;
832}
833
834static void next_reap_node(void)
835{
836 int node = __get_cpu_var(reap_node);
837
838 /*
839 * Also drain per cpu pages on remote zones
840 */
841 if (node != numa_node_id())
842 drain_node_pages(node);
843
844 node = next_node(node, node_online_map);
845 if (unlikely(node >= MAX_NUMNODES))
846 node = first_node(node_online_map);
847 __get_cpu_var(reap_node) = node;
848}
849
850#else
851#define init_reap_node(cpu) do { } while (0)
852#define next_reap_node(void) do { } while (0)
853#endif
854
Linus Torvalds1da177e2005-04-16 15:20:36 -0700855/*
856 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
857 * via the workqueue/eventd.
858 * Add the CPU number into the expiration time to minimize the possibility of
859 * the CPUs getting into lockstep and contending for the global cache chain
860 * lock.
861 */
862static void __devinit start_cpu_timer(int cpu)
863{
864 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
865
866 /*
867 * When this gets called from do_initcalls via cpucache_init(),
868 * init_workqueues() has already run, so keventd will be setup
869 * at that time.
870 */
871 if (keventd_up() && reap_work->func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800872 init_reap_node(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700873 INIT_WORK(reap_work, cache_reap, NULL);
874 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
875 }
876}
877
Christoph Lametere498be72005-09-09 13:03:32 -0700878static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800879 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700880{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800881 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700882 struct array_cache *nc = NULL;
883
Christoph Lametere498be72005-09-09 13:03:32 -0700884 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700885 if (nc) {
886 nc->avail = 0;
887 nc->limit = entries;
888 nc->batchcount = batchcount;
889 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700890 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700891 }
892 return nc;
893}
894
Christoph Lametere498be72005-09-09 13:03:32 -0700895#ifdef CONFIG_NUMA
Pekka Enberg343e0d72006-02-01 03:05:50 -0800896static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
Christoph Lameterdc85da12006-01-18 17:42:36 -0800897
Pekka Enberg5295a742006-02-01 03:05:48 -0800898static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -0700899{
900 struct array_cache **ac_ptr;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800901 int memsize = sizeof(void *) * MAX_NUMNODES;
Christoph Lametere498be72005-09-09 13:03:32 -0700902 int i;
903
904 if (limit > 1)
905 limit = 12;
906 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
907 if (ac_ptr) {
908 for_each_node(i) {
909 if (i == node || !node_online(i)) {
910 ac_ptr[i] = NULL;
911 continue;
912 }
913 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
914 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800915 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -0700916 kfree(ac_ptr[i]);
917 kfree(ac_ptr);
918 return NULL;
919 }
920 }
921 }
922 return ac_ptr;
923}
924
Pekka Enberg5295a742006-02-01 03:05:48 -0800925static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -0700926{
927 int i;
928
929 if (!ac_ptr)
930 return;
Christoph Lametere498be72005-09-09 13:03:32 -0700931 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800932 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -0700933 kfree(ac_ptr);
934}
935
Pekka Enberg343e0d72006-02-01 03:05:50 -0800936static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -0800937 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -0700938{
939 struct kmem_list3 *rl3 = cachep->nodelists[node];
940
941 if (ac->avail) {
942 spin_lock(&rl3->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -0700943 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700944 ac->avail = 0;
945 spin_unlock(&rl3->list_lock);
946 }
947}
948
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800949/*
950 * Called from cache_reap() to regularly drain alien caches round robin.
951 */
952static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
953{
954 int node = __get_cpu_var(reap_node);
955
956 if (l3->alien) {
957 struct array_cache *ac = l3->alien[node];
958 if (ac && ac->avail) {
959 spin_lock_irq(&ac->lock);
960 __drain_alien_cache(cachep, ac, node);
961 spin_unlock_irq(&ac->lock);
962 }
963 }
964}
965
Andrew Mortona737b3e2006-03-22 00:08:11 -0800966static void drain_alien_cache(struct kmem_cache *cachep,
967 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -0700968{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800969 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700970 struct array_cache *ac;
971 unsigned long flags;
972
973 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800974 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -0700975 if (ac) {
976 spin_lock_irqsave(&ac->lock, flags);
977 __drain_alien_cache(cachep, ac, i);
978 spin_unlock_irqrestore(&ac->lock, flags);
979 }
980 }
981}
982#else
Linus Torvalds7a21ef62006-02-05 11:26:38 -0800983
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800984#define drain_alien_cache(cachep, alien) do { } while (0)
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800985#define reap_alien(cachep, l3) do { } while (0)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800986
Linus Torvalds7a21ef62006-02-05 11:26:38 -0800987static inline struct array_cache **alloc_alien_cache(int node, int limit)
988{
989 return (struct array_cache **) 0x01020304ul;
990}
991
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800992static inline void free_alien_cache(struct array_cache **ac_ptr)
993{
994}
Linus Torvalds7a21ef62006-02-05 11:26:38 -0800995
Christoph Lametere498be72005-09-09 13:03:32 -0700996#endif
997
Linus Torvalds1da177e2005-04-16 15:20:36 -0700998static int __devinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800999 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001000{
1001 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001002 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001003 struct kmem_list3 *l3 = NULL;
1004 int node = cpu_to_node(cpu);
1005 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001006
1007 switch (action) {
1008 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001009 mutex_lock(&cache_chain_mutex);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001010 /*
1011 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001012 * alloc_arraycache's are going to use this list.
1013 * kmalloc_node allows us to add the slab to the right
1014 * kmem_list3 and not this cpu's kmem_list3
1015 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001016
Christoph Lametere498be72005-09-09 13:03:32 -07001017 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001018 /*
1019 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001020 * begin anything. Make sure some other cpu on this
1021 * node has not already allocated this
1022 */
1023 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001024 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1025 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001026 goto bad;
1027 kmem_list3_init(l3);
1028 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001029 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001030
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001031 /*
1032 * The l3s don't come and go as CPUs come and
1033 * go. cache_chain_mutex is sufficient
1034 * protection here.
1035 */
Christoph Lametere498be72005-09-09 13:03:32 -07001036 cachep->nodelists[node] = l3;
1037 }
1038
1039 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1040 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001041 (1 + nr_cpus_node(node)) *
1042 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001043 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1044 }
1045
Andrew Mortona737b3e2006-03-22 00:08:11 -08001046 /*
1047 * Now we can go ahead with allocating the shared arrays and
1048 * array caches
1049 */
Christoph Lametere498be72005-09-09 13:03:32 -07001050 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001051 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001052 struct array_cache *shared;
1053 struct array_cache **alien;
Tobias Klausercd105df2006-01-08 01:00:59 -08001054
Christoph Lametere498be72005-09-09 13:03:32 -07001055 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001056 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001057 if (!nc)
1058 goto bad;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001059 shared = alloc_arraycache(node,
1060 cachep->shared * cachep->batchcount,
1061 0xbaadf00d);
1062 if (!shared)
1063 goto bad;
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001064
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001065 alien = alloc_alien_cache(node, cachep->limit);
1066 if (!alien)
1067 goto bad;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001068 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001069 l3 = cachep->nodelists[node];
1070 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001071
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001072 spin_lock_irq(&l3->list_lock);
1073 if (!l3->shared) {
1074 /*
1075 * We are serialised from CPU_DEAD or
1076 * CPU_UP_CANCELLED by the cpucontrol lock
1077 */
1078 l3->shared = shared;
1079 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001080 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001081#ifdef CONFIG_NUMA
1082 if (!l3->alien) {
1083 l3->alien = alien;
1084 alien = NULL;
1085 }
1086#endif
1087 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001088 kfree(shared);
1089 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001090 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001091 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001092 break;
1093 case CPU_ONLINE:
1094 start_cpu_timer(cpu);
1095 break;
1096#ifdef CONFIG_HOTPLUG_CPU
1097 case CPU_DEAD:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001098 /*
1099 * Even if all the cpus of a node are down, we don't free the
1100 * kmem_list3 of any cache. This to avoid a race between
1101 * cpu_down, and a kmalloc allocation from another cpu for
1102 * memory from the node of the cpu going down. The list3
1103 * structure is usually allocated from kmem_cache_create() and
1104 * gets destroyed at kmem_cache_destroy().
1105 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001106 /* fall thru */
1107 case CPU_UP_CANCELED:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001108 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001109 list_for_each_entry(cachep, &cache_chain, next) {
1110 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001111 struct array_cache *shared;
1112 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001113 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001114
Christoph Lametere498be72005-09-09 13:03:32 -07001115 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001116 /* cpu is dead; no one can alloc from it. */
1117 nc = cachep->array[cpu];
1118 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001119 l3 = cachep->nodelists[node];
1120
1121 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001122 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001123
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001124 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001125
1126 /* Free limit for this kmem_list3 */
1127 l3->free_limit -= cachep->batchcount;
1128 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001129 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001130
1131 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001132 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001133 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001134 }
Christoph Lametere498be72005-09-09 13:03:32 -07001135
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001136 shared = l3->shared;
1137 if (shared) {
Christoph Lametere498be72005-09-09 13:03:32 -07001138 free_block(cachep, l3->shared->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001139 l3->shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001140 l3->shared = NULL;
1141 }
Christoph Lametere498be72005-09-09 13:03:32 -07001142
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001143 alien = l3->alien;
1144 l3->alien = NULL;
1145
1146 spin_unlock_irq(&l3->list_lock);
1147
1148 kfree(shared);
1149 if (alien) {
1150 drain_alien_cache(cachep, alien);
1151 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001152 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001153free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001154 kfree(nc);
1155 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001156 /*
1157 * In the previous loop, all the objects were freed to
1158 * the respective cache's slabs, now we can go ahead and
1159 * shrink each nodelist to its limit.
1160 */
1161 list_for_each_entry(cachep, &cache_chain, next) {
1162 l3 = cachep->nodelists[node];
1163 if (!l3)
1164 continue;
1165 spin_lock_irq(&l3->list_lock);
1166 /* free slabs belonging to this node */
1167 __node_shrink(cachep, node);
1168 spin_unlock_irq(&l3->list_lock);
1169 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001170 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001171 break;
1172#endif
1173 }
1174 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001175bad:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001176 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001177 return NOTIFY_BAD;
1178}
1179
1180static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1181
Christoph Lametere498be72005-09-09 13:03:32 -07001182/*
1183 * swap the static kmem_list3 with kmalloced memory
1184 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001185static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1186 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001187{
1188 struct kmem_list3 *ptr;
1189
1190 BUG_ON(cachep->nodelists[nodeid] != list);
1191 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1192 BUG_ON(!ptr);
1193
1194 local_irq_disable();
1195 memcpy(ptr, list, sizeof(struct kmem_list3));
1196 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1197 cachep->nodelists[nodeid] = ptr;
1198 local_irq_enable();
1199}
1200
Andrew Mortona737b3e2006-03-22 00:08:11 -08001201/*
1202 * Initialisation. Called after the page allocator have been initialised and
1203 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001204 */
1205void __init kmem_cache_init(void)
1206{
1207 size_t left_over;
1208 struct cache_sizes *sizes;
1209 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001210 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001211 int order;
Christoph Lametere498be72005-09-09 13:03:32 -07001212
1213 for (i = 0; i < NUM_INIT_LISTS; i++) {
1214 kmem_list3_init(&initkmem_list3[i]);
1215 if (i < MAX_NUMNODES)
1216 cache_cache.nodelists[i] = NULL;
1217 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001218
1219 /*
1220 * Fragmentation resistance on low memory - only use bigger
1221 * page orders on machines with more than 32MB of memory.
1222 */
1223 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1224 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1225
Linus Torvalds1da177e2005-04-16 15:20:36 -07001226 /* Bootstrap is tricky, because several objects are allocated
1227 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001228 * 1) initialize the cache_cache cache: it contains the struct
1229 * kmem_cache structures of all caches, except cache_cache itself:
1230 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001231 * Initially an __init data area is used for the head array and the
1232 * kmem_list3 structures, it's replaced with a kmalloc allocated
1233 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001234 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001235 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001236 * An __init data area is used for the head array.
1237 * 3) Create the remaining kmalloc caches, with minimally sized
1238 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001239 * 4) Replace the __init data head arrays for cache_cache and the first
1240 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001241 * 5) Replace the __init data for kmem_list3 for cache_cache and
1242 * the other cache's with kmalloc allocated memory.
1243 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001244 */
1245
1246 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001247 INIT_LIST_HEAD(&cache_chain);
1248 list_add(&cache_cache.next, &cache_chain);
1249 cache_cache.colour_off = cache_line_size();
1250 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001251 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001252
Andrew Mortona737b3e2006-03-22 00:08:11 -08001253 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1254 cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001255
Jack Steiner07ed76b2006-03-07 21:55:46 -08001256 for (order = 0; order < MAX_ORDER; order++) {
1257 cache_estimate(order, cache_cache.buffer_size,
1258 cache_line_size(), 0, &left_over, &cache_cache.num);
1259 if (cache_cache.num)
1260 break;
1261 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001262 if (!cache_cache.num)
1263 BUG();
Jack Steiner07ed76b2006-03-07 21:55:46 -08001264 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001265 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001266 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1267 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001268
1269 /* 2+3) create the kmalloc caches */
1270 sizes = malloc_sizes;
1271 names = cache_names;
1272
Andrew Mortona737b3e2006-03-22 00:08:11 -08001273 /*
1274 * Initialize the caches that provide memory for the array cache and the
1275 * kmem_list3 structures first. Without this, further allocations will
1276 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001277 */
1278
1279 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001280 sizes[INDEX_AC].cs_size,
1281 ARCH_KMALLOC_MINALIGN,
1282 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1283 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001284
Andrew Mortona737b3e2006-03-22 00:08:11 -08001285 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001286 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001287 kmem_cache_create(names[INDEX_L3].name,
1288 sizes[INDEX_L3].cs_size,
1289 ARCH_KMALLOC_MINALIGN,
1290 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1291 NULL, NULL);
1292 }
Christoph Lametere498be72005-09-09 13:03:32 -07001293
Linus Torvalds1da177e2005-04-16 15:20:36 -07001294 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001295 /*
1296 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001297 * This should be particularly beneficial on SMP boxes, as it
1298 * eliminates "false sharing".
1299 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001300 * allow tighter packing of the smaller caches.
1301 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001302 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001303 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001304 sizes->cs_size,
1305 ARCH_KMALLOC_MINALIGN,
1306 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1307 NULL, NULL);
1308 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001309
1310 /* Inc off-slab bufctl limit until the ceiling is hit. */
1311 if (!(OFF_SLAB(sizes->cs_cachep))) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001312 offslab_limit = sizes->cs_size - sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001313 offslab_limit /= sizeof(kmem_bufctl_t);
1314 }
1315
1316 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001317 sizes->cs_size,
1318 ARCH_KMALLOC_MINALIGN,
1319 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1320 SLAB_PANIC,
1321 NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001322 sizes++;
1323 names++;
1324 }
1325 /* 4) Replace the bootstrap head arrays */
1326 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001327 void *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001328
Linus Torvalds1da177e2005-04-16 15:20:36 -07001329 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001330
Linus Torvalds1da177e2005-04-16 15:20:36 -07001331 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001332 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1333 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001334 sizeof(struct arraycache_init));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001335 cache_cache.array[smp_processor_id()] = ptr;
1336 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001337
Linus Torvalds1da177e2005-04-16 15:20:36 -07001338 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001339
Linus Torvalds1da177e2005-04-16 15:20:36 -07001340 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001341 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001342 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001343 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001344 sizeof(struct arraycache_init));
Christoph Lametere498be72005-09-09 13:03:32 -07001345 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001346 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001347 local_irq_enable();
1348 }
Christoph Lametere498be72005-09-09 13:03:32 -07001349 /* 5) Replace the bootstrap kmem_list3's */
1350 {
1351 int node;
1352 /* Replace the static kmem_list3 structures for the boot cpu */
1353 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001354 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001355
Christoph Lametere498be72005-09-09 13:03:32 -07001356 for_each_online_node(node) {
1357 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001358 &initkmem_list3[SIZE_AC + node], node);
Christoph Lametere498be72005-09-09 13:03:32 -07001359
1360 if (INDEX_AC != INDEX_L3) {
1361 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001362 &initkmem_list3[SIZE_L3 + node],
1363 node);
Christoph Lametere498be72005-09-09 13:03:32 -07001364 }
1365 }
1366 }
1367
1368 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001369 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001370 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001371 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001372 list_for_each_entry(cachep, &cache_chain, next)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001373 enable_cpucache(cachep);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001374 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001375 }
1376
1377 /* Done! */
1378 g_cpucache_up = FULL;
1379
Andrew Mortona737b3e2006-03-22 00:08:11 -08001380 /*
1381 * Register a cpu startup notifier callback that initializes
1382 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001383 */
1384 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001385
Andrew Mortona737b3e2006-03-22 00:08:11 -08001386 /*
1387 * The reap timers are started later, with a module init call: That part
1388 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001389 */
1390}
1391
1392static int __init cpucache_init(void)
1393{
1394 int cpu;
1395
Andrew Mortona737b3e2006-03-22 00:08:11 -08001396 /*
1397 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001398 */
Christoph Lametere498be72005-09-09 13:03:32 -07001399 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001400 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001401 return 0;
1402}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001403__initcall(cpucache_init);
1404
1405/*
1406 * Interface to system's page allocator. No need to hold the cache-lock.
1407 *
1408 * If we requested dmaable memory, we will get it. Even if we
1409 * did not request dmaable memory, we might get it, but that
1410 * would be relatively rare and ignorable.
1411 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001412static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001413{
1414 struct page *page;
1415 void *addr;
1416 int i;
1417
1418 flags |= cachep->gfpflags;
Christoph Lameter50c85a12005-11-13 16:06:47 -08001419 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001420 if (!page)
1421 return NULL;
1422 addr = page_address(page);
1423
1424 i = (1 << cachep->gfporder);
1425 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1426 atomic_add(i, &slab_reclaim_pages);
1427 add_page_state(nr_slab, i);
1428 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001429 __SetPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001430 page++;
1431 }
1432 return addr;
1433}
1434
1435/*
1436 * Interface to system's page release.
1437 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001438static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001439{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001440 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441 struct page *page = virt_to_page(addr);
1442 const unsigned long nr_freed = i;
1443
1444 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001445 BUG_ON(!PageSlab(page));
1446 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001447 page++;
1448 }
1449 sub_page_state(nr_slab, nr_freed);
1450 if (current->reclaim_state)
1451 current->reclaim_state->reclaimed_slab += nr_freed;
1452 free_pages((unsigned long)addr, cachep->gfporder);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001453 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1454 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001455}
1456
1457static void kmem_rcu_free(struct rcu_head *head)
1458{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001459 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001460 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001461
1462 kmem_freepages(cachep, slab_rcu->addr);
1463 if (OFF_SLAB(cachep))
1464 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1465}
1466
1467#if DEBUG
1468
1469#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001470static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001471 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001472{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001473 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001474
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001475 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001476
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001477 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001478 return;
1479
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001480 *addr++ = 0x12345678;
1481 *addr++ = caller;
1482 *addr++ = smp_processor_id();
1483 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001484 {
1485 unsigned long *sptr = &caller;
1486 unsigned long svalue;
1487
1488 while (!kstack_end(sptr)) {
1489 svalue = *sptr++;
1490 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001491 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001492 size -= sizeof(unsigned long);
1493 if (size <= sizeof(unsigned long))
1494 break;
1495 }
1496 }
1497
1498 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001499 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001500}
1501#endif
1502
Pekka Enberg343e0d72006-02-01 03:05:50 -08001503static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001504{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001505 int size = obj_size(cachep);
1506 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001507
1508 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001509 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001510}
1511
1512static void dump_line(char *data, int offset, int limit)
1513{
1514 int i;
1515 printk(KERN_ERR "%03x:", offset);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001516 for (i = 0; i < limit; i++)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001517 printk(" %02x", (unsigned char)data[offset + i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001518 printk("\n");
1519}
1520#endif
1521
1522#if DEBUG
1523
Pekka Enberg343e0d72006-02-01 03:05:50 -08001524static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001525{
1526 int i, size;
1527 char *realobj;
1528
1529 if (cachep->flags & SLAB_RED_ZONE) {
1530 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001531 *dbg_redzone1(cachep, objp),
1532 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001533 }
1534
1535 if (cachep->flags & SLAB_STORE_USER) {
1536 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001537 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001538 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001539 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001540 printk("\n");
1541 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001542 realobj = (char *)objp + obj_offset(cachep);
1543 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001544 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001545 int limit;
1546 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001547 if (i + limit > size)
1548 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001549 dump_line(realobj, i, limit);
1550 }
1551}
1552
Pekka Enberg343e0d72006-02-01 03:05:50 -08001553static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001554{
1555 char *realobj;
1556 int size, i;
1557 int lines = 0;
1558
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001559 realobj = (char *)objp + obj_offset(cachep);
1560 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001561
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001562 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001563 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001564 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001565 exp = POISON_END;
1566 if (realobj[i] != exp) {
1567 int limit;
1568 /* Mismatch ! */
1569 /* Print header */
1570 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001571 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08001572 "Slab corruption: start=%p, len=%d\n",
1573 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001574 print_objinfo(cachep, objp, 0);
1575 }
1576 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001577 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001578 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001579 if (i + limit > size)
1580 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001581 dump_line(realobj, i, limit);
1582 i += 16;
1583 lines++;
1584 /* Limit to 5 lines */
1585 if (lines > 5)
1586 break;
1587 }
1588 }
1589 if (lines != 0) {
1590 /* Print some data about the neighboring objects, if they
1591 * exist:
1592 */
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08001593 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001594 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001595
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001596 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001597 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001598 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001599 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001600 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001601 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001602 print_objinfo(cachep, objp, 2);
1603 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001604 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001605 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001606 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001607 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001608 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001609 print_objinfo(cachep, objp, 2);
1610 }
1611 }
1612}
1613#endif
1614
Linus Torvalds1da177e2005-04-16 15:20:36 -07001615#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001616/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001617 * slab_destroy_objs - destroy a slab and its objects
1618 * @cachep: cache pointer being destroyed
1619 * @slabp: slab pointer being destroyed
1620 *
1621 * Call the registered destructor for each object in a slab that is being
1622 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001623 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001624static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001625{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001626 int i;
1627 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001628 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001629
1630 if (cachep->flags & SLAB_POISON) {
1631#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001632 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1633 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001634 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001635 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001636 else
1637 check_poison_obj(cachep, objp);
1638#else
1639 check_poison_obj(cachep, objp);
1640#endif
1641 }
1642 if (cachep->flags & SLAB_RED_ZONE) {
1643 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1644 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001645 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001646 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1647 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001648 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001649 }
1650 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001651 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001652 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001653}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001654#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001655static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001656{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001657 if (cachep->dtor) {
1658 int i;
1659 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001660 void *objp = index_to_obj(cachep, slabp, i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001661 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001662 }
1663 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001664}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001665#endif
1666
Randy Dunlap911851e2006-03-22 00:08:14 -08001667/**
1668 * slab_destroy - destroy and release all objects in a slab
1669 * @cachep: cache pointer being destroyed
1670 * @slabp: slab pointer being destroyed
1671 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001672 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001673 * Before calling the slab must have been unlinked from the cache. The
1674 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001675 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001676static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001677{
1678 void *addr = slabp->s_mem - slabp->colouroff;
1679
1680 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001681 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1682 struct slab_rcu *slab_rcu;
1683
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001684 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001685 slab_rcu->cachep = cachep;
1686 slab_rcu->addr = addr;
1687 call_rcu(&slab_rcu->head, kmem_rcu_free);
1688 } else {
1689 kmem_freepages(cachep, addr);
1690 if (OFF_SLAB(cachep))
1691 kmem_cache_free(cachep->slabp_cache, slabp);
1692 }
1693}
1694
Andrew Mortona737b3e2006-03-22 00:08:11 -08001695/*
1696 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1697 * size of kmem_list3.
1698 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001699static void set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001700{
1701 int node;
1702
1703 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001704 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001705 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001706 REAPTIMEOUT_LIST3 +
1707 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001708 }
1709}
1710
Linus Torvalds1da177e2005-04-16 15:20:36 -07001711/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001712 * calculate_slab_order - calculate size (page order) of slabs
1713 * @cachep: pointer to the cache that is being created
1714 * @size: size of objects to be created in this cache.
1715 * @align: required alignment for the objects.
1716 * @flags: slab allocation flags
1717 *
1718 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001719 *
1720 * This could be made much more intelligent. For now, try to avoid using
1721 * high order pages for slabs. When the gfp() functions are more friendly
1722 * towards high-order requests, this should be changed.
1723 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001724static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08001725 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001726{
1727 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001728 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001729
Andrew Mortona737b3e2006-03-22 00:08:11 -08001730 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001731 unsigned int num;
1732 size_t remainder;
1733
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001734 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001735 if (!num)
1736 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001737
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001738 /* More than offslab_limit objects will cause problems */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001739 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001740 break;
1741
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001742 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001743 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001744 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001745 left_over = remainder;
1746
1747 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08001748 * A VFS-reclaimable slab tends to have most allocations
1749 * as GFP_NOFS and we really don't want to have to be allocating
1750 * higher-order pages when we are unable to shrink dcache.
1751 */
1752 if (flags & SLAB_RECLAIM_ACCOUNT)
1753 break;
1754
1755 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001756 * Large number of objects is good, but very large slabs are
1757 * currently bad for the gfp()s.
1758 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001759 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001760 break;
1761
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001762 /*
1763 * Acceptable internal fragmentation?
1764 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001765 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001766 break;
1767 }
1768 return left_over;
1769}
1770
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08001771static void setup_cpu_cache(struct kmem_cache *cachep)
1772{
1773 if (g_cpucache_up == FULL) {
1774 enable_cpucache(cachep);
1775 return;
1776 }
1777 if (g_cpucache_up == NONE) {
1778 /*
1779 * Note: the first kmem_cache_create must create the cache
1780 * that's used by kmalloc(24), otherwise the creation of
1781 * further caches will BUG().
1782 */
1783 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1784
1785 /*
1786 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1787 * the first cache, then we need to set up all its list3s,
1788 * otherwise the creation of further caches will BUG().
1789 */
1790 set_up_list3s(cachep, SIZE_AC);
1791 if (INDEX_AC == INDEX_L3)
1792 g_cpucache_up = PARTIAL_L3;
1793 else
1794 g_cpucache_up = PARTIAL_AC;
1795 } else {
1796 cachep->array[smp_processor_id()] =
1797 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1798
1799 if (g_cpucache_up == PARTIAL_AC) {
1800 set_up_list3s(cachep, SIZE_L3);
1801 g_cpucache_up = PARTIAL_L3;
1802 } else {
1803 int node;
1804 for_each_online_node(node) {
1805 cachep->nodelists[node] =
1806 kmalloc_node(sizeof(struct kmem_list3),
1807 GFP_KERNEL, node);
1808 BUG_ON(!cachep->nodelists[node]);
1809 kmem_list3_init(cachep->nodelists[node]);
1810 }
1811 }
1812 }
1813 cachep->nodelists[numa_node_id()]->next_reap =
1814 jiffies + REAPTIMEOUT_LIST3 +
1815 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1816
1817 cpu_cache_get(cachep)->avail = 0;
1818 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1819 cpu_cache_get(cachep)->batchcount = 1;
1820 cpu_cache_get(cachep)->touched = 0;
1821 cachep->batchcount = 1;
1822 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1823}
1824
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001825/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001826 * kmem_cache_create - Create a cache.
1827 * @name: A string which is used in /proc/slabinfo to identify this cache.
1828 * @size: The size of objects to be created in this cache.
1829 * @align: The required alignment for the objects.
1830 * @flags: SLAB flags
1831 * @ctor: A constructor for the objects.
1832 * @dtor: A destructor for the objects.
1833 *
1834 * Returns a ptr to the cache on success, NULL on failure.
1835 * Cannot be called within a int, but can be interrupted.
1836 * The @ctor is run when new pages are allocated by the cache
1837 * and the @dtor is run before the pages are handed back.
1838 *
1839 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08001840 * the module calling this has to destroy the cache before getting unloaded.
1841 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001842 * The flags are
1843 *
1844 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1845 * to catch references to uninitialised memory.
1846 *
1847 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1848 * for buffer overruns.
1849 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001850 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1851 * cacheline. This can be beneficial if you're counting cycles as closely
1852 * as davem.
1853 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001854struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001855kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001856 unsigned long flags,
1857 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08001858 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001859{
1860 size_t left_over, slab_size, ralign;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001861 struct kmem_cache *cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08001862 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001863
1864 /*
1865 * Sanity checks... these are all serious usage bugs.
1866 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001867 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001868 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001869 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1870 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001871 BUG();
1872 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001873
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08001874 /*
1875 * Prevent CPUs from coming and going.
1876 * lock_cpu_hotplug() nests outside cache_chain_mutex
1877 */
1878 lock_cpu_hotplug();
1879
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001880 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001881
1882 list_for_each(p, &cache_chain) {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001883 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001884 mm_segment_t old_fs = get_fs();
1885 char tmp;
1886 int res;
1887
1888 /*
1889 * This happens when the module gets unloaded and doesn't
1890 * destroy its slab cache and no-one else reuses the vmalloc
1891 * area of the module. Print a warning.
1892 */
1893 set_fs(KERNEL_DS);
1894 res = __get_user(tmp, pc->name);
1895 set_fs(old_fs);
1896 if (res) {
1897 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001898 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001899 continue;
1900 }
1901
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001902 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08001903 printk("kmem_cache_create: duplicate cache %s\n", name);
1904 dump_stack();
1905 goto oops;
1906 }
1907 }
1908
Linus Torvalds1da177e2005-04-16 15:20:36 -07001909#if DEBUG
1910 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1911 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1912 /* No constructor, but inital state check requested */
1913 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001914 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001915 flags &= ~SLAB_DEBUG_INITIAL;
1916 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001917#if FORCED_DEBUG
1918 /*
1919 * Enable redzoning and last user accounting, except for caches with
1920 * large objects, if the increased size would increase the object size
1921 * above the next power of two: caches with object sizes just above a
1922 * power of two have a significant amount of internal fragmentation.
1923 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001924 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001925 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001926 if (!(flags & SLAB_DESTROY_BY_RCU))
1927 flags |= SLAB_POISON;
1928#endif
1929 if (flags & SLAB_DESTROY_BY_RCU)
1930 BUG_ON(flags & SLAB_POISON);
1931#endif
1932 if (flags & SLAB_DESTROY_BY_RCU)
1933 BUG_ON(dtor);
1934
1935 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08001936 * Always checks flags, a caller might be expecting debug support which
1937 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001938 */
1939 if (flags & ~CREATE_MASK)
1940 BUG();
1941
Andrew Mortona737b3e2006-03-22 00:08:11 -08001942 /*
1943 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07001944 * unaligned accesses for some archs when redzoning is used, and makes
1945 * sure any on-slab bufctl's are also correctly aligned.
1946 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001947 if (size & (BYTES_PER_WORD - 1)) {
1948 size += (BYTES_PER_WORD - 1);
1949 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001950 }
1951
Andrew Mortona737b3e2006-03-22 00:08:11 -08001952 /* calculate the final buffer alignment: */
1953
Linus Torvalds1da177e2005-04-16 15:20:36 -07001954 /* 1) arch recommendation: can be overridden for debug */
1955 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001956 /*
1957 * Default alignment: as specified by the arch code. Except if
1958 * an object is really small, then squeeze multiple objects into
1959 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001960 */
1961 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001962 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001963 ralign /= 2;
1964 } else {
1965 ralign = BYTES_PER_WORD;
1966 }
1967 /* 2) arch mandated alignment: disables debug if necessary */
1968 if (ralign < ARCH_SLAB_MINALIGN) {
1969 ralign = ARCH_SLAB_MINALIGN;
1970 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001971 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001972 }
1973 /* 3) caller mandated alignment: disables debug if necessary */
1974 if (ralign < align) {
1975 ralign = align;
1976 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001977 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001978 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08001979 /*
1980 * 4) Store it. Note that the debug code below can reduce
Linus Torvalds1da177e2005-04-16 15:20:36 -07001981 * the alignment to BYTES_PER_WORD.
1982 */
1983 align = ralign;
1984
1985 /* Get cache's description obj. */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001986 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001987 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08001988 goto oops;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001989 memset(cachep, 0, sizeof(struct kmem_cache));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001990
1991#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001992 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001993
1994 if (flags & SLAB_RED_ZONE) {
1995 /* redzoning only works with word aligned caches */
1996 align = BYTES_PER_WORD;
1997
1998 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001999 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002000 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002001 }
2002 if (flags & SLAB_STORE_USER) {
2003 /* user store requires word alignment and
2004 * one word storage behind the end of the real
2005 * object.
2006 */
2007 align = BYTES_PER_WORD;
2008 size += BYTES_PER_WORD;
2009 }
2010#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002011 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002012 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2013 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002014 size = PAGE_SIZE;
2015 }
2016#endif
2017#endif
2018
2019 /* Determine if the slab management is 'on' or 'off' slab. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002020 if (size >= (PAGE_SIZE >> 3))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002021 /*
2022 * Size is large, assume best to place the slab management obj
2023 * off-slab (should allow better packing of objs).
2024 */
2025 flags |= CFLGS_OFF_SLAB;
2026
2027 size = ALIGN(size, align);
2028
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002029 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002030
2031 if (!cachep->num) {
2032 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2033 kmem_cache_free(&cache_cache, cachep);
2034 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002035 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002036 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002037 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2038 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002039
2040 /*
2041 * If the slab has been placed off-slab, and we have enough space then
2042 * move it on-slab. This is at the expense of any extra colouring.
2043 */
2044 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2045 flags &= ~CFLGS_OFF_SLAB;
2046 left_over -= slab_size;
2047 }
2048
2049 if (flags & CFLGS_OFF_SLAB) {
2050 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002051 slab_size =
2052 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002053 }
2054
2055 cachep->colour_off = cache_line_size();
2056 /* Offset must be a multiple of the alignment. */
2057 if (cachep->colour_off < align)
2058 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002059 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002060 cachep->slab_size = slab_size;
2061 cachep->flags = flags;
2062 cachep->gfpflags = 0;
2063 if (flags & SLAB_CACHE_DMA)
2064 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002065 cachep->buffer_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002066
2067 if (flags & CFLGS_OFF_SLAB)
Victor Fuscob2d55072005-09-10 00:26:36 -07002068 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002069 cachep->ctor = ctor;
2070 cachep->dtor = dtor;
2071 cachep->name = name;
2072
Linus Torvalds1da177e2005-04-16 15:20:36 -07002073
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002074 setup_cpu_cache(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002075
Linus Torvalds1da177e2005-04-16 15:20:36 -07002076 /* cache setup completed, link it into the list */
2077 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002078oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002079 if (!cachep && (flags & SLAB_PANIC))
2080 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002081 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002082 mutex_unlock(&cache_chain_mutex);
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002083 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002084 return cachep;
2085}
2086EXPORT_SYMBOL(kmem_cache_create);
2087
2088#if DEBUG
2089static void check_irq_off(void)
2090{
2091 BUG_ON(!irqs_disabled());
2092}
2093
2094static void check_irq_on(void)
2095{
2096 BUG_ON(irqs_disabled());
2097}
2098
Pekka Enberg343e0d72006-02-01 03:05:50 -08002099static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002100{
2101#ifdef CONFIG_SMP
2102 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002103 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002104#endif
2105}
Christoph Lametere498be72005-09-09 13:03:32 -07002106
Pekka Enberg343e0d72006-02-01 03:05:50 -08002107static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002108{
2109#ifdef CONFIG_SMP
2110 check_irq_off();
2111 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2112#endif
2113}
2114
Linus Torvalds1da177e2005-04-16 15:20:36 -07002115#else
2116#define check_irq_off() do { } while(0)
2117#define check_irq_on() do { } while(0)
2118#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002119#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002120#endif
2121
Andrew Mortona737b3e2006-03-22 00:08:11 -08002122static void drain_array_locked(struct kmem_cache *cachep,
2123 struct array_cache *ac, int force, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002124
2125static void do_drain(void *arg)
2126{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002127 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002128 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002129 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002130
2131 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002132 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002133 spin_lock(&cachep->nodelists[node]->list_lock);
2134 free_block(cachep, ac->entry, ac->avail, node);
2135 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002136 ac->avail = 0;
2137}
2138
Pekka Enberg343e0d72006-02-01 03:05:50 -08002139static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002140{
Christoph Lametere498be72005-09-09 13:03:32 -07002141 struct kmem_list3 *l3;
2142 int node;
2143
Andrew Mortona07fa392006-03-22 00:08:17 -08002144 on_each_cpu(do_drain, cachep, 1, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002145 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002146 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002147 l3 = cachep->nodelists[node];
2148 if (l3) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08002149 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002150 drain_array_locked(cachep, l3->shared, 1, node);
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08002151 spin_unlock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002152 if (l3->alien)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08002153 drain_alien_cache(cachep, l3->alien);
Christoph Lametere498be72005-09-09 13:03:32 -07002154 }
2155 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002156}
2157
Pekka Enberg343e0d72006-02-01 03:05:50 -08002158static int __node_shrink(struct kmem_cache *cachep, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002159{
2160 struct slab *slabp;
Christoph Lametere498be72005-09-09 13:03:32 -07002161 struct kmem_list3 *l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002162 int ret;
2163
Christoph Lametere498be72005-09-09 13:03:32 -07002164 for (;;) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002165 struct list_head *p;
2166
Christoph Lametere498be72005-09-09 13:03:32 -07002167 p = l3->slabs_free.prev;
2168 if (p == &l3->slabs_free)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002169 break;
2170
Christoph Lametere498be72005-09-09 13:03:32 -07002171 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002172#if DEBUG
2173 if (slabp->inuse)
2174 BUG();
2175#endif
2176 list_del(&slabp->list);
2177
Christoph Lametere498be72005-09-09 13:03:32 -07002178 l3->free_objects -= cachep->num;
2179 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002180 slab_destroy(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002181 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002182 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002183 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002184 return ret;
2185}
2186
Pekka Enberg343e0d72006-02-01 03:05:50 -08002187static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002188{
2189 int ret = 0, i = 0;
2190 struct kmem_list3 *l3;
2191
2192 drain_cpu_caches(cachep);
2193
2194 check_irq_on();
2195 for_each_online_node(i) {
2196 l3 = cachep->nodelists[i];
2197 if (l3) {
2198 spin_lock_irq(&l3->list_lock);
2199 ret += __node_shrink(cachep, i);
2200 spin_unlock_irq(&l3->list_lock);
2201 }
2202 }
2203 return (ret ? 1 : 0);
2204}
2205
Linus Torvalds1da177e2005-04-16 15:20:36 -07002206/**
2207 * kmem_cache_shrink - Shrink a cache.
2208 * @cachep: The cache to shrink.
2209 *
2210 * Releases as many slabs as possible for a cache.
2211 * To help debugging, a zero exit status indicates all slabs were released.
2212 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002213int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002214{
2215 if (!cachep || in_interrupt())
2216 BUG();
2217
2218 return __cache_shrink(cachep);
2219}
2220EXPORT_SYMBOL(kmem_cache_shrink);
2221
2222/**
2223 * kmem_cache_destroy - delete a cache
2224 * @cachep: the cache to destroy
2225 *
Pekka Enberg343e0d72006-02-01 03:05:50 -08002226 * Remove a struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002227 * Returns 0 on success.
2228 *
2229 * It is expected this function will be called by a module when it is
2230 * unloaded. This will remove the cache completely, and avoid a duplicate
2231 * cache being allocated each time a module is loaded and unloaded, if the
2232 * module doesn't have persistent in-kernel storage across loads and unloads.
2233 *
2234 * The cache must be empty before calling this function.
2235 *
2236 * The caller must guarantee that noone will allocate memory from the cache
2237 * during the kmem_cache_destroy().
2238 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002239int kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002240{
2241 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002242 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002243
2244 if (!cachep || in_interrupt())
2245 BUG();
2246
2247 /* Don't let CPUs to come and go */
2248 lock_cpu_hotplug();
2249
2250 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002251 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002252 /*
2253 * the chain is never empty, cache_cache is never destroyed
2254 */
2255 list_del(&cachep->next);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002256 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002257
2258 if (__cache_shrink(cachep)) {
2259 slab_error(cachep, "Can't free all objects");
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002260 mutex_lock(&cache_chain_mutex);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002261 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002262 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263 unlock_cpu_hotplug();
2264 return 1;
2265 }
2266
2267 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002268 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002269
Christoph Lametere498be72005-09-09 13:03:32 -07002270 for_each_online_cpu(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002271 kfree(cachep->array[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002272
2273 /* NUMA: free the list3 structures */
Christoph Lametere498be72005-09-09 13:03:32 -07002274 for_each_online_node(i) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002275 l3 = cachep->nodelists[i];
2276 if (l3) {
Christoph Lametere498be72005-09-09 13:03:32 -07002277 kfree(l3->shared);
2278 free_alien_cache(l3->alien);
2279 kfree(l3);
2280 }
2281 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002282 kmem_cache_free(&cache_cache, cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002283 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002284 return 0;
2285}
2286EXPORT_SYMBOL(kmem_cache_destroy);
2287
2288/* Get the memory for a slab management obj. */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002289static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002290 int colour_off, gfp_t local_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002291{
2292 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002293
Linus Torvalds1da177e2005-04-16 15:20:36 -07002294 if (OFF_SLAB(cachep)) {
2295 /* Slab management obj is off-slab. */
2296 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2297 if (!slabp)
2298 return NULL;
2299 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002300 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002301 colour_off += cachep->slab_size;
2302 }
2303 slabp->inuse = 0;
2304 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002305 slabp->s_mem = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002306 return slabp;
2307}
2308
2309static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2310{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002311 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002312}
2313
Pekka Enberg343e0d72006-02-01 03:05:50 -08002314static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002315 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002316{
2317 int i;
2318
2319 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002320 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002321#if DEBUG
2322 /* need to poison the objs? */
2323 if (cachep->flags & SLAB_POISON)
2324 poison_obj(cachep, objp, POISON_FREE);
2325 if (cachep->flags & SLAB_STORE_USER)
2326 *dbg_userword(cachep, objp) = NULL;
2327
2328 if (cachep->flags & SLAB_RED_ZONE) {
2329 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2330 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2331 }
2332 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002333 * Constructors are not allowed to allocate memory from the same
2334 * cache which they are a constructor for. Otherwise, deadlock.
2335 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002336 */
2337 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002338 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002339 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002340
2341 if (cachep->flags & SLAB_RED_ZONE) {
2342 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2343 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002344 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002345 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2346 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002347 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002348 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002349 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2350 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002351 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002352 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002353#else
2354 if (cachep->ctor)
2355 cachep->ctor(objp, cachep, ctor_flags);
2356#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002357 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002358 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002359 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002360 slabp->free = 0;
2361}
2362
Pekka Enberg343e0d72006-02-01 03:05:50 -08002363static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002364{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002365 if (flags & SLAB_DMA)
2366 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2367 else
2368 BUG_ON(cachep->gfpflags & GFP_DMA);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002369}
2370
Andrew Mortona737b3e2006-03-22 00:08:11 -08002371static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2372 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002373{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002374 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002375 kmem_bufctl_t next;
2376
2377 slabp->inuse++;
2378 next = slab_bufctl(slabp)[slabp->free];
2379#if DEBUG
2380 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2381 WARN_ON(slabp->nodeid != nodeid);
2382#endif
2383 slabp->free = next;
2384
2385 return objp;
2386}
2387
Andrew Mortona737b3e2006-03-22 00:08:11 -08002388static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2389 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002390{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002391 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002392
2393#if DEBUG
2394 /* Verify that the slab belongs to the intended node */
2395 WARN_ON(slabp->nodeid != nodeid);
2396
2397 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2398 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002399 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002400 BUG();
2401 }
2402#endif
2403 slab_bufctl(slabp)[objnr] = slabp->free;
2404 slabp->free = objnr;
2405 slabp->inuse--;
2406}
2407
Andrew Mortona737b3e2006-03-22 00:08:11 -08002408static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2409 void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002410{
2411 int i;
2412 struct page *page;
2413
2414 /* Nasty!!!!!! I hope this is OK. */
2415 i = 1 << cachep->gfporder;
2416 page = virt_to_page(objp);
2417 do {
Pekka Enberg065d41c2005-11-13 16:06:46 -08002418 page_set_cache(page, cachep);
2419 page_set_slab(page, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002420 page++;
2421 } while (--i);
2422}
2423
2424/*
2425 * Grow (by 1) the number of slabs within a cache. This is called by
2426 * kmem_cache_alloc() when there are no active objs left in a cache.
2427 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002428static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002429{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002430 struct slab *slabp;
2431 void *objp;
2432 size_t offset;
2433 gfp_t local_flags;
2434 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002435 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002436
Andrew Mortona737b3e2006-03-22 00:08:11 -08002437 /*
2438 * Be lazy and only check for valid flags here, keeping it out of the
2439 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002440 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002441 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002442 BUG();
2443 if (flags & SLAB_NO_GROW)
2444 return 0;
2445
2446 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2447 local_flags = (flags & SLAB_LEVEL_MASK);
2448 if (!(local_flags & __GFP_WAIT))
2449 /*
2450 * Not allowed to sleep. Need to tell a constructor about
2451 * this - it might need to know...
2452 */
2453 ctor_flags |= SLAB_CTOR_ATOMIC;
2454
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002455 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002456 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002457 l3 = cachep->nodelists[nodeid];
2458 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002459
2460 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002461 offset = l3->colour_next;
2462 l3->colour_next++;
2463 if (l3->colour_next >= cachep->colour)
2464 l3->colour_next = 0;
2465 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002466
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002467 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002468
2469 if (local_flags & __GFP_WAIT)
2470 local_irq_enable();
2471
2472 /*
2473 * The test for missing atomic flag is performed here, rather than
2474 * the more obvious place, simply to reduce the critical path length
2475 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2476 * will eventually be caught here (where it matters).
2477 */
2478 kmem_flagcheck(cachep, flags);
2479
Andrew Mortona737b3e2006-03-22 00:08:11 -08002480 /*
2481 * Get mem for the objs. Attempt to allocate a physical page from
2482 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002483 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002484 objp = kmem_getpages(cachep, flags, nodeid);
2485 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002486 goto failed;
2487
2488 /* Get slab management. */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002489 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
2490 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002491 goto opps1;
2492
Christoph Lametere498be72005-09-09 13:03:32 -07002493 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002494 set_slab_attr(cachep, slabp, objp);
2495
2496 cache_init_objs(cachep, slabp, ctor_flags);
2497
2498 if (local_flags & __GFP_WAIT)
2499 local_irq_disable();
2500 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002501 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002502
2503 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002504 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002505 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002506 l3->free_objects += cachep->num;
2507 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002508 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002509opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002510 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002511failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002512 if (local_flags & __GFP_WAIT)
2513 local_irq_disable();
2514 return 0;
2515}
2516
2517#if DEBUG
2518
2519/*
2520 * Perform extra freeing checks:
2521 * - detect bad pointers.
2522 * - POISON/RED_ZONE checking
2523 * - destructor calls, for caches with POISON+dtor
2524 */
2525static void kfree_debugcheck(const void *objp)
2526{
2527 struct page *page;
2528
2529 if (!virt_addr_valid(objp)) {
2530 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002531 (unsigned long)objp);
2532 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533 }
2534 page = virt_to_page(objp);
2535 if (!PageSlab(page)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002536 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2537 (unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002538 BUG();
2539 }
2540}
2541
Pekka Enberg343e0d72006-02-01 03:05:50 -08002542static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002543 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002544{
2545 struct page *page;
2546 unsigned int objnr;
2547 struct slab *slabp;
2548
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002549 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002550 kfree_debugcheck(objp);
2551 page = virt_to_page(objp);
2552
Pekka Enberg065d41c2005-11-13 16:06:46 -08002553 if (page_get_cache(page) != cachep) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002554 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2555 "cache %p, got %p\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002556 page_get_cache(page), cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002557 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002558 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2559 page_get_cache(page)->name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002560 WARN_ON(1);
2561 }
Pekka Enberg065d41c2005-11-13 16:06:46 -08002562 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002563
2564 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002565 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2566 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2567 slab_error(cachep, "double free, or memory outside"
2568 " object was overwritten");
2569 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2570 "redzone 2:0x%lx.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002571 objp, *dbg_redzone1(cachep, objp),
2572 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002573 }
2574 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2575 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2576 }
2577 if (cachep->flags & SLAB_STORE_USER)
2578 *dbg_userword(cachep, objp) = caller;
2579
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002580 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002581
2582 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002583 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002584
2585 if (cachep->flags & SLAB_DEBUG_INITIAL) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002586 /*
2587 * Need to call the slab's constructor so the caller can
2588 * perform a verify of its state (debugging). Called without
2589 * the cache-lock held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002590 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002591 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002592 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002593 }
2594 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2595 /* we want to cache poison the object,
2596 * call the destruction callback
2597 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002598 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002599 }
2600 if (cachep->flags & SLAB_POISON) {
2601#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002602 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002603 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002604 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002605 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002606 } else {
2607 poison_obj(cachep, objp, POISON_FREE);
2608 }
2609#else
2610 poison_obj(cachep, objp, POISON_FREE);
2611#endif
2612 }
2613 return objp;
2614}
2615
Pekka Enberg343e0d72006-02-01 03:05:50 -08002616static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002617{
2618 kmem_bufctl_t i;
2619 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002620
Linus Torvalds1da177e2005-04-16 15:20:36 -07002621 /* Check slab's freelist to see if this obj is there. */
2622 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2623 entries++;
2624 if (entries > cachep->num || i >= cachep->num)
2625 goto bad;
2626 }
2627 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002628bad:
2629 printk(KERN_ERR "slab: Internal list corruption detected in "
2630 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2631 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002632 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002633 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002634 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002635 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002636 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002637 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002638 }
2639 printk("\n");
2640 BUG();
2641 }
2642}
2643#else
2644#define kfree_debugcheck(x) do { } while(0)
2645#define cache_free_debugcheck(x,objp,z) (objp)
2646#define check_slabp(x,y) do { } while(0)
2647#endif
2648
Pekka Enberg343e0d72006-02-01 03:05:50 -08002649static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002650{
2651 int batchcount;
2652 struct kmem_list3 *l3;
2653 struct array_cache *ac;
2654
2655 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002656 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002657retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002658 batchcount = ac->batchcount;
2659 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002660 /*
2661 * If there was little recent activity on this cache, then
2662 * perform only a partial refill. Otherwise we could generate
2663 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002664 */
2665 batchcount = BATCHREFILL_LIMIT;
2666 }
Christoph Lametere498be72005-09-09 13:03:32 -07002667 l3 = cachep->nodelists[numa_node_id()];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002668
Christoph Lametere498be72005-09-09 13:03:32 -07002669 BUG_ON(ac->avail > 0 || !l3);
2670 spin_lock(&l3->list_lock);
2671
Linus Torvalds1da177e2005-04-16 15:20:36 -07002672 if (l3->shared) {
2673 struct array_cache *shared_array = l3->shared;
2674 if (shared_array->avail) {
2675 if (batchcount > shared_array->avail)
2676 batchcount = shared_array->avail;
2677 shared_array->avail -= batchcount;
2678 ac->avail = batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002679 memcpy(ac->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002680 &(shared_array->entry[shared_array->avail]),
2681 sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002682 shared_array->touched = 1;
2683 goto alloc_done;
2684 }
2685 }
2686 while (batchcount > 0) {
2687 struct list_head *entry;
2688 struct slab *slabp;
2689 /* Get slab alloc is to come from. */
2690 entry = l3->slabs_partial.next;
2691 if (entry == &l3->slabs_partial) {
2692 l3->free_touched = 1;
2693 entry = l3->slabs_free.next;
2694 if (entry == &l3->slabs_free)
2695 goto must_grow;
2696 }
2697
2698 slabp = list_entry(entry, struct slab, list);
2699 check_slabp(cachep, slabp);
2700 check_spinlock_acquired(cachep);
2701 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002702 STATS_INC_ALLOCED(cachep);
2703 STATS_INC_ACTIVE(cachep);
2704 STATS_SET_HIGH(cachep);
2705
Matthew Dobson78d382d2006-02-01 03:05:47 -08002706 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2707 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002708 }
2709 check_slabp(cachep, slabp);
2710
2711 /* move slabp to correct slabp list: */
2712 list_del(&slabp->list);
2713 if (slabp->free == BUFCTL_END)
2714 list_add(&slabp->list, &l3->slabs_full);
2715 else
2716 list_add(&slabp->list, &l3->slabs_partial);
2717 }
2718
Andrew Mortona737b3e2006-03-22 00:08:11 -08002719must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002720 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002721alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07002722 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002723
2724 if (unlikely(!ac->avail)) {
2725 int x;
Christoph Lametere498be72005-09-09 13:03:32 -07002726 x = cache_grow(cachep, flags, numa_node_id());
2727
Andrew Mortona737b3e2006-03-22 00:08:11 -08002728 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002729 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002730 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002731 return NULL;
2732
Andrew Mortona737b3e2006-03-22 00:08:11 -08002733 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002734 goto retry;
2735 }
2736 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002737 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002738}
2739
Andrew Mortona737b3e2006-03-22 00:08:11 -08002740static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2741 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002742{
2743 might_sleep_if(flags & __GFP_WAIT);
2744#if DEBUG
2745 kmem_flagcheck(cachep, flags);
2746#endif
2747}
2748
2749#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08002750static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2751 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002752{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002753 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002754 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002755 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002756#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002757 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002758 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002759 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002760 else
2761 check_poison_obj(cachep, objp);
2762#else
2763 check_poison_obj(cachep, objp);
2764#endif
2765 poison_obj(cachep, objp, POISON_INUSE);
2766 }
2767 if (cachep->flags & SLAB_STORE_USER)
2768 *dbg_userword(cachep, objp) = caller;
2769
2770 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002771 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2772 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2773 slab_error(cachep, "double free, or memory outside"
2774 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002775 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08002776 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2777 objp, *dbg_redzone1(cachep, objp),
2778 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002779 }
2780 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2781 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2782 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002783 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002784 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002785 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002786
2787 if (!(flags & __GFP_WAIT))
2788 ctor_flags |= SLAB_CTOR_ATOMIC;
2789
2790 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002791 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002792 return objp;
2793}
2794#else
2795#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2796#endif
2797
Pekka Enberg343e0d72006-02-01 03:05:50 -08002798static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002799{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002800 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002801 struct array_cache *ac;
2802
Christoph Lameterdc85da12006-01-18 17:42:36 -08002803#ifdef CONFIG_NUMA
Christoph Lameter86c562a2006-01-18 17:42:37 -08002804 if (unlikely(current->mempolicy && !in_interrupt())) {
Christoph Lameterdc85da12006-01-18 17:42:36 -08002805 int nid = slab_node(current->mempolicy);
2806
2807 if (nid != numa_node_id())
2808 return __cache_alloc_node(cachep, flags, nid);
2809 }
2810#endif
2811
Alok N Kataria5c382302005-09-27 21:45:46 -07002812 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002813 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002814 if (likely(ac->avail)) {
2815 STATS_INC_ALLOCHIT(cachep);
2816 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002817 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002818 } else {
2819 STATS_INC_ALLOCMISS(cachep);
2820 objp = cache_alloc_refill(cachep, flags);
2821 }
Alok N Kataria5c382302005-09-27 21:45:46 -07002822 return objp;
2823}
2824
Andrew Mortona737b3e2006-03-22 00:08:11 -08002825static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2826 gfp_t flags, void *caller)
Alok N Kataria5c382302005-09-27 21:45:46 -07002827{
2828 unsigned long save_flags;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002829 void *objp;
Alok N Kataria5c382302005-09-27 21:45:46 -07002830
2831 cache_alloc_debugcheck_before(cachep, flags);
2832
2833 local_irq_save(save_flags);
2834 objp = ____cache_alloc(cachep, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002835 local_irq_restore(save_flags);
Eric Dumazet34342e82005-09-03 15:55:06 -07002836 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
Pekka Enberg7fd6b142006-02-01 03:05:52 -08002837 caller);
Eric Dumazet34342e82005-09-03 15:55:06 -07002838 prefetchw(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002839 return objp;
2840}
2841
Christoph Lametere498be72005-09-09 13:03:32 -07002842#ifdef CONFIG_NUMA
2843/*
2844 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002845 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002846static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2847 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07002848{
2849 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002850 struct slab *slabp;
2851 struct kmem_list3 *l3;
2852 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002853 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002854
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002855 l3 = cachep->nodelists[nodeid];
2856 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07002857
Andrew Mortona737b3e2006-03-22 00:08:11 -08002858retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08002859 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002860 spin_lock(&l3->list_lock);
2861 entry = l3->slabs_partial.next;
2862 if (entry == &l3->slabs_partial) {
2863 l3->free_touched = 1;
2864 entry = l3->slabs_free.next;
2865 if (entry == &l3->slabs_free)
2866 goto must_grow;
2867 }
Christoph Lametere498be72005-09-09 13:03:32 -07002868
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002869 slabp = list_entry(entry, struct slab, list);
2870 check_spinlock_acquired_node(cachep, nodeid);
2871 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002872
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002873 STATS_INC_NODEALLOCS(cachep);
2874 STATS_INC_ACTIVE(cachep);
2875 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002876
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002877 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07002878
Matthew Dobson78d382d2006-02-01 03:05:47 -08002879 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002880 check_slabp(cachep, slabp);
2881 l3->free_objects--;
2882 /* move slabp to correct slabp list: */
2883 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07002884
Andrew Mortona737b3e2006-03-22 00:08:11 -08002885 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002886 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002887 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002888 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07002889
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002890 spin_unlock(&l3->list_lock);
2891 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07002892
Andrew Mortona737b3e2006-03-22 00:08:11 -08002893must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002894 spin_unlock(&l3->list_lock);
2895 x = cache_grow(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002896
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002897 if (!x)
2898 return NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07002899
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002900 goto retry;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002901done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002902 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07002903}
2904#endif
2905
2906/*
2907 * Caller needs to acquire correct kmem_list's list_lock
2908 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002909static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002910 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002911{
2912 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002913 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002914
2915 for (i = 0; i < nr_objects; i++) {
2916 void *objp = objpp[i];
2917 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002918
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08002919 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07002920 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002921 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07002922 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002923 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002924 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002925 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002926 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002927 check_slabp(cachep, slabp);
2928
2929 /* fixup slab chains */
2930 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07002931 if (l3->free_objects > l3->free_limit) {
2932 l3->free_objects -= cachep->num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002933 slab_destroy(cachep, slabp);
2934 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07002935 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002936 }
2937 } else {
2938 /* Unconditionally move a slab to the end of the
2939 * partial list on free - maximum time for the
2940 * other objects to be freed, too.
2941 */
Christoph Lametere498be72005-09-09 13:03:32 -07002942 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002943 }
2944 }
2945}
2946
Pekka Enberg343e0d72006-02-01 03:05:50 -08002947static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002948{
2949 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002950 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07002951 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002952
2953 batchcount = ac->batchcount;
2954#if DEBUG
2955 BUG_ON(!batchcount || batchcount > ac->avail);
2956#endif
2957 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07002958 l3 = cachep->nodelists[node];
Christoph Lametere498be72005-09-09 13:03:32 -07002959 spin_lock(&l3->list_lock);
2960 if (l3->shared) {
2961 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002962 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002963 if (max) {
2964 if (batchcount > max)
2965 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07002966 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002967 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002968 shared_array->avail += batchcount;
2969 goto free_done;
2970 }
2971 }
2972
Christoph Lameterff694162005-09-22 21:44:02 -07002973 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002974free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002975#if STATS
2976 {
2977 int i = 0;
2978 struct list_head *p;
2979
Christoph Lametere498be72005-09-09 13:03:32 -07002980 p = l3->slabs_free.next;
2981 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002982 struct slab *slabp;
2983
2984 slabp = list_entry(p, struct slab, list);
2985 BUG_ON(slabp->inuse);
2986
2987 i++;
2988 p = p->next;
2989 }
2990 STATS_SET_FREEABLE(cachep, i);
2991 }
2992#endif
Christoph Lametere498be72005-09-09 13:03:32 -07002993 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002994 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002995 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002996}
2997
2998/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002999 * Release an obj back to its cache. If the obj has a constructed state, it must
3000 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003001 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003002static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003003{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003004 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003005
3006 check_irq_off();
3007 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3008
Christoph Lametere498be72005-09-09 13:03:32 -07003009 /* Make sure we are not freeing a object from another
3010 * node to the array cache on this cpu.
3011 */
3012#ifdef CONFIG_NUMA
3013 {
3014 struct slab *slabp;
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08003015 slabp = virt_to_slab(objp);
Christoph Lametere498be72005-09-09 13:03:32 -07003016 if (unlikely(slabp->nodeid != numa_node_id())) {
3017 struct array_cache *alien = NULL;
3018 int nodeid = slabp->nodeid;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003019 struct kmem_list3 *l3;
Christoph Lametere498be72005-09-09 13:03:32 -07003020
Andrew Mortona737b3e2006-03-22 00:08:11 -08003021 l3 = cachep->nodelists[numa_node_id()];
Christoph Lametere498be72005-09-09 13:03:32 -07003022 STATS_INC_NODEFREES(cachep);
3023 if (l3->alien && l3->alien[nodeid]) {
3024 alien = l3->alien[nodeid];
3025 spin_lock(&alien->lock);
3026 if (unlikely(alien->avail == alien->limit))
3027 __drain_alien_cache(cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003028 alien, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003029 alien->entry[alien->avail++] = objp;
3030 spin_unlock(&alien->lock);
3031 } else {
3032 spin_lock(&(cachep->nodelists[nodeid])->
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003033 list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003034 free_block(cachep, &objp, 1, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003035 spin_unlock(&(cachep->nodelists[nodeid])->
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003036 list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003037 }
3038 return;
3039 }
3040 }
3041#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003042 if (likely(ac->avail < ac->limit)) {
3043 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003044 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003045 return;
3046 } else {
3047 STATS_INC_FREEMISS(cachep);
3048 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003049 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003050 }
3051}
3052
3053/**
3054 * kmem_cache_alloc - Allocate an object
3055 * @cachep: The cache to allocate from.
3056 * @flags: See kmalloc().
3057 *
3058 * Allocate an object from this cache. The flags are only relevant
3059 * if the cache has no available objects.
3060 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003061void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003062{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003063 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003064}
3065EXPORT_SYMBOL(kmem_cache_alloc);
3066
3067/**
3068 * kmem_ptr_validate - check if an untrusted pointer might
3069 * be a slab entry.
3070 * @cachep: the cache we're checking against
3071 * @ptr: pointer to validate
3072 *
3073 * This verifies that the untrusted pointer looks sane:
3074 * it is _not_ a guarantee that the pointer is actually
3075 * part of the slab cache in question, but it at least
3076 * validates that the pointer can be dereferenced and
3077 * looks half-way sane.
3078 *
3079 * Currently only used for dentry validation.
3080 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003081int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003082{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003083 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003084 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003085 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003086 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003087 struct page *page;
3088
3089 if (unlikely(addr < min_addr))
3090 goto out;
3091 if (unlikely(addr > (unsigned long)high_memory - size))
3092 goto out;
3093 if (unlikely(addr & align_mask))
3094 goto out;
3095 if (unlikely(!kern_addr_valid(addr)))
3096 goto out;
3097 if (unlikely(!kern_addr_valid(addr + size - 1)))
3098 goto out;
3099 page = virt_to_page(ptr);
3100 if (unlikely(!PageSlab(page)))
3101 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003102 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003103 goto out;
3104 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003105out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003106 return 0;
3107}
3108
3109#ifdef CONFIG_NUMA
3110/**
3111 * kmem_cache_alloc_node - Allocate an object on the specified node
3112 * @cachep: The cache to allocate from.
3113 * @flags: See kmalloc().
3114 * @nodeid: node number of the target node.
3115 *
3116 * Identical to kmem_cache_alloc, except that this function is slow
3117 * and can sleep. And it will allocate memory on the given node, which
3118 * can improve the performance for cpu bound structures.
Christoph Lametere498be72005-09-09 13:03:32 -07003119 * New and improved: it will now make sure that the object gets
3120 * put on the correct node list so that there is no false sharing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003121 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003122void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003123{
Christoph Lametere498be72005-09-09 13:03:32 -07003124 unsigned long save_flags;
3125 void *ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003126
Christoph Lametere498be72005-09-09 13:03:32 -07003127 cache_alloc_debugcheck_before(cachep, flags);
3128 local_irq_save(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003129
3130 if (nodeid == -1 || nodeid == numa_node_id() ||
Andrew Mortona737b3e2006-03-22 00:08:11 -08003131 !cachep->nodelists[nodeid])
Alok N Kataria5c382302005-09-27 21:45:46 -07003132 ptr = ____cache_alloc(cachep, flags);
3133 else
3134 ptr = __cache_alloc_node(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003135 local_irq_restore(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003136
3137 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3138 __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003139
Christoph Lametere498be72005-09-09 13:03:32 -07003140 return ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003141}
3142EXPORT_SYMBOL(kmem_cache_alloc_node);
3143
Al Virodd0fc662005-10-07 07:46:04 +01003144void *kmalloc_node(size_t size, gfp_t flags, int node)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003145{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003146 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003147
3148 cachep = kmem_find_general_cachep(size, flags);
3149 if (unlikely(cachep == NULL))
3150 return NULL;
3151 return kmem_cache_alloc_node(cachep, flags, node);
3152}
3153EXPORT_SYMBOL(kmalloc_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003154#endif
3155
3156/**
3157 * kmalloc - allocate memory
3158 * @size: how many bytes of memory are required.
3159 * @flags: the type of memory to allocate.
Randy Dunlap911851e2006-03-22 00:08:14 -08003160 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003161 *
3162 * kmalloc is the normal method of allocating memory
3163 * in the kernel.
3164 *
3165 * The @flags argument may be one of:
3166 *
3167 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3168 *
3169 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3170 *
3171 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3172 *
3173 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3174 * must be suitable for DMA. This can mean different things on different
3175 * platforms. For example, on i386, it means that the memory must come
3176 * from the first 16MB.
3177 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003178static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3179 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003180{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003181 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003182
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003183 /* If you want to save a few bytes .text space: replace
3184 * __ with kmem_.
3185 * Then kmalloc uses the uninlined functions instead of the inline
3186 * functions.
3187 */
3188 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003189 if (unlikely(cachep == NULL))
3190 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003191 return __cache_alloc(cachep, flags, caller);
3192}
3193
3194#ifndef CONFIG_DEBUG_SLAB
3195
3196void *__kmalloc(size_t size, gfp_t flags)
3197{
3198 return __do_kmalloc(size, flags, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003199}
3200EXPORT_SYMBOL(__kmalloc);
3201
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003202#else
3203
3204void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3205{
3206 return __do_kmalloc(size, flags, caller);
3207}
3208EXPORT_SYMBOL(__kmalloc_track_caller);
3209
3210#endif
3211
Linus Torvalds1da177e2005-04-16 15:20:36 -07003212#ifdef CONFIG_SMP
3213/**
3214 * __alloc_percpu - allocate one copy of the object for every present
3215 * cpu in the system, zeroing them.
3216 * Objects should be dereferenced using the per_cpu_ptr macro only.
3217 *
3218 * @size: how many bytes of memory are required.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003219 */
Pekka Enbergf9f75002006-01-08 01:00:33 -08003220void *__alloc_percpu(size_t size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003221{
3222 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003223 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003224
3225 if (!pdata)
3226 return NULL;
3227
Christoph Lametere498be72005-09-09 13:03:32 -07003228 /*
3229 * Cannot use for_each_online_cpu since a cpu may come online
3230 * and we have no way of figuring out how to fix the array
3231 * that we have allocated then....
3232 */
3233 for_each_cpu(i) {
3234 int node = cpu_to_node(i);
3235
3236 if (node_online(node))
3237 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3238 else
3239 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003240
3241 if (!pdata->ptrs[i])
3242 goto unwind_oom;
3243 memset(pdata->ptrs[i], 0, size);
3244 }
3245
3246 /* Catch derefs w/o wrappers */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003247 return (void *)(~(unsigned long)pdata);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003248
Andrew Mortona737b3e2006-03-22 00:08:11 -08003249unwind_oom:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003250 while (--i >= 0) {
3251 if (!cpu_possible(i))
3252 continue;
3253 kfree(pdata->ptrs[i]);
3254 }
3255 kfree(pdata);
3256 return NULL;
3257}
3258EXPORT_SYMBOL(__alloc_percpu);
3259#endif
3260
3261/**
3262 * kmem_cache_free - Deallocate an object
3263 * @cachep: The cache the allocation was from.
3264 * @objp: The previously allocated object.
3265 *
3266 * Free an object which was previously allocated from this
3267 * cache.
3268 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003269void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003270{
3271 unsigned long flags;
3272
3273 local_irq_save(flags);
3274 __cache_free(cachep, objp);
3275 local_irq_restore(flags);
3276}
3277EXPORT_SYMBOL(kmem_cache_free);
3278
3279/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003280 * kfree - free previously allocated memory
3281 * @objp: pointer returned by kmalloc.
3282 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003283 * If @objp is NULL, no operation is performed.
3284 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003285 * Don't free memory not originally allocated by kmalloc()
3286 * or you will run into trouble.
3287 */
3288void kfree(const void *objp)
3289{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003290 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003291 unsigned long flags;
3292
3293 if (unlikely(!objp))
3294 return;
3295 local_irq_save(flags);
3296 kfree_debugcheck(objp);
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08003297 c = virt_to_cache(objp);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003298 mutex_debug_check_no_locks_freed(objp, obj_size(c));
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003299 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003300 local_irq_restore(flags);
3301}
3302EXPORT_SYMBOL(kfree);
3303
3304#ifdef CONFIG_SMP
3305/**
3306 * free_percpu - free previously allocated percpu memory
3307 * @objp: pointer returned by alloc_percpu.
3308 *
3309 * Don't free memory not originally allocated by alloc_percpu()
3310 * The complemented objp is to check for that.
3311 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003312void free_percpu(const void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003313{
3314 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003315 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003316
Christoph Lametere498be72005-09-09 13:03:32 -07003317 /*
3318 * We allocate for all cpus so we cannot use for online cpu here.
3319 */
3320 for_each_cpu(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003321 kfree(p->ptrs[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003322 kfree(p);
3323}
3324EXPORT_SYMBOL(free_percpu);
3325#endif
3326
Pekka Enberg343e0d72006-02-01 03:05:50 -08003327unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003328{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003329 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003330}
3331EXPORT_SYMBOL(kmem_cache_size);
3332
Pekka Enberg343e0d72006-02-01 03:05:50 -08003333const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003334{
3335 return cachep->name;
3336}
3337EXPORT_SYMBOL_GPL(kmem_cache_name);
3338
Christoph Lametere498be72005-09-09 13:03:32 -07003339/*
3340 * This initializes kmem_list3 for all nodes.
3341 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003342static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003343{
3344 int node;
3345 struct kmem_list3 *l3;
3346 int err = 0;
3347
3348 for_each_online_node(node) {
3349 struct array_cache *nc = NULL, *new;
3350 struct array_cache **new_alien = NULL;
3351#ifdef CONFIG_NUMA
Andrew Mortona737b3e2006-03-22 00:08:11 -08003352 new_alien = alloc_alien_cache(node, cachep->limit);
3353 if (!new_alien)
Christoph Lametere498be72005-09-09 13:03:32 -07003354 goto fail;
3355#endif
Andrew Mortona737b3e2006-03-22 00:08:11 -08003356 new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
3357 0xbaadf00d);
3358 if (!new)
Christoph Lametere498be72005-09-09 13:03:32 -07003359 goto fail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003360 l3 = cachep->nodelists[node];
3361 if (l3) {
Christoph Lametere498be72005-09-09 13:03:32 -07003362 spin_lock_irq(&l3->list_lock);
3363
Andrew Mortona737b3e2006-03-22 00:08:11 -08003364 nc = cachep->nodelists[node]->shared;
3365 if (nc)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003366 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003367
3368 l3->shared = new;
3369 if (!cachep->nodelists[node]->alien) {
3370 l3->alien = new_alien;
3371 new_alien = NULL;
3372 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003373 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003374 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003375 spin_unlock_irq(&l3->list_lock);
3376 kfree(nc);
3377 free_alien_cache(new_alien);
3378 continue;
3379 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003380 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3381 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07003382 goto fail;
3383
3384 kmem_list3_init(l3);
3385 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003386 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07003387 l3->shared = new;
3388 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003389 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003390 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003391 cachep->nodelists[node] = l3;
3392 }
3393 return err;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003394fail:
Christoph Lametere498be72005-09-09 13:03:32 -07003395 err = -ENOMEM;
3396 return err;
3397}
3398
Linus Torvalds1da177e2005-04-16 15:20:36 -07003399struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003400 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003401 struct array_cache *new[NR_CPUS];
3402};
3403
3404static void do_ccupdate_local(void *info)
3405{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003406 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003407 struct array_cache *old;
3408
3409 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003410 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003411
Linus Torvalds1da177e2005-04-16 15:20:36 -07003412 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3413 new->new[smp_processor_id()] = old;
3414}
3415
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003416/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003417static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3418 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003419{
3420 struct ccupdate_struct new;
Christoph Lametere498be72005-09-09 13:03:32 -07003421 int i, err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003422
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003423 memset(&new.new, 0, sizeof(new.new));
Christoph Lametere498be72005-09-09 13:03:32 -07003424 for_each_online_cpu(i) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003425 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3426 batchcount);
Christoph Lametere498be72005-09-09 13:03:32 -07003427 if (!new.new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003428 for (i--; i >= 0; i--)
3429 kfree(new.new[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07003430 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003431 }
3432 }
3433 new.cachep = cachep;
3434
Andrew Mortona07fa392006-03-22 00:08:17 -08003435 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
Christoph Lametere498be72005-09-09 13:03:32 -07003436
Linus Torvalds1da177e2005-04-16 15:20:36 -07003437 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003438 cachep->batchcount = batchcount;
3439 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003440 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003441
Christoph Lametere498be72005-09-09 13:03:32 -07003442 for_each_online_cpu(i) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003443 struct array_cache *ccold = new.new[i];
3444 if (!ccold)
3445 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003446 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003447 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003448 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003449 kfree(ccold);
3450 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003451
Christoph Lametere498be72005-09-09 13:03:32 -07003452 err = alloc_kmemlist(cachep);
3453 if (err) {
3454 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003455 cachep->name, -err);
Christoph Lametere498be72005-09-09 13:03:32 -07003456 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003457 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003458 return 0;
3459}
3460
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003461/* Called with cache_chain_mutex held always */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003462static void enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003463{
3464 int err;
3465 int limit, shared;
3466
Andrew Mortona737b3e2006-03-22 00:08:11 -08003467 /*
3468 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003469 * - create a LIFO ordering, i.e. return objects that are cache-warm
3470 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08003471 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07003472 * bufctl chains: array operations are cheaper.
3473 * The numbers are guessed, we should auto-tune as described by
3474 * Bonwick.
3475 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003476 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003477 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003478 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003479 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003480 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003481 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003482 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003483 limit = 54;
3484 else
3485 limit = 120;
3486
Andrew Mortona737b3e2006-03-22 00:08:11 -08003487 /*
3488 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07003489 * allocation behaviour: Most allocs on one cpu, most free operations
3490 * on another cpu. For these cases, an efficient object passing between
3491 * cpus is necessary. This is provided by a shared array. The array
3492 * replaces Bonwick's magazine layer.
3493 * On uniprocessor, it's functionally equivalent (but less efficient)
3494 * to a larger limit. Thus disabled by default.
3495 */
3496 shared = 0;
3497#ifdef CONFIG_SMP
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003498 if (cachep->buffer_size <= PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003499 shared = 8;
3500#endif
3501
3502#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003503 /*
3504 * With debugging enabled, large batchcount lead to excessively long
3505 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07003506 */
3507 if (limit > 32)
3508 limit = 32;
3509#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003510 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003511 if (err)
3512 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003513 cachep->name, -err);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003514}
3515
Andrew Mortona737b3e2006-03-22 00:08:11 -08003516static void drain_array_locked(struct kmem_cache *cachep,
3517 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003518{
3519 int tofree;
3520
Christoph Lametere498be72005-09-09 13:03:32 -07003521 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003522 if (ac->touched && !force) {
3523 ac->touched = 0;
3524 } else if (ac->avail) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003525 tofree = force ? ac->avail : (ac->limit + 4) / 5;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003526 if (tofree > ac->avail)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003527 tofree = (ac->avail + 1) / 2;
Christoph Lameterff694162005-09-22 21:44:02 -07003528 free_block(cachep, ac->entry, tofree, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003529 ac->avail -= tofree;
Christoph Lametere498be72005-09-09 13:03:32 -07003530 memmove(ac->entry, &(ac->entry[tofree]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003531 sizeof(void *) * ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003532 }
3533}
3534
3535/**
3536 * cache_reap - Reclaim memory from caches.
Randy Dunlap1e5d5332005-11-07 01:01:06 -08003537 * @unused: unused parameter
Linus Torvalds1da177e2005-04-16 15:20:36 -07003538 *
3539 * Called from workqueue/eventd every few seconds.
3540 * Purpose:
3541 * - clear the per-cpu caches for this CPU.
3542 * - return freeable pages to the main free memory pool.
3543 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003544 * If we cannot acquire the cache chain mutex then just give up - we'll try
3545 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003546 */
3547static void cache_reap(void *unused)
3548{
3549 struct list_head *walk;
Christoph Lametere498be72005-09-09 13:03:32 -07003550 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003551
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003552 if (!mutex_trylock(&cache_chain_mutex)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003553 /* Give up. Setup the next iteration. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003554 schedule_delayed_work(&__get_cpu_var(reap_work),
3555 REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003556 return;
3557 }
3558
3559 list_for_each(walk, &cache_chain) {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003560 struct kmem_cache *searchp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003561 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003562 int tofree;
3563 struct slab *slabp;
3564
Pekka Enberg343e0d72006-02-01 03:05:50 -08003565 searchp = list_entry(walk, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003566 check_irq_on();
3567
Christoph Lametere498be72005-09-09 13:03:32 -07003568 l3 = searchp->nodelists[numa_node_id()];
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003569 reap_alien(searchp, l3);
Christoph Lametere498be72005-09-09 13:03:32 -07003570 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003571
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003572 drain_array_locked(searchp, cpu_cache_get(searchp), 0,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003573 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07003574
Christoph Lametere498be72005-09-09 13:03:32 -07003575 if (time_after(l3->next_reap, jiffies))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003576 goto next_unlock;
3577
Christoph Lametere498be72005-09-09 13:03:32 -07003578 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003579
Christoph Lametere498be72005-09-09 13:03:32 -07003580 if (l3->shared)
3581 drain_array_locked(searchp, l3->shared, 0,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003582 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07003583
Christoph Lametere498be72005-09-09 13:03:32 -07003584 if (l3->free_touched) {
3585 l3->free_touched = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003586 goto next_unlock;
3587 }
3588
Andrew Mortona737b3e2006-03-22 00:08:11 -08003589 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3590 (5 * searchp->num);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003591 do {
Christoph Lametere498be72005-09-09 13:03:32 -07003592 p = l3->slabs_free.next;
3593 if (p == &(l3->slabs_free))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003594 break;
3595
3596 slabp = list_entry(p, struct slab, list);
3597 BUG_ON(slabp->inuse);
3598 list_del(&slabp->list);
3599 STATS_INC_REAPED(searchp);
3600
Andrew Mortona737b3e2006-03-22 00:08:11 -08003601 /*
3602 * Safe to drop the lock. The slab is no longer linked
3603 * to the cache. searchp cannot disappear, we hold
Linus Torvalds1da177e2005-04-16 15:20:36 -07003604 * cache_chain_lock
3605 */
Christoph Lametere498be72005-09-09 13:03:32 -07003606 l3->free_objects -= searchp->num;
3607 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003608 slab_destroy(searchp, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003609 spin_lock_irq(&l3->list_lock);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003610 } while (--tofree > 0);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003611next_unlock:
Christoph Lametere498be72005-09-09 13:03:32 -07003612 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003613 cond_resched();
3614 }
3615 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003616 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003617 next_reap_node();
Andrew Mortona737b3e2006-03-22 00:08:11 -08003618 /* Set up the next iteration */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08003619 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003620}
3621
3622#ifdef CONFIG_PROC_FS
3623
Pekka Enberg85289f92006-01-08 01:00:36 -08003624static void print_slabinfo_header(struct seq_file *m)
3625{
3626 /*
3627 * Output format version, so at least we can change it
3628 * without _too_ many complaints.
3629 */
3630#if STATS
3631 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3632#else
3633 seq_puts(m, "slabinfo - version: 2.1\n");
3634#endif
3635 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3636 "<objperslab> <pagesperslab>");
3637 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3638 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3639#if STATS
3640 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3641 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3642 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3643#endif
3644 seq_putc(m, '\n');
3645}
3646
Linus Torvalds1da177e2005-04-16 15:20:36 -07003647static void *s_start(struct seq_file *m, loff_t *pos)
3648{
3649 loff_t n = *pos;
3650 struct list_head *p;
3651
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003652 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08003653 if (!n)
3654 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003655 p = cache_chain.next;
3656 while (n--) {
3657 p = p->next;
3658 if (p == &cache_chain)
3659 return NULL;
3660 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08003661 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003662}
3663
3664static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3665{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003666 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003667 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003668 return cachep->next.next == &cache_chain ?
3669 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003670}
3671
3672static void s_stop(struct seq_file *m, void *p)
3673{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003674 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003675}
3676
3677static int s_show(struct seq_file *m, void *p)
3678{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003679 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003680 struct list_head *q;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003681 struct slab *slabp;
3682 unsigned long active_objs;
3683 unsigned long num_objs;
3684 unsigned long active_slabs = 0;
3685 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003686 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003687 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003688 int node;
3689 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003690
Linus Torvalds1da177e2005-04-16 15:20:36 -07003691 active_objs = 0;
3692 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003693 for_each_online_node(node) {
3694 l3 = cachep->nodelists[node];
3695 if (!l3)
3696 continue;
3697
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003698 check_irq_on();
3699 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003700
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003701 list_for_each(q, &l3->slabs_full) {
Christoph Lametere498be72005-09-09 13:03:32 -07003702 slabp = list_entry(q, struct slab, list);
3703 if (slabp->inuse != cachep->num && !error)
3704 error = "slabs_full accounting error";
3705 active_objs += cachep->num;
3706 active_slabs++;
3707 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003708 list_for_each(q, &l3->slabs_partial) {
Christoph Lametere498be72005-09-09 13:03:32 -07003709 slabp = list_entry(q, struct slab, list);
3710 if (slabp->inuse == cachep->num && !error)
3711 error = "slabs_partial inuse accounting error";
3712 if (!slabp->inuse && !error)
3713 error = "slabs_partial/inuse accounting error";
3714 active_objs += slabp->inuse;
3715 active_slabs++;
3716 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003717 list_for_each(q, &l3->slabs_free) {
Christoph Lametere498be72005-09-09 13:03:32 -07003718 slabp = list_entry(q, struct slab, list);
3719 if (slabp->inuse && !error)
3720 error = "slabs_free/inuse accounting error";
3721 num_slabs++;
3722 }
3723 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08003724 if (l3->shared)
3725 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07003726
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003727 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003728 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003729 num_slabs += active_slabs;
3730 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003731 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003732 error = "free_objects accounting error";
3733
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003734 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003735 if (error)
3736 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3737
3738 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003739 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003740 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003741 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003742 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003743 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003744 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003745#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003746 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003747 unsigned long high = cachep->high_mark;
3748 unsigned long allocs = cachep->num_allocations;
3749 unsigned long grown = cachep->grown;
3750 unsigned long reaped = cachep->reaped;
3751 unsigned long errors = cachep->errors;
3752 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003753 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07003754 unsigned long node_frees = cachep->node_frees;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003755
Christoph Lametere498be72005-09-09 13:03:32 -07003756 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Andrew Mortona737b3e2006-03-22 00:08:11 -08003757 %4lu %4lu %4lu %4lu", allocs, high, grown,
3758 reaped, errors, max_freeable, node_allocs,
3759 node_frees);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003760 }
3761 /* cpu stats */
3762 {
3763 unsigned long allochit = atomic_read(&cachep->allochit);
3764 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3765 unsigned long freehit = atomic_read(&cachep->freehit);
3766 unsigned long freemiss = atomic_read(&cachep->freemiss);
3767
3768 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003769 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003770 }
3771#endif
3772 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07003773 return 0;
3774}
3775
3776/*
3777 * slabinfo_op - iterator that generates /proc/slabinfo
3778 *
3779 * Output layout:
3780 * cache-name
3781 * num-active-objs
3782 * total-objs
3783 * object size
3784 * num-active-slabs
3785 * total-slabs
3786 * num-pages-per-slab
3787 * + further values on SMP and with statistics enabled
3788 */
3789
3790struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003791 .start = s_start,
3792 .next = s_next,
3793 .stop = s_stop,
3794 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003795};
3796
3797#define MAX_SLABINFO_WRITE 128
3798/**
3799 * slabinfo_write - Tuning for the slab allocator
3800 * @file: unused
3801 * @buffer: user buffer
3802 * @count: data length
3803 * @ppos: unused
3804 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003805ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3806 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003807{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003808 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003809 int limit, batchcount, shared, res;
3810 struct list_head *p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003811
Linus Torvalds1da177e2005-04-16 15:20:36 -07003812 if (count > MAX_SLABINFO_WRITE)
3813 return -EINVAL;
3814 if (copy_from_user(&kbuf, buffer, count))
3815 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003816 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07003817
3818 tmp = strchr(kbuf, ' ');
3819 if (!tmp)
3820 return -EINVAL;
3821 *tmp = '\0';
3822 tmp++;
3823 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3824 return -EINVAL;
3825
3826 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003827 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003828 res = -EINVAL;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003829 list_for_each(p, &cache_chain) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003830 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003831
Andrew Mortona737b3e2006-03-22 00:08:11 -08003832 cachep = list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003833 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003834 if (limit < 1 || batchcount < 1 ||
3835 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003836 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003837 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003838 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003839 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003840 }
3841 break;
3842 }
3843 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003844 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003845 if (res >= 0)
3846 res = count;
3847 return res;
3848}
3849#endif
3850
Manfred Spraul00e145b2005-09-03 15:55:07 -07003851/**
3852 * ksize - get the actual amount of memory allocated for a given object
3853 * @objp: Pointer to the object
3854 *
3855 * kmalloc may internally round up allocations and return more memory
3856 * than requested. ksize() can be used to determine the actual amount of
3857 * memory allocated. The caller may use this additional memory, even though
3858 * a smaller amount of memory was initially specified with the kmalloc call.
3859 * The caller must guarantee that objp points to a valid object previously
3860 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3861 * must not be freed during the duration of the call.
3862 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003863unsigned int ksize(const void *objp)
3864{
Manfred Spraul00e145b2005-09-03 15:55:07 -07003865 if (unlikely(objp == NULL))
3866 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003867
Pekka Enberg6ed5eb22006-02-01 03:05:49 -08003868 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003869}