Alexander Graf | 0d8dc68 | 2009-10-30 05:47:11 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved. |
| 3 | * |
| 4 | * Authors: |
| 5 | * Alexander Graf <agraf@suse.de> |
| 6 | * Kevin Wolf <mail@kevin-wolf.de> |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License, version 2, as |
| 10 | * published by the Free Software Foundation. |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License |
| 18 | * along with this program; if not, write to the Free Software |
| 19 | * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| 20 | */ |
| 21 | |
| 22 | #include <linux/kvm_host.h> |
| 23 | |
| 24 | #include <asm/kvm_ppc.h> |
| 25 | #include <asm/kvm_book3s.h> |
| 26 | #include <asm/mmu-hash64.h> |
| 27 | #include <asm/machdep.h> |
| 28 | #include <asm/mmu_context.h> |
| 29 | #include <asm/hw_irq.h> |
| 30 | |
| 31 | #define PTE_SIZE 12 |
| 32 | #define VSID_ALL 0 |
| 33 | |
| 34 | /* #define DEBUG_MMU */ |
| 35 | /* #define DEBUG_SLB */ |
| 36 | |
| 37 | #ifdef DEBUG_MMU |
| 38 | #define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__) |
| 39 | #else |
| 40 | #define dprintk_mmu(a, ...) do { } while(0) |
| 41 | #endif |
| 42 | |
| 43 | #ifdef DEBUG_SLB |
| 44 | #define dprintk_slb(a, ...) printk(KERN_INFO a, __VA_ARGS__) |
| 45 | #else |
| 46 | #define dprintk_slb(a, ...) do { } while(0) |
| 47 | #endif |
| 48 | |
| 49 | static void invalidate_pte(struct hpte_cache *pte) |
| 50 | { |
| 51 | dprintk_mmu("KVM: Flushing SPT %d: 0x%llx (0x%llx) -> 0x%llx\n", |
| 52 | i, pte->pte.eaddr, pte->pte.vpage, pte->host_va); |
| 53 | |
| 54 | ppc_md.hpte_invalidate(pte->slot, pte->host_va, |
| 55 | MMU_PAGE_4K, MMU_SEGSIZE_256M, |
| 56 | false); |
| 57 | pte->host_va = 0; |
| 58 | kvm_release_pfn_dirty(pte->pfn); |
| 59 | } |
| 60 | |
| 61 | void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, u64 guest_ea, u64 ea_mask) |
| 62 | { |
| 63 | int i; |
| 64 | |
| 65 | dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%llx & 0x%llx\n", |
| 66 | vcpu->arch.hpte_cache_offset, guest_ea, ea_mask); |
| 67 | BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); |
| 68 | |
| 69 | guest_ea &= ea_mask; |
| 70 | for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { |
| 71 | struct hpte_cache *pte; |
| 72 | |
| 73 | pte = &vcpu->arch.hpte_cache[i]; |
| 74 | if (!pte->host_va) |
| 75 | continue; |
| 76 | |
| 77 | if ((pte->pte.eaddr & ea_mask) == guest_ea) { |
| 78 | invalidate_pte(pte); |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | /* Doing a complete flush -> start from scratch */ |
| 83 | if (!ea_mask) |
| 84 | vcpu->arch.hpte_cache_offset = 0; |
| 85 | } |
| 86 | |
| 87 | void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask) |
| 88 | { |
| 89 | int i; |
| 90 | |
| 91 | dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n", |
| 92 | vcpu->arch.hpte_cache_offset, guest_vp, vp_mask); |
| 93 | BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); |
| 94 | |
| 95 | guest_vp &= vp_mask; |
| 96 | for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { |
| 97 | struct hpte_cache *pte; |
| 98 | |
| 99 | pte = &vcpu->arch.hpte_cache[i]; |
| 100 | if (!pte->host_va) |
| 101 | continue; |
| 102 | |
| 103 | if ((pte->pte.vpage & vp_mask) == guest_vp) { |
| 104 | invalidate_pte(pte); |
| 105 | } |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, u64 pa_start, u64 pa_end) |
| 110 | { |
| 111 | int i; |
| 112 | |
| 113 | dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%llx & 0x%llx\n", |
| 114 | vcpu->arch.hpte_cache_offset, guest_pa, pa_mask); |
| 115 | BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM); |
| 116 | |
| 117 | for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) { |
| 118 | struct hpte_cache *pte; |
| 119 | |
| 120 | pte = &vcpu->arch.hpte_cache[i]; |
| 121 | if (!pte->host_va) |
| 122 | continue; |
| 123 | |
| 124 | if ((pte->pte.raddr >= pa_start) && |
| 125 | (pte->pte.raddr < pa_end)) { |
| 126 | invalidate_pte(pte); |
| 127 | } |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | struct kvmppc_pte *kvmppc_mmu_find_pte(struct kvm_vcpu *vcpu, u64 ea, bool data) |
| 132 | { |
| 133 | int i; |
| 134 | u64 guest_vp; |
| 135 | |
| 136 | guest_vp = vcpu->arch.mmu.ea_to_vp(vcpu, ea, false); |
| 137 | for (i=0; i<vcpu->arch.hpte_cache_offset; i++) { |
| 138 | struct hpte_cache *pte; |
| 139 | |
| 140 | pte = &vcpu->arch.hpte_cache[i]; |
| 141 | if (!pte->host_va) |
| 142 | continue; |
| 143 | |
| 144 | if (pte->pte.vpage == guest_vp) |
| 145 | return &pte->pte; |
| 146 | } |
| 147 | |
| 148 | return NULL; |
| 149 | } |
| 150 | |
| 151 | static int kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu) |
| 152 | { |
| 153 | if (vcpu->arch.hpte_cache_offset == HPTEG_CACHE_NUM) |
| 154 | kvmppc_mmu_pte_flush(vcpu, 0, 0); |
| 155 | |
| 156 | return vcpu->arch.hpte_cache_offset++; |
| 157 | } |
| 158 | |
| 159 | /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using |
| 160 | * a hash, so we don't waste cycles on looping */ |
| 161 | static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) |
| 162 | { |
| 163 | return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^ |
| 164 | ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^ |
| 165 | ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^ |
| 166 | ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^ |
| 167 | ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^ |
| 168 | ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^ |
| 169 | ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^ |
| 170 | ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK)); |
| 171 | } |
| 172 | |
| 173 | |
| 174 | static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid) |
| 175 | { |
| 176 | struct kvmppc_sid_map *map; |
| 177 | u16 sid_map_mask; |
| 178 | |
| 179 | if (vcpu->arch.msr & MSR_PR) |
| 180 | gvsid |= VSID_PR; |
| 181 | |
| 182 | sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); |
| 183 | map = &to_book3s(vcpu)->sid_map[sid_map_mask]; |
| 184 | if (map->guest_vsid == gvsid) { |
| 185 | dprintk_slb("SLB: Searching 0x%llx -> 0x%llx\n", |
| 186 | gvsid, map->host_vsid); |
| 187 | return map; |
| 188 | } |
| 189 | |
| 190 | map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask]; |
| 191 | if (map->guest_vsid == gvsid) { |
| 192 | dprintk_slb("SLB: Searching 0x%llx -> 0x%llx\n", |
| 193 | gvsid, map->host_vsid); |
| 194 | return map; |
| 195 | } |
| 196 | |
| 197 | dprintk_slb("SLB: Searching 0x%llx -> not found\n", gvsid); |
| 198 | return NULL; |
| 199 | } |
| 200 | |
| 201 | int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte) |
| 202 | { |
| 203 | pfn_t hpaddr; |
| 204 | ulong hash, hpteg, va; |
| 205 | u64 vsid; |
| 206 | int ret; |
| 207 | int rflags = 0x192; |
| 208 | int vflags = 0; |
| 209 | int attempt = 0; |
| 210 | struct kvmppc_sid_map *map; |
| 211 | |
| 212 | /* Get host physical address for gpa */ |
| 213 | hpaddr = gfn_to_pfn(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT); |
| 214 | if (kvm_is_error_hva(hpaddr)) { |
| 215 | printk(KERN_INFO "Couldn't get guest page for gfn %llx!\n", orig_pte->eaddr); |
| 216 | return -EINVAL; |
| 217 | } |
| 218 | hpaddr <<= PAGE_SHIFT; |
| 219 | #if PAGE_SHIFT == 12 |
| 220 | #elif PAGE_SHIFT == 16 |
| 221 | hpaddr |= orig_pte->raddr & 0xf000; |
| 222 | #else |
| 223 | #error Unknown page size |
| 224 | #endif |
| 225 | |
| 226 | /* and write the mapping ea -> hpa into the pt */ |
| 227 | vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid); |
| 228 | map = find_sid_vsid(vcpu, vsid); |
| 229 | if (!map) { |
| 230 | kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr); |
| 231 | map = find_sid_vsid(vcpu, vsid); |
| 232 | } |
| 233 | BUG_ON(!map); |
| 234 | |
| 235 | vsid = map->host_vsid; |
| 236 | va = hpt_va(orig_pte->eaddr, vsid, MMU_SEGSIZE_256M); |
| 237 | |
| 238 | if (!orig_pte->may_write) |
| 239 | rflags |= HPTE_R_PP; |
| 240 | else |
| 241 | mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT); |
| 242 | |
| 243 | if (!orig_pte->may_execute) |
| 244 | rflags |= HPTE_R_N; |
| 245 | |
| 246 | hash = hpt_hash(va, PTE_SIZE, MMU_SEGSIZE_256M); |
| 247 | |
| 248 | map_again: |
| 249 | hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); |
| 250 | |
| 251 | /* In case we tried normal mapping already, let's nuke old entries */ |
| 252 | if (attempt > 1) |
| 253 | if (ppc_md.hpte_remove(hpteg) < 0) |
| 254 | return -1; |
| 255 | |
| 256 | ret = ppc_md.hpte_insert(hpteg, va, hpaddr, rflags, vflags, MMU_PAGE_4K, MMU_SEGSIZE_256M); |
| 257 | |
| 258 | if (ret < 0) { |
| 259 | /* If we couldn't map a primary PTE, try a secondary */ |
Alexander Graf | 0d8dc68 | 2009-10-30 05:47:11 +0000 | [diff] [blame] | 260 | hash = ~hash; |
Alexander Graf | 20a340a | 2010-02-19 11:00:46 +0100 | [diff] [blame] | 261 | vflags ^= HPTE_V_SECONDARY; |
Alexander Graf | 0d8dc68 | 2009-10-30 05:47:11 +0000 | [diff] [blame] | 262 | attempt++; |
Alexander Graf | 0d8dc68 | 2009-10-30 05:47:11 +0000 | [diff] [blame] | 263 | goto map_again; |
| 264 | } else { |
| 265 | int hpte_id = kvmppc_mmu_hpte_cache_next(vcpu); |
| 266 | struct hpte_cache *pte = &vcpu->arch.hpte_cache[hpte_id]; |
| 267 | |
| 268 | dprintk_mmu("KVM: %c%c Map 0x%llx: [%lx] 0x%lx (0x%llx) -> %lx\n", |
| 269 | ((rflags & HPTE_R_PP) == 3) ? '-' : 'w', |
| 270 | (rflags & HPTE_R_N) ? '-' : 'x', |
| 271 | orig_pte->eaddr, hpteg, va, orig_pte->vpage, hpaddr); |
| 272 | |
| 273 | pte->slot = hpteg + (ret & 7); |
| 274 | pte->host_va = va; |
| 275 | pte->pte = *orig_pte; |
| 276 | pte->pfn = hpaddr >> PAGE_SHIFT; |
| 277 | } |
| 278 | |
| 279 | return 0; |
| 280 | } |
| 281 | |
| 282 | static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) |
| 283 | { |
| 284 | struct kvmppc_sid_map *map; |
| 285 | struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); |
| 286 | u16 sid_map_mask; |
| 287 | static int backwards_map = 0; |
| 288 | |
| 289 | if (vcpu->arch.msr & MSR_PR) |
| 290 | gvsid |= VSID_PR; |
| 291 | |
| 292 | /* We might get collisions that trap in preceding order, so let's |
| 293 | map them differently */ |
| 294 | |
| 295 | sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); |
| 296 | if (backwards_map) |
| 297 | sid_map_mask = SID_MAP_MASK - sid_map_mask; |
| 298 | |
| 299 | map = &to_book3s(vcpu)->sid_map[sid_map_mask]; |
| 300 | |
| 301 | /* Make sure we're taking the other map next time */ |
| 302 | backwards_map = !backwards_map; |
| 303 | |
| 304 | /* Uh-oh ... out of mappings. Let's flush! */ |
| 305 | if (vcpu_book3s->vsid_next == vcpu_book3s->vsid_max) { |
| 306 | vcpu_book3s->vsid_next = vcpu_book3s->vsid_first; |
| 307 | memset(vcpu_book3s->sid_map, 0, |
| 308 | sizeof(struct kvmppc_sid_map) * SID_MAP_NUM); |
| 309 | kvmppc_mmu_pte_flush(vcpu, 0, 0); |
| 310 | kvmppc_mmu_flush_segments(vcpu); |
| 311 | } |
| 312 | map->host_vsid = vcpu_book3s->vsid_next++; |
| 313 | |
| 314 | map->guest_vsid = gvsid; |
| 315 | map->valid = true; |
| 316 | |
| 317 | return map; |
| 318 | } |
| 319 | |
| 320 | static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid) |
| 321 | { |
| 322 | int i; |
| 323 | int max_slb_size = 64; |
| 324 | int found_inval = -1; |
| 325 | int r; |
| 326 | |
| 327 | if (!get_paca()->kvm_slb_max) |
| 328 | get_paca()->kvm_slb_max = 1; |
| 329 | |
| 330 | /* Are we overwriting? */ |
| 331 | for (i = 1; i < get_paca()->kvm_slb_max; i++) { |
| 332 | if (!(get_paca()->kvm_slb[i].esid & SLB_ESID_V)) |
| 333 | found_inval = i; |
| 334 | else if ((get_paca()->kvm_slb[i].esid & ESID_MASK) == esid) |
| 335 | return i; |
| 336 | } |
| 337 | |
| 338 | /* Found a spare entry that was invalidated before */ |
| 339 | if (found_inval > 0) |
| 340 | return found_inval; |
| 341 | |
| 342 | /* No spare invalid entry, so create one */ |
| 343 | |
| 344 | if (mmu_slb_size < 64) |
| 345 | max_slb_size = mmu_slb_size; |
| 346 | |
| 347 | /* Overflowing -> purge */ |
| 348 | if ((get_paca()->kvm_slb_max) == max_slb_size) |
| 349 | kvmppc_mmu_flush_segments(vcpu); |
| 350 | |
| 351 | r = get_paca()->kvm_slb_max; |
| 352 | get_paca()->kvm_slb_max++; |
| 353 | |
| 354 | return r; |
| 355 | } |
| 356 | |
| 357 | int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr) |
| 358 | { |
| 359 | u64 esid = eaddr >> SID_SHIFT; |
| 360 | u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V; |
| 361 | u64 slb_vsid = SLB_VSID_USER; |
| 362 | u64 gvsid; |
| 363 | int slb_index; |
| 364 | struct kvmppc_sid_map *map; |
| 365 | |
| 366 | slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK); |
| 367 | |
| 368 | if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) { |
| 369 | /* Invalidate an entry */ |
| 370 | get_paca()->kvm_slb[slb_index].esid = 0; |
| 371 | return -ENOENT; |
| 372 | } |
| 373 | |
| 374 | map = find_sid_vsid(vcpu, gvsid); |
| 375 | if (!map) |
| 376 | map = create_sid_map(vcpu, gvsid); |
| 377 | |
| 378 | map->guest_esid = esid; |
| 379 | |
| 380 | slb_vsid |= (map->host_vsid << 12); |
| 381 | slb_vsid &= ~SLB_VSID_KP; |
| 382 | slb_esid |= slb_index; |
| 383 | |
| 384 | get_paca()->kvm_slb[slb_index].esid = slb_esid; |
| 385 | get_paca()->kvm_slb[slb_index].vsid = slb_vsid; |
| 386 | |
| 387 | dprintk_slb("slbmte %#llx, %#llx\n", slb_vsid, slb_esid); |
| 388 | |
| 389 | return 0; |
| 390 | } |
| 391 | |
| 392 | void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu) |
| 393 | { |
| 394 | get_paca()->kvm_slb_max = 1; |
| 395 | get_paca()->kvm_slb[0].esid = 0; |
| 396 | } |
| 397 | |
| 398 | void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) |
| 399 | { |
| 400 | kvmppc_mmu_pte_flush(vcpu, 0, 0); |
| 401 | } |