blob: 2101405bdfcb7039d56d7d9625de21320d2f5be7 [file] [log] [blame]
Adrian Bunk88278ca2008-05-19 16:53:02 -07001/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002 * udiv.S: This routine was taken from glibc-1.09 and is covered
3 * by the GNU Library General Public License Version 2.
4 */
5
6
7/* This file is generated from divrem.m4; DO NOT EDIT! */
8/*
9 * Division and remainder, from Appendix E of the Sparc Version 8
10 * Architecture Manual, with fixes from Gordon Irlam.
11 */
12
13/*
14 * Input: dividend and divisor in %o0 and %o1 respectively.
15 *
16 * m4 parameters:
17 * .udiv name of function to generate
18 * div div=div => %o0 / %o1; div=rem => %o0 % %o1
19 * false false=true => signed; false=false => unsigned
20 *
21 * Algorithm parameters:
22 * N how many bits per iteration we try to get (4)
23 * WORDSIZE total number of bits (32)
24 *
25 * Derived constants:
26 * TOPBITS number of bits in the top decade of a number
27 *
28 * Important variables:
29 * Q the partial quotient under development (initially 0)
30 * R the remainder so far, initially the dividend
31 * ITER number of main division loop iterations required;
32 * equal to ceil(log2(quotient) / N). Note that this
33 * is the log base (2^N) of the quotient.
34 * V the current comparand, initially divisor*2^(ITER*N-1)
35 *
36 * Cost:
37 * Current estimate for non-large dividend is
38 * ceil(log2(quotient) / N) * (10 + 7N/2) + C
39 * A large dividend is one greater than 2^(31-TOPBITS) and takes a
40 * different path, as the upper bits of the quotient must be developed
41 * one bit at a time.
42 */
43
44
45 .globl .udiv
Al Viro7caaeab2005-09-11 20:14:07 -070046 .globl _Udiv
Linus Torvalds1da177e2005-04-16 15:20:36 -070047.udiv:
Al Viro7caaeab2005-09-11 20:14:07 -070048_Udiv: /* needed for export */
Linus Torvalds1da177e2005-04-16 15:20:36 -070049
50 ! Ready to divide. Compute size of quotient; scale comparand.
51 orcc %o1, %g0, %o5
52 bne 1f
53 mov %o0, %o3
54
55 ! Divide by zero trap. If it returns, return 0 (about as
56 ! wrong as possible, but that is what SunOS does...).
57 ta ST_DIV0
58 retl
59 clr %o0
60
611:
62 cmp %o3, %o5 ! if %o1 exceeds %o0, done
63 blu Lgot_result ! (and algorithm fails otherwise)
64 clr %o2
65
66 sethi %hi(1 << (32 - 4 - 1)), %g1
67
68 cmp %o3, %g1
69 blu Lnot_really_big
70 clr %o4
71
72 ! Here the dividend is >= 2**(31-N) or so. We must be careful here,
73 ! as our usual N-at-a-shot divide step will cause overflow and havoc.
74 ! The number of bits in the result here is N*ITER+SC, where SC <= N.
75 ! Compute ITER in an unorthodox manner: know we need to shift V into
76 ! the top decade: so do not even bother to compare to R.
77 1:
78 cmp %o5, %g1
79 bgeu 3f
80 mov 1, %g7
81
82 sll %o5, 4, %o5
83
84 b 1b
85 add %o4, 1, %o4
86
87 ! Now compute %g7.
88 2:
89 addcc %o5, %o5, %o5
90 bcc Lnot_too_big
91 add %g7, 1, %g7
92
93 ! We get here if the %o1 overflowed while shifting.
94 ! This means that %o3 has the high-order bit set.
95 ! Restore %o5 and subtract from %o3.
96 sll %g1, 4, %g1 ! high order bit
97 srl %o5, 1, %o5 ! rest of %o5
98 add %o5, %g1, %o5
99
100 b Ldo_single_div
101 sub %g7, 1, %g7
102
103 Lnot_too_big:
104 3:
105 cmp %o5, %o3
106 blu 2b
107 nop
108
109 be Ldo_single_div
110 nop
111 /* NB: these are commented out in the V8-Sparc manual as well */
112 /* (I do not understand this) */
113 ! %o5 > %o3: went too far: back up 1 step
114 ! srl %o5, 1, %o5
115 ! dec %g7
116 ! do single-bit divide steps
117 !
118 ! We have to be careful here. We know that %o3 >= %o5, so we can do the
119 ! first divide step without thinking. BUT, the others are conditional,
120 ! and are only done if %o3 >= 0. Because both %o3 and %o5 may have the high-
121 ! order bit set in the first step, just falling into the regular
122 ! division loop will mess up the first time around.
123 ! So we unroll slightly...
124 Ldo_single_div:
125 subcc %g7, 1, %g7
126 bl Lend_regular_divide
127 nop
128
129 sub %o3, %o5, %o3
130 mov 1, %o2
131
132 b Lend_single_divloop
133 nop
134 Lsingle_divloop:
135 sll %o2, 1, %o2
136 bl 1f
137 srl %o5, 1, %o5
138 ! %o3 >= 0
139 sub %o3, %o5, %o3
140 b 2f
141 add %o2, 1, %o2
142 1: ! %o3 < 0
143 add %o3, %o5, %o3
144 sub %o2, 1, %o2
145 2:
146 Lend_single_divloop:
147 subcc %g7, 1, %g7
148 bge Lsingle_divloop
149 tst %o3
150
151 b,a Lend_regular_divide
152
153Lnot_really_big:
1541:
155 sll %o5, 4, %o5
156
157 cmp %o5, %o3
158 bleu 1b
159 addcc %o4, 1, %o4
160
161 be Lgot_result
162 sub %o4, 1, %o4
163
164 tst %o3 ! set up for initial iteration
165Ldivloop:
166 sll %o2, 4, %o2
167 ! depth 1, accumulated bits 0
168 bl L.1.16
169 srl %o5,1,%o5
170 ! remainder is positive
171 subcc %o3,%o5,%o3
172 ! depth 2, accumulated bits 1
173 bl L.2.17
174 srl %o5,1,%o5
175 ! remainder is positive
176 subcc %o3,%o5,%o3
177 ! depth 3, accumulated bits 3
178 bl L.3.19
179 srl %o5,1,%o5
180 ! remainder is positive
181 subcc %o3,%o5,%o3
182 ! depth 4, accumulated bits 7
183 bl L.4.23
184 srl %o5,1,%o5
185 ! remainder is positive
186 subcc %o3,%o5,%o3
187 b 9f
188 add %o2, (7*2+1), %o2
189
190L.4.23:
191 ! remainder is negative
192 addcc %o3,%o5,%o3
193 b 9f
194 add %o2, (7*2-1), %o2
195
196L.3.19:
197 ! remainder is negative
198 addcc %o3,%o5,%o3
199 ! depth 4, accumulated bits 5
200 bl L.4.21
201 srl %o5,1,%o5
202 ! remainder is positive
203 subcc %o3,%o5,%o3
204 b 9f
205 add %o2, (5*2+1), %o2
206
207L.4.21:
208 ! remainder is negative
209 addcc %o3,%o5,%o3
210 b 9f
211 add %o2, (5*2-1), %o2
212
213L.2.17:
214 ! remainder is negative
215 addcc %o3,%o5,%o3
216 ! depth 3, accumulated bits 1
217 bl L.3.17
218 srl %o5,1,%o5
219 ! remainder is positive
220 subcc %o3,%o5,%o3
221 ! depth 4, accumulated bits 3
222 bl L.4.19
223 srl %o5,1,%o5
224 ! remainder is positive
225 subcc %o3,%o5,%o3
226 b 9f
227 add %o2, (3*2+1), %o2
228
229L.4.19:
230 ! remainder is negative
231 addcc %o3,%o5,%o3
232 b 9f
233 add %o2, (3*2-1), %o2
234
235L.3.17:
236 ! remainder is negative
237 addcc %o3,%o5,%o3
238 ! depth 4, accumulated bits 1
239 bl L.4.17
240 srl %o5,1,%o5
241 ! remainder is positive
242 subcc %o3,%o5,%o3
243 b 9f
244 add %o2, (1*2+1), %o2
245
246L.4.17:
247 ! remainder is negative
248 addcc %o3,%o5,%o3
249 b 9f
250 add %o2, (1*2-1), %o2
251
252L.1.16:
253 ! remainder is negative
254 addcc %o3,%o5,%o3
255 ! depth 2, accumulated bits -1
256 bl L.2.15
257 srl %o5,1,%o5
258 ! remainder is positive
259 subcc %o3,%o5,%o3
260 ! depth 3, accumulated bits -1
261 bl L.3.15
262 srl %o5,1,%o5
263 ! remainder is positive
264 subcc %o3,%o5,%o3
265 ! depth 4, accumulated bits -1
266 bl L.4.15
267 srl %o5,1,%o5
268 ! remainder is positive
269 subcc %o3,%o5,%o3
270 b 9f
271 add %o2, (-1*2+1), %o2
272
273L.4.15:
274 ! remainder is negative
275 addcc %o3,%o5,%o3
276 b 9f
277 add %o2, (-1*2-1), %o2
278
279L.3.15:
280 ! remainder is negative
281 addcc %o3,%o5,%o3
282 ! depth 4, accumulated bits -3
283 bl L.4.13
284 srl %o5,1,%o5
285 ! remainder is positive
286 subcc %o3,%o5,%o3
287 b 9f
288 add %o2, (-3*2+1), %o2
289
290L.4.13:
291 ! remainder is negative
292 addcc %o3,%o5,%o3
293 b 9f
294 add %o2, (-3*2-1), %o2
295
296L.2.15:
297 ! remainder is negative
298 addcc %o3,%o5,%o3
299 ! depth 3, accumulated bits -3
300 bl L.3.13
301 srl %o5,1,%o5
302 ! remainder is positive
303 subcc %o3,%o5,%o3
304 ! depth 4, accumulated bits -5
305 bl L.4.11
306 srl %o5,1,%o5
307 ! remainder is positive
308 subcc %o3,%o5,%o3
309 b 9f
310 add %o2, (-5*2+1), %o2
311
312L.4.11:
313 ! remainder is negative
314 addcc %o3,%o5,%o3
315 b 9f
316 add %o2, (-5*2-1), %o2
317
318L.3.13:
319 ! remainder is negative
320 addcc %o3,%o5,%o3
321 ! depth 4, accumulated bits -7
322 bl L.4.9
323 srl %o5,1,%o5
324 ! remainder is positive
325 subcc %o3,%o5,%o3
326 b 9f
327 add %o2, (-7*2+1), %o2
328
329L.4.9:
330 ! remainder is negative
331 addcc %o3,%o5,%o3
332 b 9f
333 add %o2, (-7*2-1), %o2
334
335 9:
336Lend_regular_divide:
337 subcc %o4, 1, %o4
338 bge Ldivloop
339 tst %o3
340
341 bl,a Lgot_result
342 ! non-restoring fixup here (one instruction only!)
343 sub %o2, 1, %o2
344
345Lgot_result:
346
347 retl
348 mov %o2, %o0
349
350 .globl .udiv_patch
351.udiv_patch:
352 wr %g0, 0x0, %y
353 nop
354 nop
355 retl
356 udiv %o0, %o1, %o0
357 nop