blob: 706fc461be613bbc03ee744233faca38c578546d [file] [log] [blame]
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001/*
2 * PHY functions
3 *
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03004 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
Nick Kossifidis33a31822009-02-09 06:00:34 +02005 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03006 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02007 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
Jiri Slabyfa1c1142007-08-12 17:33:16 +02008 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090024#include <linux/slab.h>
Jiri Slabyfa1c1142007-08-12 17:33:16 +020025
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
Nick Kossifidis33a31822009-02-09 06:00:34 +020029#include "rfbuffer.h"
30#include "rfgain.h"
Jiri Slabyfa1c1142007-08-12 17:33:16 +020031
Nick Kossifidis9320b5c2010-11-23 20:36:45 +020032
33/******************\
34* Helper functions *
35\******************/
36
37/*
38 * Get the PHY Chip revision
39 */
40u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41{
42 unsigned int i;
43 u32 srev;
44 u16 ret;
45
46 /*
47 * Set the radio chip access register
48 */
49 switch (chan) {
50 case CHANNEL_2GHZ:
51 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52 break;
53 case CHANNEL_5GHZ:
54 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55 break;
56 default:
57 return 0;
58 }
59
60 mdelay(2);
61
62 /* ...wait until PHY is ready and read the selected radio revision */
63 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64
65 for (i = 0; i < 8; i++)
66 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67
68 if (ah->ah_version == AR5K_AR5210) {
69 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71 } else {
72 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74 ((srev & 0x0f) << 4), 8);
75 }
76
77 /* Reset to the 5GHz mode */
78 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79
80 return ret;
81}
82
83/*
84 * Check if a channel is supported
85 */
86bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87{
88 /* Check if the channel is in our supported range */
89 if (flags & CHANNEL_2GHZ) {
90 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92 return true;
93 } else if (flags & CHANNEL_5GHZ)
94 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96 return true;
97
98 return false;
99}
100
101bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102 struct ieee80211_channel *channel)
103{
104 u8 refclk_freq;
105
106 if ((ah->ah_radio == AR5K_RF5112) ||
107 (ah->ah_radio == AR5K_RF5413) ||
108 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109 refclk_freq = 40;
110 else
111 refclk_freq = 32;
112
113 if ((channel->center_freq % refclk_freq != 0) &&
114 ((channel->center_freq % refclk_freq < 10) ||
115 (channel->center_freq % refclk_freq > 22)))
116 return true;
117 else
118 return false;
119}
120
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200121/*
122 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123 */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200124static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125 const struct ath5k_rf_reg *rf_regs,
126 u32 val, u8 reg_id, bool set)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200127{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200128 const struct ath5k_rf_reg *rfreg = NULL;
129 u8 offset, bank, num_bits, col, position;
130 u16 entry;
131 u32 mask, data, last_bit, bits_shifted, first_bit;
132 u32 *rfb;
133 s32 bits_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200134 int i;
135
136 data = 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200137 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200138
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200139 for (i = 0; i < ah->ah_rf_regs_count; i++) {
140 if (rf_regs[i].index == reg_id) {
141 rfreg = &rf_regs[i];
142 break;
143 }
144 }
145
146 if (rfb == NULL || rfreg == NULL) {
147 ATH5K_PRINTF("Rf register not found!\n");
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200148 /* should not happen */
149 return 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200150 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200151
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200152 bank = rfreg->bank;
153 num_bits = rfreg->field.len;
154 first_bit = rfreg->field.pos;
155 col = rfreg->field.col;
156
157 /* first_bit is an offset from bank's
158 * start. Since we have all banks on
159 * the same array, we use this offset
160 * to mark each bank's start */
161 offset = ah->ah_offset[bank];
162
163 /* Boundary check */
164 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200165 ATH5K_PRINTF("invalid values at offset %u\n", offset);
166 return 0;
167 }
168
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200169 entry = ((first_bit - 1) / 8) + offset;
170 position = (first_bit - 1) % 8;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200171
Joe Perchese9010e22008-03-07 14:21:16 -0800172 if (set)
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200173 data = ath5k_hw_bitswap(val, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200174
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200175 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176 position = 0, entry++) {
177
178 last_bit = (position + bits_left > 8) ? 8 :
179 position + bits_left;
180
181 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182 (col * 8);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200183
Joe Perchese9010e22008-03-07 14:21:16 -0800184 if (set) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200185 rfb[entry] &= ~mask;
186 rfb[entry] |= ((data << position) << (col * 8)) & mask;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200187 data >>= (8 - position);
188 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200189 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190 << bits_shifted;
191 bits_shifted += last_bit - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200192 }
193
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200194 bits_left -= 8 - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200195 }
196
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200197 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200198
199 return data;
200}
201
Nick Kossifidis9320b5c2010-11-23 20:36:45 +0200202/**
203 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204 *
205 * @ah: the &struct ath5k_hw
206 * @channel: the currently set channel upon reset
207 *
208 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210 *
211 * Since delta slope is floating point we split it on its exponent and
212 * mantissa and provide these values on hw.
213 *
214 * For more infos i think this patent is related
215 * http://www.freepatentsonline.com/7184495.html
216 */
217static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218 struct ieee80211_channel *channel)
219{
220 /* Get exponent and mantissa and set it */
221 u32 coef_scaled, coef_exp, coef_man,
222 ds_coef_exp, ds_coef_man, clock;
223
224 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225 !(channel->hw_value & CHANNEL_OFDM));
226
227 /* Get coefficient
228 * ALGO: coef = (5 * clock / carrier_freq) / 2
229 * we scale coef by shifting clock value by 24 for
230 * better precision since we use integers */
231 /* TODO: Half/quarter rate */
232 clock = (channel->hw_value & CHANNEL_TURBO) ? 80 : 40;
233 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
234
235 /* Get exponent
236 * ALGO: coef_exp = 14 - highest set bit position */
237 coef_exp = ilog2(coef_scaled);
238
239 /* Doesn't make sense if it's zero*/
240 if (!coef_scaled || !coef_exp)
241 return -EINVAL;
242
243 /* Note: we've shifted coef_scaled by 24 */
244 coef_exp = 14 - (coef_exp - 24);
245
246
247 /* Get mantissa (significant digits)
248 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
249 coef_man = coef_scaled +
250 (1 << (24 - coef_exp - 1));
251
252 /* Calculate delta slope coefficient exponent
253 * and mantissa (remove scaling) and set them on hw */
254 ds_coef_man = coef_man >> (24 - coef_exp);
255 ds_coef_exp = coef_exp - 16;
256
257 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
258 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
259 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
260 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
261
262 return 0;
263}
264
265int ath5k_hw_phy_disable(struct ath5k_hw *ah)
266{
267 /*Just a try M.F.*/
268 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
269
270 return 0;
271}
272
273
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200274/**********************\
275* RF Gain optimization *
276\**********************/
277
278/*
Bob Copelanda180a132010-08-15 13:03:12 -0400279 * This code is used to optimize RF gain on different environments
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200280 * (temperature mostly) based on feedback from a power detector.
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200281 *
282 * It's only used on RF5111 and RF5112, later RF chips seem to have
283 * auto adjustment on hw -notice they have a much smaller BANK 7 and
284 * no gain optimization ladder-.
285 *
286 * For more infos check out this patent doc
287 * http://www.freepatentsonline.com/7400691.html
288 *
289 * This paper describes power drops as seen on the receiver due to
290 * probe packets
291 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
292 * %20of%20Power%20Control.pdf
293 *
294 * And this is the MadWiFi bug entry related to the above
295 * http://madwifi-project.org/ticket/1659
296 * with various measurements and diagrams
297 *
298 * TODO: Deal with power drops due to probes by setting an apropriate
299 * tx power on the probe packets ! Make this part of the calibration process.
300 */
301
302/* Initialize ah_gain durring attach */
303int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
304{
305 /* Initialize the gain optimization values */
306 switch (ah->ah_radio) {
307 case AR5K_RF5111:
308 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
309 ah->ah_gain.g_low = 20;
310 ah->ah_gain.g_high = 35;
311 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
312 break;
313 case AR5K_RF5112:
314 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
315 ah->ah_gain.g_low = 20;
316 ah->ah_gain.g_high = 85;
317 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
318 break;
319 default:
320 return -EINVAL;
321 }
322
323 return 0;
324}
325
326/* Schedule a gain probe check on the next transmited packet.
327 * That means our next packet is going to be sent with lower
328 * tx power and a Peak to Average Power Detector (PAPD) will try
329 * to measure the gain.
330 *
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200331 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
332 * just after we enable the probe so that we don't mess with
333 * standard traffic ? Maybe it's time to use sw interrupts and
334 * a probe tasklet !!!
335 */
336static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
337{
338
339 /* Skip if gain calibration is inactive or
340 * we already handle a probe request */
341 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
342 return;
343
Nick Kossifidis8f655dd2009-03-15 22:20:35 +0200344 /* Send the packet with 2dB below max power as
345 * patent doc suggest */
Nick Kossifidisa0823812009-04-30 15:55:44 -0400346 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200347 AR5K_PHY_PAPD_PROBE_TXPOWER) |
348 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
349
350 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
351
352}
353
354/* Calculate gain_F measurement correction
355 * based on the current step for RF5112 rev. 2 */
356static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200357{
358 u32 mix, step;
359 u32 *rf;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200360 const struct ath5k_gain_opt *go;
361 const struct ath5k_gain_opt_step *g_step;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200362 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200363
364 /* Only RF5112 Rev. 2 supports it */
365 if ((ah->ah_radio != AR5K_RF5112) ||
366 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
367 return 0;
368
369 go = &rfgain_opt_5112;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200370 rf_regs = rf_regs_5112a;
371 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200372
373 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200374
375 if (ah->ah_rf_banks == NULL)
376 return 0;
377
378 rf = ah->ah_rf_banks;
379 ah->ah_gain.g_f_corr = 0;
380
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200381 /* No VGA (Variable Gain Amplifier) override, skip */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200382 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200383 return 0;
384
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200385 /* Mix gain stepping */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200386 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200387
388 /* Mix gain override */
389 mix = g_step->gos_param[0];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200390
391 switch (mix) {
392 case 3:
393 ah->ah_gain.g_f_corr = step * 2;
394 break;
395 case 2:
396 ah->ah_gain.g_f_corr = (step - 5) * 2;
397 break;
398 case 1:
399 ah->ah_gain.g_f_corr = step;
400 break;
401 default:
402 ah->ah_gain.g_f_corr = 0;
403 break;
404 }
405
406 return ah->ah_gain.g_f_corr;
407}
408
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200409/* Check if current gain_F measurement is in the range of our
410 * power detector windows. If we get a measurement outside range
411 * we know it's not accurate (detectors can't measure anything outside
412 * their detection window) so we must ignore it */
413static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200414{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200415 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200416 u32 step, mix_ovr, level[4];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200417 u32 *rf;
418
419 if (ah->ah_rf_banks == NULL)
420 return false;
421
422 rf = ah->ah_rf_banks;
423
424 if (ah->ah_radio == AR5K_RF5111) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200425
426 rf_regs = rf_regs_5111;
427 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
428
429 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
430 false);
431
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200432 level[0] = 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200433 level[1] = (step == 63) ? 50 : step + 4;
434 level[2] = (step != 63) ? 64 : level[0];
435 level[3] = level[2] + 50 ;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200436
437 ah->ah_gain.g_high = level[3] -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200438 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200439 ah->ah_gain.g_low = level[0] +
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200440 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200441 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200442
443 rf_regs = rf_regs_5112;
444 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
445
446 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
447 false);
448
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200449 level[0] = level[2] = 0;
450
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200451 if (mix_ovr == 1) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200452 level[1] = level[3] = 83;
453 } else {
454 level[1] = level[3] = 107;
455 ah->ah_gain.g_high = 55;
456 }
457 }
458
459 return (ah->ah_gain.g_current >= level[0] &&
460 ah->ah_gain.g_current <= level[1]) ||
461 (ah->ah_gain.g_current >= level[2] &&
462 ah->ah_gain.g_current <= level[3]);
463}
464
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200465/* Perform gain_F adjustment by choosing the right set
Bob Copelanda180a132010-08-15 13:03:12 -0400466 * of parameters from RF gain optimization ladder */
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200467static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200468{
469 const struct ath5k_gain_opt *go;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200470 const struct ath5k_gain_opt_step *g_step;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200471 int ret = 0;
472
473 switch (ah->ah_radio) {
474 case AR5K_RF5111:
475 go = &rfgain_opt_5111;
476 break;
477 case AR5K_RF5112:
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200478 go = &rfgain_opt_5112;
479 break;
480 default:
481 return 0;
482 }
483
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200484 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200485
486 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200487
488 /* Reached maximum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200489 if (ah->ah_gain.g_step_idx == 0)
490 return -1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200491
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200492 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
493 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
494 ah->ah_gain.g_step_idx > 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200495 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200496 ah->ah_gain.g_target -= 2 *
497 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200498 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200499
500 ret = 1;
501 goto done;
502 }
503
504 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200505
506 /* Reached minimum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200507 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
508 return -2;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200509
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200510 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
511 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
512 ah->ah_gain.g_step_idx < go->go_steps_count-1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200513 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200514 ah->ah_gain.g_target -= 2 *
515 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200516 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200517
518 ret = 2;
519 goto done;
520 }
521
522done:
523 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
524 "ret %d, gain step %u, current gain %u, target gain %u\n",
525 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
526 ah->ah_gain.g_target);
527
528 return ret;
529}
530
Bob Copelanda180a132010-08-15 13:03:12 -0400531/* Main callback for thermal RF gain calibration engine
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200532 * Check for a new gain reading and schedule an adjustment
533 * if needed.
534 *
535 * TODO: Use sw interrupt to schedule reset if gain_F needs
536 * adjustment */
537enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
538{
539 u32 data, type;
540 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
541
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200542 if (ah->ah_rf_banks == NULL ||
543 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
544 return AR5K_RFGAIN_INACTIVE;
545
546 /* No check requested, either engine is inactive
547 * or an adjustment is already requested */
548 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
549 goto done;
550
551 /* Read the PAPD (Peak to Average Power Detector)
552 * register */
553 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
554
555 /* No probe is scheduled, read gain_F measurement */
556 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
557 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
558 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
559
560 /* If tx packet is CCK correct the gain_F measurement
561 * by cck ofdm gain delta */
562 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
563 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
564 ah->ah_gain.g_current +=
565 ee->ee_cck_ofdm_gain_delta;
566 else
567 ah->ah_gain.g_current +=
568 AR5K_GAIN_CCK_PROBE_CORR;
569 }
570
571 /* Further correct gain_F measurement for
572 * RF5112A radios */
573 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
574 ath5k_hw_rf_gainf_corr(ah);
575 ah->ah_gain.g_current =
576 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
577 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
578 0;
579 }
580
581 /* Check if measurement is ok and if we need
582 * to adjust gain, schedule a gain adjustment,
583 * else switch back to the acive state */
584 if (ath5k_hw_rf_check_gainf_readback(ah) &&
585 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
586 ath5k_hw_rf_gainf_adjust(ah)) {
587 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
588 } else {
589 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
590 }
591 }
592
593done:
594 return ah->ah_gain.g_state;
595}
596
Bob Copelanda180a132010-08-15 13:03:12 -0400597/* Write initial RF gain table to set the RF sensitivity
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200598 * this one works on all RF chips and has nothing to do
599 * with gain_F calibration */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +0200600static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200601{
602 const struct ath5k_ini_rfgain *ath5k_rfg;
603 unsigned int i, size;
604
605 switch (ah->ah_radio) {
606 case AR5K_RF5111:
607 ath5k_rfg = rfgain_5111;
608 size = ARRAY_SIZE(rfgain_5111);
609 break;
610 case AR5K_RF5112:
611 ath5k_rfg = rfgain_5112;
612 size = ARRAY_SIZE(rfgain_5112);
613 break;
614 case AR5K_RF2413:
615 ath5k_rfg = rfgain_2413;
616 size = ARRAY_SIZE(rfgain_2413);
617 break;
618 case AR5K_RF2316:
619 ath5k_rfg = rfgain_2316;
620 size = ARRAY_SIZE(rfgain_2316);
621 break;
622 case AR5K_RF5413:
623 ath5k_rfg = rfgain_5413;
624 size = ARRAY_SIZE(rfgain_5413);
625 break;
626 case AR5K_RF2317:
627 case AR5K_RF2425:
628 ath5k_rfg = rfgain_2425;
629 size = ARRAY_SIZE(rfgain_2425);
630 break;
631 default:
632 return -EINVAL;
633 }
634
635 switch (freq) {
636 case AR5K_INI_RFGAIN_2GHZ:
637 case AR5K_INI_RFGAIN_5GHZ:
638 break;
639 default:
640 return -EINVAL;
641 }
642
643 for (i = 0; i < size; i++) {
644 AR5K_REG_WAIT(i);
645 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
646 (u32)ath5k_rfg[i].rfg_register);
647 }
648
649 return 0;
650}
651
652
653
654/********************\
655* RF Registers setup *
656\********************/
657
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200658/*
Bob Copelanda180a132010-08-15 13:03:12 -0400659 * Setup RF registers by writing RF buffer on hw
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200660 */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +0200661static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
662 struct ieee80211_channel *channel, unsigned int mode)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200663{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200664 const struct ath5k_rf_reg *rf_regs;
665 const struct ath5k_ini_rfbuffer *ini_rfb;
666 const struct ath5k_gain_opt *go = NULL;
667 const struct ath5k_gain_opt_step *g_step;
668 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
669 u8 ee_mode = 0;
670 u32 *rfb;
671 int i, obdb = -1, bank = -1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200672
673 switch (ah->ah_radio) {
674 case AR5K_RF5111:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200675 rf_regs = rf_regs_5111;
676 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
677 ini_rfb = rfb_5111;
678 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
679 go = &rfgain_opt_5111;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200680 break;
681 case AR5K_RF5112:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200682 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
683 rf_regs = rf_regs_5112a;
684 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
685 ini_rfb = rfb_5112a;
686 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
687 } else {
688 rf_regs = rf_regs_5112;
689 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
690 ini_rfb = rfb_5112;
691 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
692 }
693 go = &rfgain_opt_5112;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200694 break;
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500695 case AR5K_RF2413:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200696 rf_regs = rf_regs_2413;
697 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
698 ini_rfb = rfb_2413;
699 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
700 break;
701 case AR5K_RF2316:
702 rf_regs = rf_regs_2316;
703 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
704 ini_rfb = rfb_2316;
705 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
706 break;
707 case AR5K_RF5413:
708 rf_regs = rf_regs_5413;
709 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
710 ini_rfb = rfb_5413;
711 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
712 break;
713 case AR5K_RF2317:
714 rf_regs = rf_regs_2425;
715 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
716 ini_rfb = rfb_2317;
717 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500718 break;
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300719 case AR5K_RF2425:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200720 rf_regs = rf_regs_2425;
721 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
722 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
723 ini_rfb = rfb_2425;
724 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
725 } else {
726 ini_rfb = rfb_2417;
727 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
728 }
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300729 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200730 default:
731 return -EINVAL;
732 }
733
Bob Copelanda180a132010-08-15 13:03:12 -0400734 /* If it's the first time we set RF buffer, allocate
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200735 * ah->ah_rf_banks based on ah->ah_rf_banks_size
736 * we set above */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200737 if (ah->ah_rf_banks == NULL) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200738 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
739 GFP_KERNEL);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200740 if (ah->ah_rf_banks == NULL) {
741 ATH5K_ERR(ah->ah_sc, "out of memory\n");
742 return -ENOMEM;
743 }
744 }
745
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200746 /* Copy values to modify them */
747 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200748
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200749 for (i = 0; i < ah->ah_rf_banks_size; i++) {
750 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
751 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
752 return -EINVAL;
753 }
754
755 /* Bank changed, write down the offset */
756 if (bank != ini_rfb[i].rfb_bank) {
757 bank = ini_rfb[i].rfb_bank;
758 ah->ah_offset[bank] = i;
759 }
760
761 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
762 }
763
764 /* Set Output and Driver bias current (OB/DB) */
765 if (channel->hw_value & CHANNEL_2GHZ) {
766
767 if (channel->hw_value & CHANNEL_CCK)
768 ee_mode = AR5K_EEPROM_MODE_11B;
769 else
770 ee_mode = AR5K_EEPROM_MODE_11G;
771
772 /* For RF511X/RF211X combination we
773 * use b_OB and b_DB parameters stored
774 * in eeprom on ee->ee_ob[ee_mode][0]
775 *
776 * For all other chips we use OB/DB for 2Ghz
777 * stored in the b/g modal section just like
778 * 802.11a on ee->ee_ob[ee_mode][1] */
779 if ((ah->ah_radio == AR5K_RF5111) ||
780 (ah->ah_radio == AR5K_RF5112))
781 obdb = 0;
782 else
783 obdb = 1;
784
785 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
786 AR5K_RF_OB_2GHZ, true);
787
788 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
789 AR5K_RF_DB_2GHZ, true);
790
791 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
792 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
793 (ah->ah_radio == AR5K_RF5111)) {
794
795 /* For 11a, Turbo and XR we need to choose
796 * OB/DB based on frequency range */
797 ee_mode = AR5K_EEPROM_MODE_11A;
798 obdb = channel->center_freq >= 5725 ? 3 :
799 (channel->center_freq >= 5500 ? 2 :
800 (channel->center_freq >= 5260 ? 1 :
801 (channel->center_freq > 4000 ? 0 : -1)));
802
803 if (obdb < 0)
804 return -EINVAL;
805
806 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
807 AR5K_RF_OB_5GHZ, true);
808
809 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
810 AR5K_RF_DB_5GHZ, true);
811 }
812
813 g_step = &go->go_step[ah->ah_gain.g_step_idx];
814
815 /* Bank Modifications (chip-specific) */
816 if (ah->ah_radio == AR5K_RF5111) {
817
818 /* Set gain_F settings according to current step */
819 if (channel->hw_value & CHANNEL_OFDM) {
820
821 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
822 AR5K_PHY_FRAME_CTL_TX_CLIP,
823 g_step->gos_param[0]);
824
825 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
826 AR5K_RF_PWD_90, true);
827
828 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
829 AR5K_RF_PWD_84, true);
830
831 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
832 AR5K_RF_RFGAIN_SEL, true);
833
834 /* We programmed gain_F parameters, switch back
835 * to active state */
836 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
837
838 }
839
840 /* Bank 6/7 setup */
841
842 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
843 AR5K_RF_PWD_XPD, true);
844
845 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
846 AR5K_RF_XPD_GAIN, true);
847
848 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
849 AR5K_RF_GAIN_I, true);
850
851 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
852 AR5K_RF_PLO_SEL, true);
853
854 /* TODO: Half/quarter channel support */
855 }
856
857 if (ah->ah_radio == AR5K_RF5112) {
858
859 /* Set gain_F settings according to current step */
860 if (channel->hw_value & CHANNEL_OFDM) {
861
862 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
863 AR5K_RF_MIXGAIN_OVR, true);
864
865 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
866 AR5K_RF_PWD_138, true);
867
868 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
869 AR5K_RF_PWD_137, true);
870
871 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
872 AR5K_RF_PWD_136, true);
873
874 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
875 AR5K_RF_PWD_132, true);
876
877 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
878 AR5K_RF_PWD_131, true);
879
880 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
881 AR5K_RF_PWD_130, true);
882
883 /* We programmed gain_F parameters, switch back
884 * to active state */
885 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
886 }
887
888 /* Bank 6/7 setup */
889
890 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
891 AR5K_RF_XPD_SEL, true);
892
893 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
894 /* Rev. 1 supports only one xpd */
895 ath5k_hw_rfb_op(ah, rf_regs,
896 ee->ee_x_gain[ee_mode],
897 AR5K_RF_XPD_GAIN, true);
898
899 } else {
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300900 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
901 if (ee->ee_pd_gains[ee_mode] > 1) {
902 ath5k_hw_rfb_op(ah, rf_regs,
903 pdg_curve_to_idx[0],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200904 AR5K_RF_PD_GAIN_LO, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300905 ath5k_hw_rfb_op(ah, rf_regs,
906 pdg_curve_to_idx[1],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200907 AR5K_RF_PD_GAIN_HI, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300908 } else {
909 ath5k_hw_rfb_op(ah, rf_regs,
910 pdg_curve_to_idx[0],
911 AR5K_RF_PD_GAIN_LO, true);
912 ath5k_hw_rfb_op(ah, rf_regs,
913 pdg_curve_to_idx[0],
914 AR5K_RF_PD_GAIN_HI, true);
915 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200916
917 /* Lower synth voltage on Rev 2 */
918 ath5k_hw_rfb_op(ah, rf_regs, 2,
919 AR5K_RF_HIGH_VC_CP, true);
920
921 ath5k_hw_rfb_op(ah, rf_regs, 2,
922 AR5K_RF_MID_VC_CP, true);
923
924 ath5k_hw_rfb_op(ah, rf_regs, 2,
925 AR5K_RF_LOW_VC_CP, true);
926
927 ath5k_hw_rfb_op(ah, rf_regs, 2,
928 AR5K_RF_PUSH_UP, true);
929
930 /* Decrease power consumption on 5213+ BaseBand */
931 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
932 ath5k_hw_rfb_op(ah, rf_regs, 1,
933 AR5K_RF_PAD2GND, true);
934
935 ath5k_hw_rfb_op(ah, rf_regs, 1,
936 AR5K_RF_XB2_LVL, true);
937
938 ath5k_hw_rfb_op(ah, rf_regs, 1,
939 AR5K_RF_XB5_LVL, true);
940
941 ath5k_hw_rfb_op(ah, rf_regs, 1,
942 AR5K_RF_PWD_167, true);
943
944 ath5k_hw_rfb_op(ah, rf_regs, 1,
945 AR5K_RF_PWD_166, true);
946 }
947 }
948
949 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
950 AR5K_RF_GAIN_I, true);
951
952 /* TODO: Half/quarter channel support */
953
954 }
955
956 if (ah->ah_radio == AR5K_RF5413 &&
957 channel->hw_value & CHANNEL_2GHZ) {
958
959 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
960 true);
961
962 /* Set optimum value for early revisions (on pci-e chips) */
963 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
964 ah->ah_mac_srev < AR5K_SREV_AR5413)
965 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
966 AR5K_RF_PWD_ICLOBUF_2G, true);
967
968 }
969
970 /* Write RF banks on hw */
971 for (i = 0; i < ah->ah_rf_banks_size; i++) {
972 AR5K_REG_WAIT(i);
973 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
974 }
975
976 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200977}
978
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200979
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200980/**************************\
981 PHY/RF channel functions
982\**************************/
983
984/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200985 * Convertion needed for RF5110
986 */
987static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
988{
989 u32 athchan;
990
991 /*
992 * Convert IEEE channel/MHz to an internal channel value used
993 * by the AR5210 chipset. This has not been verified with
994 * newer chipsets like the AR5212A who have a completely
995 * different RF/PHY part.
996 */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -0500997 athchan = (ath5k_hw_bitswap(
998 (ieee80211_frequency_to_channel(
999 channel->center_freq) - 24) / 2, 5)
1000 << 1) | (1 << 6) | 0x1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001001 return athchan;
1002}
1003
1004/*
1005 * Set channel on RF5110
1006 */
1007static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1008 struct ieee80211_channel *channel)
1009{
1010 u32 data;
1011
1012 /*
1013 * Set the channel and wait
1014 */
1015 data = ath5k_hw_rf5110_chan2athchan(channel);
1016 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1017 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1018 mdelay(1);
1019
1020 return 0;
1021}
1022
1023/*
1024 * Convertion needed for 5111
1025 */
1026static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1027 struct ath5k_athchan_2ghz *athchan)
1028{
1029 int channel;
1030
1031 /* Cast this value to catch negative channel numbers (>= -19) */
1032 channel = (int)ieee;
1033
1034 /*
1035 * Map 2GHz IEEE channel to 5GHz Atheros channel
1036 */
1037 if (channel <= 13) {
1038 athchan->a2_athchan = 115 + channel;
1039 athchan->a2_flags = 0x46;
1040 } else if (channel == 14) {
1041 athchan->a2_athchan = 124;
1042 athchan->a2_flags = 0x44;
1043 } else if (channel >= 15 && channel <= 26) {
1044 athchan->a2_athchan = ((channel - 14) * 4) + 132;
1045 athchan->a2_flags = 0x46;
1046 } else
1047 return -EINVAL;
1048
1049 return 0;
1050}
1051
1052/*
1053 * Set channel on 5111
1054 */
1055static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1056 struct ieee80211_channel *channel)
1057{
1058 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001059 unsigned int ath5k_channel =
1060 ieee80211_frequency_to_channel(channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001061 u32 data0, data1, clock;
1062 int ret;
1063
1064 /*
1065 * Set the channel on the RF5111 radio
1066 */
1067 data0 = data1 = 0;
1068
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001069 if (channel->hw_value & CHANNEL_2GHZ) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001070 /* Map 2GHz channel to 5GHz Atheros channel ID */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001071 ret = ath5k_hw_rf5111_chan2athchan(
1072 ieee80211_frequency_to_channel(channel->center_freq),
1073 &ath5k_channel_2ghz);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001074 if (ret)
1075 return ret;
1076
1077 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1078 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1079 << 5) | (1 << 4);
1080 }
1081
1082 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1083 clock = 1;
1084 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1085 (clock << 1) | (1 << 10) | 1;
1086 } else {
1087 clock = 0;
1088 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1089 << 2) | (clock << 1) | (1 << 10) | 1;
1090 }
1091
1092 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1093 AR5K_RF_BUFFER);
1094 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1095 AR5K_RF_BUFFER_CONTROL_3);
1096
1097 return 0;
1098}
1099
1100/*
1101 * Set channel on 5112 and newer
1102 */
1103static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1104 struct ieee80211_channel *channel)
1105{
1106 u32 data, data0, data1, data2;
1107 u16 c;
1108
1109 data = data0 = data1 = data2 = 0;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001110 c = channel->center_freq;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001111
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001112 if (c < 4800) {
1113 if (!((c - 2224) % 5)) {
1114 data0 = ((2 * (c - 704)) - 3040) / 10;
1115 data1 = 1;
1116 } else if (!((c - 2192) % 5)) {
1117 data0 = ((2 * (c - 672)) - 3040) / 10;
1118 data1 = 0;
1119 } else
1120 return -EINVAL;
1121
1122 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
Bob Copeland1968cc72010-04-07 23:55:56 -04001123 } else if ((c % 5) != 2 || c > 5435) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001124 if (!(c % 20) && c >= 5120) {
1125 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1126 data2 = ath5k_hw_bitswap(3, 2);
1127 } else if (!(c % 10)) {
1128 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1129 data2 = ath5k_hw_bitswap(2, 2);
1130 } else if (!(c % 5)) {
1131 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1132 data2 = ath5k_hw_bitswap(1, 2);
1133 } else
1134 return -EINVAL;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001135 } else {
Bob Copeland1968cc72010-04-07 23:55:56 -04001136 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001137 data2 = ath5k_hw_bitswap(0, 2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001138 }
1139
1140 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1141
1142 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1143 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1144
1145 return 0;
1146}
1147
1148/*
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001149 * Set the channel on the RF2425
1150 */
1151static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1152 struct ieee80211_channel *channel)
1153{
1154 u32 data, data0, data2;
1155 u16 c;
1156
1157 data = data0 = data2 = 0;
1158 c = channel->center_freq;
1159
1160 if (c < 4800) {
1161 data0 = ath5k_hw_bitswap((c - 2272), 8);
1162 data2 = 0;
1163 /* ? 5GHz ? */
Bob Copeland1968cc72010-04-07 23:55:56 -04001164 } else if ((c % 5) != 2 || c > 5435) {
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001165 if (!(c % 20) && c < 5120)
1166 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1167 else if (!(c % 10))
1168 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1169 else if (!(c % 5))
1170 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1171 else
1172 return -EINVAL;
1173 data2 = ath5k_hw_bitswap(1, 2);
1174 } else {
Bob Copeland1968cc72010-04-07 23:55:56 -04001175 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001176 data2 = ath5k_hw_bitswap(0, 2);
1177 }
1178
1179 data = (data0 << 4) | data2 << 2 | 0x1001;
1180
1181 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1182 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1183
1184 return 0;
1185}
1186
1187/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001188 * Set a channel on the radio chip
1189 */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02001190static int ath5k_hw_channel(struct ath5k_hw *ah,
1191 struct ieee80211_channel *channel)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001192{
1193 int ret;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001194 /*
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001195 * Check bounds supported by the PHY (we don't care about regultory
1196 * restrictions at this point). Note: hw_value already has the band
1197 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1198 * of the band by that */
1199 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001200 ATH5K_ERR(ah->ah_sc,
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001201 "channel frequency (%u MHz) out of supported "
1202 "band range\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001203 channel->center_freq);
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001204 return -EINVAL;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001205 }
1206
1207 /*
1208 * Set the channel and wait
1209 */
1210 switch (ah->ah_radio) {
1211 case AR5K_RF5110:
1212 ret = ath5k_hw_rf5110_channel(ah, channel);
1213 break;
1214 case AR5K_RF5111:
1215 ret = ath5k_hw_rf5111_channel(ah, channel);
1216 break;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001217 case AR5K_RF2425:
1218 ret = ath5k_hw_rf2425_channel(ah, channel);
1219 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001220 default:
1221 ret = ath5k_hw_rf5112_channel(ah, channel);
1222 break;
1223 }
1224
1225 if (ret)
1226 return ret;
1227
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001228 /* Set JAPAN setting for channel 14 */
1229 if (channel->center_freq == 2484) {
1230 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1231 AR5K_PHY_CCKTXCTL_JAPAN);
1232 } else {
1233 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1234 AR5K_PHY_CCKTXCTL_WORLD);
1235 }
1236
Bob Copeland46026e82009-06-10 22:22:20 -04001237 ah->ah_current_channel = channel;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001238
1239 return 0;
1240}
1241
1242/*****************\
1243 PHY calibration
1244\*****************/
1245
Bob Copelande5e26472009-10-14 14:16:30 -04001246static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1247{
1248 s32 val;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001249
Bob Copelande5e26472009-10-14 14:16:30 -04001250 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
Andreas Herrmann7919a572010-08-30 19:04:01 +00001251 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
Bob Copelande5e26472009-10-14 14:16:30 -04001252}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001253
Bob Copelande5e26472009-10-14 14:16:30 -04001254void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1255{
1256 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001257
Bob Copelande5e26472009-10-14 14:16:30 -04001258 ah->ah_nfcal_hist.index = 0;
1259 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1260 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1261}
1262
1263static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1264{
1265 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1266 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1267 hist->nfval[hist->index] = noise_floor;
1268}
1269
1270static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1271{
1272 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1273 s16 tmp;
1274 int i, j;
1275
1276 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1277 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1278 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1279 if (sort[j] > sort[j-1]) {
1280 tmp = sort[j];
1281 sort[j] = sort[j-1];
1282 sort[j-1] = tmp;
1283 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001284 }
1285 }
Bob Copelande5e26472009-10-14 14:16:30 -04001286 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1287 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1288 "cal %d:%d\n", i, sort[i]);
1289 }
1290 return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1291}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001292
Bob Copelande5e26472009-10-14 14:16:30 -04001293/*
1294 * When we tell the hardware to perform a noise floor calibration
1295 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1296 * sample-and-hold the minimum noise level seen at the antennas.
1297 * This value is then stored in a ring buffer of recently measured
1298 * noise floor values so we have a moving window of the last few
1299 * samples.
1300 *
1301 * The median of the values in the history is then loaded into the
1302 * hardware for its own use for RSSI and CCA measurements.
1303 */
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001304void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
Bob Copelande5e26472009-10-14 14:16:30 -04001305{
1306 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1307 u32 val;
1308 s16 nf, threshold;
1309 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001310
Bob Copelande5e26472009-10-14 14:16:30 -04001311 /* keep last value if calibration hasn't completed */
1312 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1313 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1314 "NF did not complete in calibration window\n");
1315
1316 return;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001317 }
1318
Bob Copelande5e26472009-10-14 14:16:30 -04001319 switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1320 case CHANNEL_A:
1321 case CHANNEL_T:
1322 case CHANNEL_XR:
1323 ee_mode = AR5K_EEPROM_MODE_11A;
1324 break;
1325 case CHANNEL_G:
1326 case CHANNEL_TG:
1327 ee_mode = AR5K_EEPROM_MODE_11G;
1328 break;
1329 default:
1330 case CHANNEL_B:
1331 ee_mode = AR5K_EEPROM_MODE_11B;
1332 break;
1333 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001334
Bob Copelande5e26472009-10-14 14:16:30 -04001335
1336 /* completed NF calibration, test threshold */
1337 nf = ath5k_hw_read_measured_noise_floor(ah);
1338 threshold = ee->ee_noise_floor_thr[ee_mode];
1339
1340 if (nf > threshold) {
1341 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1342 "noise floor failure detected; "
1343 "read %d, threshold %d\n",
1344 nf, threshold);
1345
1346 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1347 }
1348
1349 ath5k_hw_update_nfcal_hist(ah, nf);
1350 nf = ath5k_hw_get_median_noise_floor(ah);
1351
1352 /* load noise floor (in .5 dBm) so the hardware will use it */
1353 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1354 val |= (nf * 2) & AR5K_PHY_NF_M;
1355 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1356
1357 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1358 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1359
1360 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1361 0, false);
1362
1363 /*
1364 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1365 * so that we're not capped by the median we just loaded.
1366 * This will be used as the initial value for the next noise
1367 * floor calibration.
1368 */
1369 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1370 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1371 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1372 AR5K_PHY_AGCCTL_NF_EN |
1373 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1374 AR5K_PHY_AGCCTL_NF);
1375
1376 ah->ah_noise_floor = nf;
1377
1378 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1379 "noise floor calibrated: %d\n", nf);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001380}
1381
1382/*
1383 * Perform a PHY calibration on RF5110
1384 * -Fix BPSK/QAM Constellation (I/Q correction)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001385 */
1386static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1387 struct ieee80211_channel *channel)
1388{
1389 u32 phy_sig, phy_agc, phy_sat, beacon;
1390 int ret;
1391
1392 /*
1393 * Disable beacons and RX/TX queues, wait
1394 */
1395 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
Bruno Randolfeada7ca2010-09-27 13:02:40 +09001396 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001397 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1398 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1399
Nick Kossifidis84e463f2008-09-17 03:33:19 +03001400 mdelay(2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001401
1402 /*
1403 * Set the channel (with AGC turned off)
1404 */
1405 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1406 udelay(10);
1407 ret = ath5k_hw_channel(ah, channel);
1408
1409 /*
1410 * Activate PHY and wait
1411 */
1412 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1413 mdelay(1);
1414
1415 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1416
1417 if (ret)
1418 return ret;
1419
1420 /*
1421 * Calibrate the radio chip
1422 */
1423
1424 /* Remember normal state */
1425 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1426 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1427 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1428
1429 /* Update radio registers */
1430 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1431 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1432
1433 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1434 AR5K_PHY_AGCCOARSE_LO)) |
1435 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1436 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1437
1438 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1439 AR5K_PHY_ADCSAT_THR)) |
1440 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1441 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1442
1443 udelay(20);
1444
1445 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1446 udelay(10);
1447 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1448 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1449
1450 mdelay(1);
1451
1452 /*
1453 * Enable calibration and wait until completion
1454 */
1455 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1456
1457 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1458 AR5K_PHY_AGCCTL_CAL, 0, false);
1459
1460 /* Reset to normal state */
1461 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1462 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1463 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1464
1465 if (ret) {
1466 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001467 channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001468 return ret;
1469 }
1470
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001471 /*
1472 * Re-enable RX/TX and beacons
1473 */
1474 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
Bruno Randolfeada7ca2010-09-27 13:02:40 +09001475 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001476 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1477
1478 return 0;
1479}
1480
1481/*
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001482 * Perform I/Q calibration on RF5111/5112 and newer chips
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001483 */
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001484static int
1485ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001486{
1487 u32 i_pwr, q_pwr;
1488 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001489 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001490
Joe Perchese9010e22008-03-07 14:21:16 -08001491 if (!ah->ah_calibration ||
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001492 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001493 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001494
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001495 /* Calibration has finished, get the results and re-run */
Bruno Randolf86415d42010-03-09 16:56:05 +09001496 /* work around empty results which can apparently happen on 5212 */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001497 for (i = 0; i <= 10; i++) {
1498 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1499 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1500 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
Bruno Randolf86415d42010-03-09 16:56:05 +09001501 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1502 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1503 if (i_pwr && q_pwr)
1504 break;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001505 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001506
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001507 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
Bruno Randolf49a85d22010-03-09 16:56:15 +09001508
1509 if (ah->ah_version == AR5K_AR5211)
1510 q_coffd = q_pwr >> 6;
1511 else
1512 q_coffd = q_pwr >> 7;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001513
Bruno Randolf86415d42010-03-09 16:56:05 +09001514 /* protect against divide by 0 and loss of sign bits */
1515 if (i_coffd == 0 || q_coffd < 2)
Fabio Rossi516c6e12010-09-08 22:37:41 +02001516 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001517
Bruno Randolf86415d42010-03-09 16:56:05 +09001518 i_coff = (-iq_corr) / i_coffd;
1519 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001520
John W. Linvilleace5d5d2010-04-08 16:34:49 -04001521 if (ah->ah_version == AR5K_AR5211)
1522 q_coff = (i_pwr / q_coffd) - 64;
1523 else
1524 q_coff = (i_pwr / q_coffd) - 128;
Bruno Randolf86415d42010-03-09 16:56:05 +09001525 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001526
Bruno Randolf86415d42010-03-09 16:56:05 +09001527 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1528 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1529 i_coff, q_coff, i_coffd, q_coffd);
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001530
Bruno Randolf86415d42010-03-09 16:56:05 +09001531 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1532 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1533 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1534 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001535
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001536 /* Re-enable calibration -if we don't we'll commit
1537 * the same values again and again */
1538 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1539 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1540 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1541
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001542 return 0;
1543}
1544
1545/*
1546 * Perform a PHY calibration
1547 */
1548int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1549 struct ieee80211_channel *channel)
1550{
1551 int ret;
1552
1553 if (ah->ah_radio == AR5K_RF5110)
1554 ret = ath5k_hw_rf5110_calibrate(ah, channel);
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001555 else {
1556 ret = ath5k_hw_rf511x_iq_calibrate(ah);
1557 ath5k_hw_request_rfgain_probe(ah);
1558 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001559
1560 return ret;
1561}
1562
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02001563
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001564/***************************\
1565* Spur mitigation functions *
1566\***************************/
1567
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02001568static void
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001569ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1570 struct ieee80211_channel *channel)
1571{
1572 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1573 u32 mag_mask[4] = {0, 0, 0, 0};
1574 u32 pilot_mask[2] = {0, 0};
1575 /* Note: fbin values are scaled up by 2 */
1576 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1577 s32 spur_delta_phase, spur_freq_sigma_delta;
1578 s32 spur_offset, num_symbols_x16;
1579 u8 num_symbol_offsets, i, freq_band;
1580
1581 /* Convert current frequency to fbin value (the same way channels
1582 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1583 * up by 2 so we can compare it later */
1584 if (channel->hw_value & CHANNEL_2GHZ) {
1585 chan_fbin = (channel->center_freq - 2300) * 10;
1586 freq_band = AR5K_EEPROM_BAND_2GHZ;
1587 } else {
1588 chan_fbin = (channel->center_freq - 4900) * 10;
1589 freq_band = AR5K_EEPROM_BAND_5GHZ;
1590 }
1591
1592 /* Check if any spur_chan_fbin from EEPROM is
1593 * within our current channel's spur detection range */
1594 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1595 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1596 /* XXX: Half/Quarter channels ?*/
1597 if (channel->hw_value & CHANNEL_TURBO)
1598 spur_detection_window *= 2;
1599
1600 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1601 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1602
1603 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1604 * so it's zero if we got nothing from EEPROM */
1605 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1606 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1607 break;
1608 }
1609
1610 if ((chan_fbin - spur_detection_window <=
1611 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1612 (chan_fbin + spur_detection_window >=
1613 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1614 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1615 break;
1616 }
1617 }
1618
1619 /* We need to enable spur filter for this channel */
1620 if (spur_chan_fbin) {
1621 spur_offset = spur_chan_fbin - chan_fbin;
1622 /*
1623 * Calculate deltas:
1624 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1625 * spur_delta_phase -> spur_offset / chip_freq << 11
1626 * Note: Both values have 100KHz resolution
1627 */
1628 /* XXX: Half/Quarter rate channels ? */
1629 switch (channel->hw_value) {
1630 case CHANNEL_A:
1631 /* Both sample_freq and chip_freq are 40MHz */
1632 spur_delta_phase = (spur_offset << 17) / 25;
1633 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1634 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1635 break;
1636 case CHANNEL_G:
1637 /* sample_freq -> 40MHz chip_freq -> 44MHz
1638 * (for b compatibility) */
1639 spur_freq_sigma_delta = (spur_offset << 8) / 55;
1640 spur_delta_phase = (spur_offset << 17) / 25;
1641 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1642 break;
1643 case CHANNEL_T:
1644 case CHANNEL_TG:
1645 /* Both sample_freq and chip_freq are 80MHz */
1646 spur_delta_phase = (spur_offset << 16) / 25;
1647 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1648 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1649 break;
1650 default:
1651 return;
1652 }
1653
1654 /* Calculate pilot and magnitude masks */
1655
1656 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1657 * and divide by symbol_width to find how many symbols we have
1658 * Note: number of symbols is scaled up by 16 */
1659 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1660
1661 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1662 if (!(num_symbols_x16 & 0xF))
1663 /* _X_ */
1664 num_symbol_offsets = 3;
1665 else
1666 /* _xx_ */
1667 num_symbol_offsets = 4;
1668
1669 for (i = 0; i < num_symbol_offsets; i++) {
1670
1671 /* Calculate pilot mask */
1672 s32 curr_sym_off =
1673 (num_symbols_x16 / 16) + i + 25;
1674
1675 /* Pilot magnitude mask seems to be a way to
1676 * declare the boundaries for our detection
1677 * window or something, it's 2 for the middle
1678 * value(s) where the symbol is expected to be
1679 * and 1 on the boundary values */
1680 u8 plt_mag_map =
1681 (i == 0 || i == (num_symbol_offsets - 1))
1682 ? 1 : 2;
1683
1684 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1685 if (curr_sym_off <= 25)
1686 pilot_mask[0] |= 1 << curr_sym_off;
1687 else if (curr_sym_off >= 27)
1688 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1689 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1690 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1691
1692 /* Calculate magnitude mask (for viterbi decoder) */
1693 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1694 mag_mask[0] |=
1695 plt_mag_map << (curr_sym_off + 1) * 2;
1696 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1697 mag_mask[1] |=
1698 plt_mag_map << (curr_sym_off - 15) * 2;
1699 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1700 mag_mask[2] |=
1701 plt_mag_map << (curr_sym_off - 31) * 2;
Bob Copeland53b1cf82010-08-24 21:37:14 -04001702 else if (curr_sym_off >= 47 && curr_sym_off <= 53)
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001703 mag_mask[3] |=
1704 plt_mag_map << (curr_sym_off - 47) * 2;
1705
1706 }
1707
1708 /* Write settings on hw to enable spur filter */
1709 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1710 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1711 /* XXX: Self correlator also ? */
1712 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1713 AR5K_PHY_IQ_PILOT_MASK_EN |
1714 AR5K_PHY_IQ_CHAN_MASK_EN |
1715 AR5K_PHY_IQ_SPUR_FILT_EN);
1716
1717 /* Set delta phase and freq sigma delta */
1718 ath5k_hw_reg_write(ah,
1719 AR5K_REG_SM(spur_delta_phase,
1720 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1721 AR5K_REG_SM(spur_freq_sigma_delta,
1722 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1723 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1724 AR5K_PHY_TIMING_11);
1725
1726 /* Write pilot masks */
1727 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1728 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1729 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1730 pilot_mask[1]);
1731
1732 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1733 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1734 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1735 pilot_mask[1]);
1736
1737 /* Write magnitude masks */
1738 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1739 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1740 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1741 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1742 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1743 mag_mask[3]);
1744
1745 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1746 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1747 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1748 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1749 AR5K_PHY_BIN_MASK2_4_MASK_4,
1750 mag_mask[3]);
1751
1752 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1753 AR5K_PHY_IQ_SPUR_FILT_EN) {
1754 /* Clean up spur mitigation settings and disable fliter */
1755 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1756 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1757 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1758 AR5K_PHY_IQ_PILOT_MASK_EN |
1759 AR5K_PHY_IQ_CHAN_MASK_EN |
1760 AR5K_PHY_IQ_SPUR_FILT_EN);
1761 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1762
1763 /* Clear pilot masks */
1764 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1765 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1766 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1767 0);
1768
1769 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1770 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1771 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1772 0);
1773
1774 /* Clear magnitude masks */
1775 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1776 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1777 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1778 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1779 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1780 0);
1781
1782 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1783 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1784 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1785 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1786 AR5K_PHY_BIN_MASK2_4_MASK_4,
1787 0);
1788 }
1789}
1790
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001791
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001792/*****************\
1793* Antenna control *
1794\*****************/
1795
Pavel Roskin626ede62010-02-18 20:28:02 -05001796static void /*TODO:Boundary check*/
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001797ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001798{
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001799 if (ah->ah_version != AR5K_AR5210)
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001800 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001801}
1802
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001803/*
1804 * Enable/disable fast rx antenna diversity
1805 */
1806static void
1807ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1808{
1809 switch (ee_mode) {
1810 case AR5K_EEPROM_MODE_11G:
1811 /* XXX: This is set to
1812 * disabled on initvals !!! */
1813 case AR5K_EEPROM_MODE_11A:
1814 if (enable)
1815 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1816 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1817 else
1818 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1819 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1820 break;
1821 case AR5K_EEPROM_MODE_11B:
1822 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1823 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1824 break;
1825 default:
1826 return;
1827 }
1828
1829 if (enable) {
1830 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
Bruno Randolf6665b542010-06-28 11:01:48 +09001831 AR5K_PHY_RESTART_DIV_GC, 4);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001832
1833 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1834 AR5K_PHY_FAST_ANT_DIV_EN);
1835 } else {
1836 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
Bruno Randolf39d5b2c2010-06-07 13:11:25 +09001837 AR5K_PHY_RESTART_DIV_GC, 0);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001838
1839 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1840 AR5K_PHY_FAST_ANT_DIV_EN);
1841 }
1842}
1843
Bruno Randolf0ca74022010-06-07 13:11:30 +09001844void
1845ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1846{
1847 u8 ant0, ant1;
1848
1849 /*
1850 * In case a fixed antenna was set as default
1851 * use the same switch table twice.
1852 */
1853 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1854 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1855 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1856 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1857 else {
1858 ant0 = AR5K_ANT_SWTABLE_A;
1859 ant1 = AR5K_ANT_SWTABLE_B;
1860 }
1861
1862 /* Set antenna idle switch table */
1863 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1864 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1865 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1866 AR5K_PHY_ANT_CTL_TXRX_EN));
1867
1868 /* Set antenna switch tables */
1869 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1870 AR5K_PHY_ANT_SWITCH_TABLE_0);
1871 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1872 AR5K_PHY_ANT_SWITCH_TABLE_1);
1873}
1874
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001875/*
1876 * Set antenna operating mode
1877 */
1878void
1879ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1880{
Bob Copeland46026e82009-06-10 22:22:20 -04001881 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001882 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1883 bool use_def_for_sg;
1884 u8 def_ant, tx_ant, ee_mode;
1885 u32 sta_id1 = 0;
1886
Bruno Randolf436c1092010-06-07 13:11:19 +09001887 /* if channel is not initialized yet we can't set the antennas
1888 * so just store the mode. it will be set on the next reset */
1889 if (channel == NULL) {
1890 ah->ah_ant_mode = ant_mode;
1891 return;
1892 }
1893
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001894 def_ant = ah->ah_def_ant;
1895
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001896 switch (channel->hw_value & CHANNEL_MODES) {
1897 case CHANNEL_A:
1898 case CHANNEL_T:
1899 case CHANNEL_XR:
1900 ee_mode = AR5K_EEPROM_MODE_11A;
1901 break;
1902 case CHANNEL_G:
1903 case CHANNEL_TG:
1904 ee_mode = AR5K_EEPROM_MODE_11G;
1905 break;
1906 case CHANNEL_B:
1907 ee_mode = AR5K_EEPROM_MODE_11B;
1908 break;
1909 default:
1910 ATH5K_ERR(ah->ah_sc,
1911 "invalid channel: %d\n", channel->center_freq);
1912 return;
1913 }
1914
1915 switch (ant_mode) {
1916 case AR5K_ANTMODE_DEFAULT:
1917 tx_ant = 0;
1918 use_def_for_tx = false;
1919 update_def_on_tx = false;
1920 use_def_for_rts = false;
1921 use_def_for_sg = false;
1922 fast_div = true;
1923 break;
1924 case AR5K_ANTMODE_FIXED_A:
1925 def_ant = 1;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001926 tx_ant = 1;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001927 use_def_for_tx = true;
1928 update_def_on_tx = false;
1929 use_def_for_rts = true;
1930 use_def_for_sg = true;
1931 fast_div = false;
1932 break;
1933 case AR5K_ANTMODE_FIXED_B:
1934 def_ant = 2;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001935 tx_ant = 2;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001936 use_def_for_tx = true;
1937 update_def_on_tx = false;
1938 use_def_for_rts = true;
1939 use_def_for_sg = true;
1940 fast_div = false;
1941 break;
1942 case AR5K_ANTMODE_SINGLE_AP:
1943 def_ant = 1; /* updated on tx */
1944 tx_ant = 0;
1945 use_def_for_tx = true;
1946 update_def_on_tx = true;
1947 use_def_for_rts = true;
1948 use_def_for_sg = true;
1949 fast_div = true;
1950 break;
1951 case AR5K_ANTMODE_SECTOR_AP:
1952 tx_ant = 1; /* variable */
1953 use_def_for_tx = false;
1954 update_def_on_tx = false;
1955 use_def_for_rts = true;
1956 use_def_for_sg = false;
1957 fast_div = false;
1958 break;
1959 case AR5K_ANTMODE_SECTOR_STA:
1960 tx_ant = 1; /* variable */
1961 use_def_for_tx = true;
1962 update_def_on_tx = false;
1963 use_def_for_rts = true;
1964 use_def_for_sg = false;
1965 fast_div = true;
1966 break;
1967 case AR5K_ANTMODE_DEBUG:
1968 def_ant = 1;
1969 tx_ant = 2;
1970 use_def_for_tx = false;
1971 update_def_on_tx = false;
1972 use_def_for_rts = false;
1973 use_def_for_sg = false;
1974 fast_div = false;
1975 break;
1976 default:
1977 return;
1978 }
1979
1980 ah->ah_tx_ant = tx_ant;
1981 ah->ah_ant_mode = ant_mode;
Bruno Randolfcaec9112010-03-09 16:55:28 +09001982 ah->ah_def_ant = def_ant;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001983
1984 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1985 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1986 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1987 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1988
1989 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1990
1991 if (sta_id1)
1992 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1993
Bruno Randolf0ca74022010-06-07 13:11:30 +09001994 ath5k_hw_set_antenna_switch(ah, ee_mode);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001995 /* Note: set diversity before default antenna
1996 * because it won't work correctly */
1997 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1998 ath5k_hw_set_def_antenna(ah, def_ant);
1999}
2000
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002001
2002/****************\
2003* TX power setup *
2004\****************/
2005
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002006/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002007 * Helper functions
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002008 */
2009
2010/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002011 * Do linear interpolation between two given (x, y) points
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002012 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002013static s16
2014ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2015 s16 y_left, s16 y_right)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002016{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002017 s16 ratio, result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002018
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002019 /* Avoid divide by zero and skip interpolation
2020 * if we have the same point */
2021 if ((x_left == x_right) || (y_left == y_right))
2022 return y_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002023
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002024 /*
2025 * Since we use ints and not fps, we need to scale up in
2026 * order to get a sane ratio value (or else we 'll eg. get
2027 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2028 * to have some accuracy both for 0.5 and 0.25 steps.
2029 */
2030 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002031
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002032 /* Now scale down to be in range */
2033 result = y_left + (ratio * (target - x_left) / 100);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002034
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002035 return result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002036}
2037
2038/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002039 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2040 *
2041 * Since we have the top of the curve and we draw the line below
2042 * until we reach 1 (1 pcdac step) we need to know which point
2043 * (x value) that is so that we don't go below y axis and have negative
2044 * pcdac values when creating the curve, or fill the table with zeroes.
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002045 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002046static s16
2047ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2048 const s16 *pwrL, const s16 *pwrR)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002049{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002050 s8 tmp;
2051 s16 min_pwrL, min_pwrR;
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002052 s16 pwr_i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002053
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +03002054 /* Some vendors write the same pcdac value twice !!! */
2055 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2056 return max(pwrL[0], pwrR[0]);
Bob Copeland9c8b3ed2009-05-19 23:37:31 -04002057
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002058 if (pwrL[0] == pwrL[1])
2059 min_pwrL = pwrL[0];
2060 else {
2061 pwr_i = pwrL[0];
2062 do {
2063 pwr_i--;
2064 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2065 pwrL[0], pwrL[1],
2066 stepL[0], stepL[1]);
2067 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002068
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002069 min_pwrL = pwr_i;
2070 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002071
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002072 if (pwrR[0] == pwrR[1])
2073 min_pwrR = pwrR[0];
2074 else {
2075 pwr_i = pwrR[0];
2076 do {
2077 pwr_i--;
2078 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2079 pwrR[0], pwrR[1],
2080 stepR[0], stepR[1]);
2081 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002082
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002083 min_pwrR = pwr_i;
2084 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002085
2086 /* Keep the right boundary so that it works for both curves */
2087 return max(min_pwrL, min_pwrR);
2088}
2089
2090/*
2091 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2092 * Power to PCDAC curve.
2093 *
2094 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2095 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2096 * PCDAC/PDADC step for each curve is 64 but we can write more than
2097 * one curves on hw so we can go up to 128 (which is the max step we
2098 * can write on the final table).
2099 *
2100 * We write y values (PCDAC/PDADC steps) on hw.
2101 */
2102static void
2103ath5k_create_power_curve(s16 pmin, s16 pmax,
2104 const s16 *pwr, const u8 *vpd,
2105 u8 num_points,
2106 u8 *vpd_table, u8 type)
2107{
2108 u8 idx[2] = { 0, 1 };
2109 s16 pwr_i = 2*pmin;
2110 int i;
2111
2112 if (num_points < 2)
2113 return;
2114
2115 /* We want the whole line, so adjust boundaries
2116 * to cover the entire power range. Note that
2117 * power values are already 0.25dB so no need
2118 * to multiply pwr_i by 2 */
2119 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2120 pwr_i = pmin;
2121 pmin = 0;
2122 pmax = 63;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002123 }
2124
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002125 /* Find surrounding turning points (TPs)
2126 * and interpolate between them */
2127 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2128 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2129
2130 /* We passed the right TP, move to the next set of TPs
2131 * if we pass the last TP, extrapolate above using the last
2132 * two TPs for ratio */
2133 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2134 idx[0]++;
2135 idx[1]++;
2136 }
2137
2138 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2139 pwr[idx[0]], pwr[idx[1]],
2140 vpd[idx[0]], vpd[idx[1]]);
2141
2142 /* Increase by 0.5dB
2143 * (0.25 dB units) */
2144 pwr_i += 2;
2145 }
2146}
2147
2148/*
2149 * Get the surrounding per-channel power calibration piers
2150 * for a given frequency so that we can interpolate between
2151 * them and come up with an apropriate dataset for our current
2152 * channel.
2153 */
2154static void
2155ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2156 struct ieee80211_channel *channel,
2157 struct ath5k_chan_pcal_info **pcinfo_l,
2158 struct ath5k_chan_pcal_info **pcinfo_r)
2159{
2160 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2161 struct ath5k_chan_pcal_info *pcinfo;
2162 u8 idx_l, idx_r;
2163 u8 mode, max, i;
2164 u32 target = channel->center_freq;
2165
2166 idx_l = 0;
2167 idx_r = 0;
2168
2169 if (!(channel->hw_value & CHANNEL_OFDM)) {
2170 pcinfo = ee->ee_pwr_cal_b;
2171 mode = AR5K_EEPROM_MODE_11B;
2172 } else if (channel->hw_value & CHANNEL_2GHZ) {
2173 pcinfo = ee->ee_pwr_cal_g;
2174 mode = AR5K_EEPROM_MODE_11G;
2175 } else {
2176 pcinfo = ee->ee_pwr_cal_a;
2177 mode = AR5K_EEPROM_MODE_11A;
2178 }
2179 max = ee->ee_n_piers[mode] - 1;
2180
2181 /* Frequency is below our calibrated
2182 * range. Use the lowest power curve
2183 * we have */
2184 if (target < pcinfo[0].freq) {
2185 idx_l = idx_r = 0;
2186 goto done;
2187 }
2188
2189 /* Frequency is above our calibrated
2190 * range. Use the highest power curve
2191 * we have */
2192 if (target > pcinfo[max].freq) {
2193 idx_l = idx_r = max;
2194 goto done;
2195 }
2196
2197 /* Frequency is inside our calibrated
2198 * channel range. Pick the surrounding
2199 * calibration piers so that we can
2200 * interpolate */
2201 for (i = 0; i <= max; i++) {
2202
2203 /* Frequency matches one of our calibration
2204 * piers, no need to interpolate, just use
2205 * that calibration pier */
2206 if (pcinfo[i].freq == target) {
2207 idx_l = idx_r = i;
2208 goto done;
2209 }
2210
2211 /* We found a calibration pier that's above
2212 * frequency, use this pier and the previous
2213 * one to interpolate */
2214 if (target < pcinfo[i].freq) {
2215 idx_r = i;
2216 idx_l = idx_r - 1;
2217 goto done;
2218 }
2219 }
2220
2221done:
2222 *pcinfo_l = &pcinfo[idx_l];
2223 *pcinfo_r = &pcinfo[idx_r];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002224}
2225
2226/*
2227 * Get the surrounding per-rate power calibration data
2228 * for a given frequency and interpolate between power
2229 * values to set max target power supported by hw for
2230 * each rate.
2231 */
2232static void
2233ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2234 struct ieee80211_channel *channel,
2235 struct ath5k_rate_pcal_info *rates)
2236{
2237 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2238 struct ath5k_rate_pcal_info *rpinfo;
2239 u8 idx_l, idx_r;
2240 u8 mode, max, i;
2241 u32 target = channel->center_freq;
2242
2243 idx_l = 0;
2244 idx_r = 0;
2245
2246 if (!(channel->hw_value & CHANNEL_OFDM)) {
2247 rpinfo = ee->ee_rate_tpwr_b;
2248 mode = AR5K_EEPROM_MODE_11B;
2249 } else if (channel->hw_value & CHANNEL_2GHZ) {
2250 rpinfo = ee->ee_rate_tpwr_g;
2251 mode = AR5K_EEPROM_MODE_11G;
2252 } else {
2253 rpinfo = ee->ee_rate_tpwr_a;
2254 mode = AR5K_EEPROM_MODE_11A;
2255 }
2256 max = ee->ee_rate_target_pwr_num[mode] - 1;
2257
2258 /* Get the surrounding calibration
2259 * piers - same as above */
2260 if (target < rpinfo[0].freq) {
2261 idx_l = idx_r = 0;
2262 goto done;
2263 }
2264
2265 if (target > rpinfo[max].freq) {
2266 idx_l = idx_r = max;
2267 goto done;
2268 }
2269
2270 for (i = 0; i <= max; i++) {
2271
2272 if (rpinfo[i].freq == target) {
2273 idx_l = idx_r = i;
2274 goto done;
2275 }
2276
2277 if (target < rpinfo[i].freq) {
2278 idx_r = i;
2279 idx_l = idx_r - 1;
2280 goto done;
2281 }
2282 }
2283
2284done:
2285 /* Now interpolate power value, based on the frequency */
2286 rates->freq = target;
2287
2288 rates->target_power_6to24 =
2289 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2290 rpinfo[idx_r].freq,
2291 rpinfo[idx_l].target_power_6to24,
2292 rpinfo[idx_r].target_power_6to24);
2293
2294 rates->target_power_36 =
2295 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2296 rpinfo[idx_r].freq,
2297 rpinfo[idx_l].target_power_36,
2298 rpinfo[idx_r].target_power_36);
2299
2300 rates->target_power_48 =
2301 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2302 rpinfo[idx_r].freq,
2303 rpinfo[idx_l].target_power_48,
2304 rpinfo[idx_r].target_power_48);
2305
2306 rates->target_power_54 =
2307 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2308 rpinfo[idx_r].freq,
2309 rpinfo[idx_l].target_power_54,
2310 rpinfo[idx_r].target_power_54);
2311}
2312
2313/*
2314 * Get the max edge power for this channel if
2315 * we have such data from EEPROM's Conformance Test
2316 * Limits (CTL), and limit max power if needed.
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002317 */
2318static void
2319ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2320 struct ieee80211_channel *channel)
2321{
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002322 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002323 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2324 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2325 u8 *ctl_val = ee->ee_ctl;
2326 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2327 s16 edge_pwr = 0;
2328 u8 rep_idx;
2329 u8 i, ctl_mode;
2330 u8 ctl_idx = 0xFF;
2331 u32 target = channel->center_freq;
2332
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002333 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
Bob Copeland6752ee92009-04-30 15:55:51 -04002334
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002335 switch (channel->hw_value & CHANNEL_MODES) {
2336 case CHANNEL_A:
Bob Copeland6752ee92009-04-30 15:55:51 -04002337 ctl_mode |= AR5K_CTL_11A;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002338 break;
2339 case CHANNEL_G:
Bob Copeland6752ee92009-04-30 15:55:51 -04002340 ctl_mode |= AR5K_CTL_11G;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002341 break;
2342 case CHANNEL_B:
Bob Copeland6752ee92009-04-30 15:55:51 -04002343 ctl_mode |= AR5K_CTL_11B;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002344 break;
2345 case CHANNEL_T:
Bob Copeland6752ee92009-04-30 15:55:51 -04002346 ctl_mode |= AR5K_CTL_TURBO;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002347 break;
2348 case CHANNEL_TG:
Bob Copeland6752ee92009-04-30 15:55:51 -04002349 ctl_mode |= AR5K_CTL_TURBOG;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002350 break;
2351 case CHANNEL_XR:
2352 /* Fall through */
2353 default:
2354 return;
2355 }
Nick Kossifidis903b4742008-02-28 14:50:50 -05002356
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002357 for (i = 0; i < ee->ee_ctls; i++) {
2358 if (ctl_val[i] == ctl_mode) {
2359 ctl_idx = i;
2360 break;
2361 }
2362 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002363
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002364 /* If we have a CTL dataset available grab it and find the
2365 * edge power for our frequency */
2366 if (ctl_idx == 0xFF)
2367 return;
2368
2369 /* Edge powers are sorted by frequency from lower
2370 * to higher. Each CTL corresponds to 8 edge power
2371 * measurements. */
2372 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2373
2374 /* Don't do boundaries check because we
2375 * might have more that one bands defined
2376 * for this mode */
2377
2378 /* Get the edge power that's closer to our
2379 * frequency */
2380 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2381 rep_idx += i;
2382 if (target <= rep[rep_idx].freq)
2383 edge_pwr = (s16) rep[rep_idx].edge;
2384 }
2385
2386 if (edge_pwr)
2387 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2388}
2389
2390
2391/*
2392 * Power to PCDAC table functions
2393 */
2394
2395/*
2396 * Fill Power to PCDAC table on RF5111
2397 *
2398 * No further processing is needed for RF5111, the only thing we have to
2399 * do is fill the values below and above calibration range since eeprom data
2400 * may not cover the entire PCDAC table.
2401 */
2402static void
2403ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2404 s16 *table_max)
2405{
2406 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2407 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2408 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2409 s16 min_pwr, max_pwr;
2410
2411 /* Get table boundaries */
2412 min_pwr = table_min[0];
2413 pcdac_0 = pcdac_tmp[0];
2414
2415 max_pwr = table_max[0];
2416 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2417
2418 /* Extrapolate below minimum using pcdac_0 */
2419 pcdac_i = 0;
2420 for (i = 0; i < min_pwr; i++)
2421 pcdac_out[pcdac_i++] = pcdac_0;
2422
2423 /* Copy values from pcdac_tmp */
2424 pwr_idx = min_pwr;
2425 for (i = 0 ; pwr_idx <= max_pwr &&
2426 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2427 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2428 pwr_idx++;
2429 }
2430
2431 /* Extrapolate above maximum */
2432 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2433 pcdac_out[pcdac_i++] = pcdac_n;
2434
2435}
2436
2437/*
2438 * Combine available XPD Curves and fill Linear Power to PCDAC table
2439 * on RF5112
2440 *
2441 * RFX112 can have up to 2 curves (one for low txpower range and one for
2442 * higher txpower range). We need to put them both on pcdac_out and place
2443 * them in the correct location. In case we only have one curve available
2444 * just fit it on pcdac_out (it's supposed to cover the entire range of
2445 * available pwr levels since it's always the higher power curve). Extrapolate
2446 * below and above final table if needed.
2447 */
2448static void
2449ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2450 s16 *table_max, u8 pdcurves)
2451{
2452 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2453 u8 *pcdac_low_pwr;
2454 u8 *pcdac_high_pwr;
2455 u8 *pcdac_tmp;
2456 u8 pwr;
2457 s16 max_pwr_idx;
2458 s16 min_pwr_idx;
2459 s16 mid_pwr_idx = 0;
2460 /* Edge flag turs on the 7nth bit on the PCDAC
2461 * to delcare the higher power curve (force values
2462 * to be greater than 64). If we only have one curve
2463 * we don't need to set this, if we have 2 curves and
2464 * fill the table backwards this can also be used to
2465 * switch from higher power curve to lower power curve */
2466 u8 edge_flag;
2467 int i;
2468
2469 /* When we have only one curve available
2470 * that's the higher power curve. If we have
2471 * two curves the first is the high power curve
2472 * and the next is the low power curve. */
2473 if (pdcurves > 1) {
2474 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2475 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2476 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2477 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2478
2479 /* If table size goes beyond 31.5dB, keep the
2480 * upper 31.5dB range when setting tx power.
2481 * Note: 126 = 31.5 dB in quarter dB steps */
2482 if (table_max[0] - table_min[1] > 126)
2483 min_pwr_idx = table_max[0] - 126;
2484 else
2485 min_pwr_idx = table_min[1];
2486
2487 /* Since we fill table backwards
2488 * start from high power curve */
2489 pcdac_tmp = pcdac_high_pwr;
2490
2491 edge_flag = 0x40;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002492 } else {
2493 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2494 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2495 min_pwr_idx = table_min[0];
2496 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2497 pcdac_tmp = pcdac_high_pwr;
2498 edge_flag = 0;
2499 }
2500
2501 /* This is used when setting tx power*/
2502 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2503
2504 /* Fill Power to PCDAC table backwards */
2505 pwr = max_pwr_idx;
2506 for (i = 63; i >= 0; i--) {
2507 /* Entering lower power range, reset
2508 * edge flag and set pcdac_tmp to lower
2509 * power curve.*/
2510 if (edge_flag == 0x40 &&
2511 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2512 edge_flag = 0x00;
2513 pcdac_tmp = pcdac_low_pwr;
2514 pwr = mid_pwr_idx/2;
2515 }
2516
2517 /* Don't go below 1, extrapolate below if we have
2518 * already swithced to the lower power curve -or
2519 * we only have one curve and edge_flag is zero
2520 * anyway */
2521 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2522 while (i >= 0) {
2523 pcdac_out[i] = pcdac_out[i + 1];
2524 i--;
2525 }
2526 break;
2527 }
2528
2529 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2530
2531 /* Extrapolate above if pcdac is greater than
2532 * 126 -this can happen because we OR pcdac_out
2533 * value with edge_flag on high power curve */
2534 if (pcdac_out[i] > 126)
2535 pcdac_out[i] = 126;
2536
2537 /* Decrease by a 0.5dB step */
2538 pwr--;
2539 }
2540}
2541
2542/* Write PCDAC values on hw */
2543static void
2544ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2545{
2546 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2547 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002548
2549 /*
2550 * Write TX power values
2551 */
2552 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2553 ath5k_hw_reg_write(ah,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002554 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2555 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002556 AR5K_PHY_PCDAC_TXPOWER(i));
2557 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002558}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002559
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002560
2561/*
2562 * Power to PDADC table functions
2563 */
2564
2565/*
2566 * Set the gain boundaries and create final Power to PDADC table
2567 *
2568 * We can have up to 4 pd curves, we need to do a simmilar process
2569 * as we do for RF5112. This time we don't have an edge_flag but we
2570 * set the gain boundaries on a separate register.
2571 */
2572static void
2573ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2574 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2575{
2576 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2577 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2578 u8 *pdadc_tmp;
2579 s16 pdadc_0;
2580 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2581 u8 pd_gain_overlap;
2582
2583 /* Note: Register value is initialized on initvals
2584 * there is no feedback from hw.
2585 * XXX: What about pd_gain_overlap from EEPROM ? */
2586 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2587 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2588
2589 /* Create final PDADC table */
2590 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2591 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2592
2593 if (pdg == pdcurves - 1)
2594 /* 2 dB boundary stretch for last
2595 * (higher power) curve */
2596 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2597 else
2598 /* Set gain boundary in the middle
2599 * between this curve and the next one */
2600 gain_boundaries[pdg] =
2601 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2602
2603 /* Sanity check in case our 2 db stretch got out of
2604 * range. */
2605 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2606 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2607
2608 /* For the first curve (lower power)
2609 * start from 0 dB */
2610 if (pdg == 0)
2611 pdadc_0 = 0;
2612 else
2613 /* For the other curves use the gain overlap */
2614 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2615 pd_gain_overlap;
2616
2617 /* Force each power step to be at least 0.5 dB */
2618 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2619 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2620 else
2621 pwr_step = 1;
2622
2623 /* If pdadc_0 is negative, we need to extrapolate
2624 * below this pdgain by a number of pwr_steps */
2625 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2626 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2627 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2628 pdadc_0++;
2629 }
2630
2631 /* Set last pwr level, using gain boundaries */
2632 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2633 /* Limit it to be inside pwr range */
2634 table_size = pwr_max[pdg] - pwr_min[pdg];
2635 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2636
2637 /* Fill pdadc_out table */
Bob Copeland4f59fce2010-04-07 23:55:59 -04002638 while (pdadc_0 < max_idx && pdadc_i < 128)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002639 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2640
2641 /* Need to extrapolate above this pdgain? */
2642 if (pdadc_n <= max_idx)
2643 continue;
2644
2645 /* Force each power step to be at least 0.5 dB */
2646 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2647 pwr_step = pdadc_tmp[table_size - 1] -
2648 pdadc_tmp[table_size - 2];
2649 else
2650 pwr_step = 1;
2651
2652 /* Extrapolate above */
2653 while ((pdadc_0 < (s16) pdadc_n) &&
2654 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2655 s16 tmp = pdadc_tmp[table_size - 1] +
2656 (pdadc_0 - max_idx) * pwr_step;
2657 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2658 pdadc_0++;
2659 }
2660 }
2661
2662 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2663 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2664 pdg++;
2665 }
2666
2667 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2668 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2669 pdadc_i++;
2670 }
2671
2672 /* Set gain boundaries */
2673 ath5k_hw_reg_write(ah,
2674 AR5K_REG_SM(pd_gain_overlap,
2675 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2676 AR5K_REG_SM(gain_boundaries[0],
2677 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2678 AR5K_REG_SM(gain_boundaries[1],
2679 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2680 AR5K_REG_SM(gain_boundaries[2],
2681 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2682 AR5K_REG_SM(gain_boundaries[3],
2683 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2684 AR5K_PHY_TPC_RG5);
2685
2686 /* Used for setting rate power table */
2687 ah->ah_txpower.txp_min_idx = pwr_min[0];
2688
2689}
2690
2691/* Write PDADC values on hw */
2692static void
2693ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2694 u8 pdcurves, u8 *pdg_to_idx)
2695{
2696 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2697 u32 reg;
2698 u8 i;
2699
2700 /* Select the right pdgain curves */
2701
2702 /* Clear current settings */
2703 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2704 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2705 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2706 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2707 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2708
2709 /*
2710 * Use pd_gains curve from eeprom
2711 *
2712 * This overrides the default setting from initvals
2713 * in case some vendors (e.g. Zcomax) don't use the default
2714 * curves. If we don't honor their settings we 'll get a
2715 * 5dB (1 * gain overlap ?) drop.
2716 */
2717 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2718
2719 switch (pdcurves) {
2720 case 3:
2721 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2722 /* Fall through */
2723 case 2:
2724 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2725 /* Fall through */
2726 case 1:
2727 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2728 break;
2729 }
2730 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2731
2732 /*
2733 * Write TX power values
2734 */
2735 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2736 ath5k_hw_reg_write(ah,
2737 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2738 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2739 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2740 ((pdadc_out[4*i + 3] & 0xff) << 24),
2741 AR5K_PHY_PDADC_TXPOWER(i));
2742 }
2743}
2744
2745
2746/*
2747 * Common code for PCDAC/PDADC tables
2748 */
2749
2750/*
2751 * This is the main function that uses all of the above
2752 * to set PCDAC/PDADC table on hw for the current channel.
2753 * This table is used for tx power calibration on the basband,
2754 * without it we get weird tx power levels and in some cases
2755 * distorted spectral mask
2756 */
2757static int
2758ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2759 struct ieee80211_channel *channel,
2760 u8 ee_mode, u8 type)
2761{
2762 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2763 struct ath5k_chan_pcal_info *pcinfo_L;
2764 struct ath5k_chan_pcal_info *pcinfo_R;
2765 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2766 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2767 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2768 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2769 u8 *tmpL;
2770 u8 *tmpR;
2771 u32 target = channel->center_freq;
2772 int pdg, i;
2773
2774 /* Get surounding freq piers for this channel */
2775 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2776 &pcinfo_L,
2777 &pcinfo_R);
2778
2779 /* Loop over pd gain curves on
2780 * surounding freq piers by index */
2781 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2782
2783 /* Fill curves in reverse order
2784 * from lower power (max gain)
2785 * to higher power. Use curve -> idx
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002786 * backmapping we did on eeprom init */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002787 u8 idx = pdg_curve_to_idx[pdg];
2788
2789 /* Grab the needed curves by index */
2790 pdg_L = &pcinfo_L->pd_curves[idx];
2791 pdg_R = &pcinfo_R->pd_curves[idx];
2792
2793 /* Initialize the temp tables */
2794 tmpL = ah->ah_txpower.tmpL[pdg];
2795 tmpR = ah->ah_txpower.tmpR[pdg];
2796
2797 /* Set curve's x boundaries and create
2798 * curves so that they cover the same
2799 * range (if we don't do that one table
2800 * will have values on some range and the
2801 * other one won't have any so interpolation
2802 * will fail) */
2803 table_min[pdg] = min(pdg_L->pd_pwr[0],
2804 pdg_R->pd_pwr[0]) / 2;
2805
2806 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2807 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2808
2809 /* Now create the curves on surrounding channels
2810 * and interpolate if needed to get the final
2811 * curve for this gain on this channel */
2812 switch (type) {
2813 case AR5K_PWRTABLE_LINEAR_PCDAC:
2814 /* Override min/max so that we don't loose
2815 * accuracy (don't divide by 2) */
2816 table_min[pdg] = min(pdg_L->pd_pwr[0],
2817 pdg_R->pd_pwr[0]);
2818
2819 table_max[pdg] =
2820 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2821 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2822
2823 /* Override minimum so that we don't get
2824 * out of bounds while extrapolating
2825 * below. Don't do this when we have 2
2826 * curves and we are on the high power curve
2827 * because table_min is ok in this case */
2828 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2829
2830 table_min[pdg] =
2831 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2832 pdg_R->pd_step,
2833 pdg_L->pd_pwr,
2834 pdg_R->pd_pwr);
2835
2836 /* Don't go too low because we will
2837 * miss the upper part of the curve.
2838 * Note: 126 = 31.5dB (max power supported)
2839 * in 0.25dB units */
2840 if (table_max[pdg] - table_min[pdg] > 126)
2841 table_min[pdg] = table_max[pdg] - 126;
2842 }
2843
2844 /* Fall through */
2845 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2846 case AR5K_PWRTABLE_PWR_TO_PDADC:
2847
2848 ath5k_create_power_curve(table_min[pdg],
2849 table_max[pdg],
2850 pdg_L->pd_pwr,
2851 pdg_L->pd_step,
2852 pdg_L->pd_points, tmpL, type);
2853
2854 /* We are in a calibration
2855 * pier, no need to interpolate
2856 * between freq piers */
2857 if (pcinfo_L == pcinfo_R)
2858 continue;
2859
2860 ath5k_create_power_curve(table_min[pdg],
2861 table_max[pdg],
2862 pdg_R->pd_pwr,
2863 pdg_R->pd_step,
2864 pdg_R->pd_points, tmpR, type);
2865 break;
2866 default:
2867 return -EINVAL;
2868 }
2869
2870 /* Interpolate between curves
2871 * of surounding freq piers to
2872 * get the final curve for this
2873 * pd gain. Re-use tmpL for interpolation
2874 * output */
2875 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2876 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2877 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2878 (s16) pcinfo_L->freq,
2879 (s16) pcinfo_R->freq,
2880 (s16) tmpL[i],
2881 (s16) tmpR[i]);
2882 }
2883 }
2884
2885 /* Now we have a set of curves for this
2886 * channel on tmpL (x range is table_max - table_min
2887 * and y values are tmpL[pdg][]) sorted in the same
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002888 * order as EEPROM (because we've used the backmapping).
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002889 * So for RF5112 it's from higher power to lower power
2890 * and for RF2413 it's from lower power to higher power.
2891 * For RF5111 we only have one curve. */
2892
2893 /* Fill min and max power levels for this
2894 * channel by interpolating the values on
2895 * surounding channels to complete the dataset */
2896 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2897 (s16) pcinfo_L->freq,
2898 (s16) pcinfo_R->freq,
2899 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2900
2901 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2902 (s16) pcinfo_L->freq,
2903 (s16) pcinfo_R->freq,
2904 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2905
2906 /* We are ready to go, fill PCDAC/PDADC
2907 * table and write settings on hardware */
2908 switch (type) {
2909 case AR5K_PWRTABLE_LINEAR_PCDAC:
2910 /* For RF5112 we can have one or two curves
2911 * and each curve covers a certain power lvl
2912 * range so we need to do some more processing */
2913 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2914 ee->ee_pd_gains[ee_mode]);
2915
2916 /* Set txp.offset so that we can
2917 * match max power value with max
2918 * table index */
2919 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2920
2921 /* Write settings on hw */
2922 ath5k_setup_pcdac_table(ah);
2923 break;
2924 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2925 /* We are done for RF5111 since it has only
2926 * one curve, just fit the curve on the table */
2927 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2928
2929 /* No rate powertable adjustment for RF5111 */
2930 ah->ah_txpower.txp_min_idx = 0;
2931 ah->ah_txpower.txp_offset = 0;
2932
2933 /* Write settings on hw */
2934 ath5k_setup_pcdac_table(ah);
2935 break;
2936 case AR5K_PWRTABLE_PWR_TO_PDADC:
2937 /* Set PDADC boundaries and fill
2938 * final PDADC table */
2939 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2940 ee->ee_pd_gains[ee_mode]);
2941
2942 /* Write settings on hw */
2943 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2944
2945 /* Set txp.offset, note that table_min
2946 * can be negative */
2947 ah->ah_txpower.txp_offset = table_min[0];
2948 break;
2949 default:
2950 return -EINVAL;
2951 }
2952
2953 return 0;
2954}
2955
2956
2957/*
2958 * Per-rate tx power setting
2959 *
2960 * This is the code that sets the desired tx power (below
2961 * maximum) on hw for each rate (we also have TPC that sets
2962 * power per packet). We do that by providing an index on the
2963 * PCDAC/PDADC table we set up.
2964 */
2965
2966/*
2967 * Set rate power table
2968 *
2969 * For now we only limit txpower based on maximum tx power
2970 * supported by hw (what's inside rate_info). We need to limit
2971 * this even more, based on regulatory domain etc.
2972 *
2973 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2974 * and is indexed as follows:
2975 * rates[0] - rates[7] -> OFDM rates
2976 * rates[8] - rates[14] -> CCK rates
2977 * rates[15] -> XR rates (they all have the same power)
2978 */
2979static void
2980ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2981 struct ath5k_rate_pcal_info *rate_info,
2982 u8 ee_mode)
2983{
2984 unsigned int i;
2985 u16 *rates;
2986
2987 /* max_pwr is power level we got from driver/user in 0.5dB
2988 * units, switch to 0.25dB units so we can compare */
2989 max_pwr *= 2;
2990 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2991
2992 /* apply rate limits */
2993 rates = ah->ah_txpower.txp_rates_power_table;
2994
2995 /* OFDM rates 6 to 24Mb/s */
2996 for (i = 0; i < 5; i++)
2997 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2998
2999 /* Rest OFDM rates */
3000 rates[5] = min(rates[0], rate_info->target_power_36);
3001 rates[6] = min(rates[0], rate_info->target_power_48);
3002 rates[7] = min(rates[0], rate_info->target_power_54);
3003
3004 /* CCK rates */
3005 /* 1L */
3006 rates[8] = min(rates[0], rate_info->target_power_6to24);
3007 /* 2L */
3008 rates[9] = min(rates[0], rate_info->target_power_36);
3009 /* 2S */
3010 rates[10] = min(rates[0], rate_info->target_power_36);
3011 /* 5L */
3012 rates[11] = min(rates[0], rate_info->target_power_48);
3013 /* 5S */
3014 rates[12] = min(rates[0], rate_info->target_power_48);
3015 /* 11L */
3016 rates[13] = min(rates[0], rate_info->target_power_54);
3017 /* 11S */
3018 rates[14] = min(rates[0], rate_info->target_power_54);
3019
3020 /* XR rates */
3021 rates[15] = min(rates[0], rate_info->target_power_6to24);
3022
3023 /* CCK rates have different peak to average ratio
3024 * so we have to tweak their power so that gainf
3025 * correction works ok. For this we use OFDM to
3026 * CCK delta from eeprom */
3027 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3028 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3029 for (i = 8; i <= 15; i++)
3030 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3031
Nick Kossifidisa0823812009-04-30 15:55:44 -04003032 /* Now that we have all rates setup use table offset to
3033 * match the power range set by user with the power indices
3034 * on PCDAC/PDADC table */
3035 for (i = 0; i < 16; i++) {
3036 rates[i] += ah->ah_txpower.txp_offset;
3037 /* Don't get out of bounds */
3038 if (rates[i] > 63)
3039 rates[i] = 63;
3040 }
3041
3042 /* Min/max in 0.25dB units */
3043 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3044 ah->ah_txpower.txp_max_pwr = 2 * rates[0];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003045 ah->ah_txpower.txp_ofdm = rates[7];
3046}
3047
3048
3049/*
Bob Copeland8801df82010-08-21 16:39:02 -04003050 * Set transmission power
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003051 */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003052static int
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003053ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3054 u8 ee_mode, u8 txpower)
3055{
3056 struct ath5k_rate_pcal_info rate_info;
3057 u8 type;
3058 int ret;
3059
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003060 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3061 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3062 return -EINVAL;
3063 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003064
3065 /* Reset TX power values */
3066 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3067 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3068 ah->ah_txpower.txp_min_pwr = 0;
3069 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3070
3071 /* Initialize TX power table */
3072 switch (ah->ah_radio) {
3073 case AR5K_RF5111:
3074 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3075 break;
3076 case AR5K_RF5112:
3077 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3078 break;
3079 case AR5K_RF2413:
3080 case AR5K_RF5413:
3081 case AR5K_RF2316:
3082 case AR5K_RF2317:
3083 case AR5K_RF2425:
3084 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3085 break;
3086 default:
3087 return -EINVAL;
3088 }
3089
3090 /* FIXME: Only on channel/mode change */
3091 ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3092 if (ret)
3093 return ret;
3094
3095 /* Limit max power if we have a CTL available */
3096 ath5k_get_max_ctl_power(ah, channel);
3097
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003098 /* FIXME: Antenna reduction stuff */
3099
3100 /* FIXME: Limit power on turbo modes */
3101
3102 /* FIXME: TPC scale reduction */
3103
3104 /* Get surounding channels for per-rate power table
3105 * calibration */
3106 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3107
3108 /* Setup rate power table */
3109 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3110
3111 /* Write rate power table on hw */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003112 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3113 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3114 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3115
3116 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3117 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3118 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3119
3120 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3121 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3122 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3123
3124 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3125 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3126 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3127
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003128 /* FIXME: TPC support */
3129 if (ah->ah_txpower.txp_tpc) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003130 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3131 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003132
3133 ath5k_hw_reg_write(ah,
3134 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3135 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3136 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3137 AR5K_TPC);
3138 } else {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003139 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3140 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003141 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003142
3143 return 0;
3144}
3145
Nick Kossifidisa0823812009-04-30 15:55:44 -04003146int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003147{
3148 /*Just a try M.F.*/
Bob Copeland46026e82009-06-10 22:22:20 -04003149 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidisa0823812009-04-30 15:55:44 -04003150 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003151
Nick Kossifidisa0823812009-04-30 15:55:44 -04003152 switch (channel->hw_value & CHANNEL_MODES) {
3153 case CHANNEL_A:
3154 case CHANNEL_T:
3155 case CHANNEL_XR:
3156 ee_mode = AR5K_EEPROM_MODE_11A;
3157 break;
3158 case CHANNEL_G:
3159 case CHANNEL_TG:
3160 ee_mode = AR5K_EEPROM_MODE_11G;
3161 break;
3162 case CHANNEL_B:
3163 ee_mode = AR5K_EEPROM_MODE_11B;
3164 break;
3165 default:
3166 ATH5K_ERR(ah->ah_sc,
3167 "invalid channel: %d\n", channel->center_freq);
3168 return -EINVAL;
3169 }
3170
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003171 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003172 "changing txpower to %d\n", txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003173
Nick Kossifidisa0823812009-04-30 15:55:44 -04003174 return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003175}
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003176
3177/*************\
3178 Init function
3179\*************/
3180
3181int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3182 u8 mode, u8 ee_mode, u8 freq)
3183{
3184 int ret, i;
3185 u32 phy_tst1;
3186
3187 ret = 0;
3188
3189 /*
3190 * 5211/5212 Specific
3191 */
3192 if (ah->ah_version != AR5K_AR5210) {
3193
3194 /*
3195 * Write initial RF gain settings
3196 * This should work for both 5111/5112
3197 */
3198 ret = ath5k_hw_rfgain_init(ah, freq);
3199 if (ret)
3200 return ret;
3201
3202 mdelay(1);
3203
3204 /*
3205 * Set TX power
3206 */
3207 ret = ath5k_hw_txpower(ah, channel, ee_mode,
3208 ah->ah_txpower.txp_max_pwr / 2);
3209 if (ret)
3210 return ret;
3211
3212 /*
3213 * Write RF buffer
3214 */
3215 ret = ath5k_hw_rfregs_init(ah, channel, mode);
3216 if (ret)
3217 return ret;
3218
3219
3220 /* Write OFDM timings on 5212*/
3221 if (ah->ah_version == AR5K_AR5212 &&
3222 channel->hw_value & CHANNEL_OFDM) {
3223
3224 ret = ath5k_hw_write_ofdm_timings(ah, channel);
3225 if (ret)
3226 return ret;
3227
3228 /* Spur info is available only from EEPROM versions
3229 * greater than 5.3, but the EEPROM routines will use
3230 * static values for older versions */
3231 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3232 ath5k_hw_set_spur_mitigation_filter(ah,
3233 channel);
3234 }
3235
3236 /*Enable/disable 802.11b mode on 5111
3237 (enable 2111 frequency converter + CCK)*/
3238 if (ah->ah_radio == AR5K_RF5111) {
3239 if (mode == AR5K_MODE_11B)
3240 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3241 AR5K_TXCFG_B_MODE);
3242 else
3243 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3244 AR5K_TXCFG_B_MODE);
3245 }
3246
3247 } else {
3248 /*
3249 * For 5210 we do all initialization using
3250 * initvals, so we don't have to modify
3251 * any settings (5210 also only supports
3252 * a/aturbo modes)
3253 */
3254 mdelay(1);
3255 /* Disable phy and wait */
3256 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3257 mdelay(1);
3258 }
3259
3260 /* Set channel on PHY */
3261 ret = ath5k_hw_channel(ah, channel);
3262 if (ret)
3263 return ret;
3264
3265 /*
3266 * Enable the PHY and wait until completion
3267 * This includes BaseBand and Synthesizer
3268 * activation.
3269 */
3270 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3271
3272 /*
3273 * On 5211+ read activation -> rx delay
3274 * and use it.
3275 *
3276 * TODO: Half/quarter rate support
3277 */
3278 if (ah->ah_version != AR5K_AR5210) {
3279 u32 delay;
3280 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
3281 AR5K_PHY_RX_DELAY_M;
3282 delay = (channel->hw_value & CHANNEL_CCK) ?
3283 ((delay << 2) / 22) : (delay / 10);
3284
3285 udelay(100 + (2 * delay));
3286 } else {
3287 mdelay(1);
3288 }
3289
3290 /*
3291 * Perform ADC test to see if baseband is ready
3292 * Set TX hold and check ADC test register
3293 */
3294 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3295 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3296 for (i = 0; i <= 20; i++) {
3297 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3298 break;
3299 udelay(200);
3300 }
3301 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3302
3303 /*
3304 * Start automatic gain control calibration
3305 *
3306 * During AGC calibration RX path is re-routed to
3307 * a power detector so we don't receive anything.
3308 *
3309 * This method is used to calibrate some static offsets
3310 * used together with on-the fly I/Q calibration (the
3311 * one performed via ath5k_hw_phy_calibrate), which doesn't
3312 * interrupt rx path.
3313 *
3314 * While rx path is re-routed to the power detector we also
3315 * start a noise floor calibration to measure the
3316 * card's noise floor (the noise we measure when we are not
3317 * transmitting or receiving anything).
3318 *
3319 * If we are in a noisy environment, AGC calibration may time
3320 * out and/or noise floor calibration might timeout.
3321 */
3322 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3323 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3324
3325 /* At the same time start I/Q calibration for QAM constellation
3326 * -no need for CCK- */
3327 ah->ah_calibration = false;
3328 if (!(mode == AR5K_MODE_11B)) {
3329 ah->ah_calibration = true;
3330 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3331 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3332 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3333 AR5K_PHY_IQ_RUN);
3334 }
3335
3336 /* Wait for gain calibration to finish (we check for I/Q calibration
3337 * during ath5k_phy_calibrate) */
3338 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3339 AR5K_PHY_AGCCTL_CAL, 0, false)) {
3340 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3341 channel->center_freq);
3342 }
3343
3344 /* Restore antenna mode */
3345 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3346
3347 return ret;
3348}