Vladislav Zolotarov | 94a78b7 | 2009-04-27 03:27:43 -0700 | [diff] [blame] | 1 | /* bnx2x_init_ops.h: Broadcom Everest network driver. |
| 2 | * Static functions needed during the initialization. |
| 3 | * This file is "included" in bnx2x_main.c. |
| 4 | * |
| 5 | * Copyright (c) 2007-2009 Broadcom Corporation |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation. |
| 10 | * |
| 11 | * Maintained by: Eilon Greenstein <eilong@broadcom.com> |
| 12 | * Written by: Vladislav Zolotarov <vladz@broadcom.com> |
| 13 | */ |
| 14 | #ifndef BNX2X_INIT_OPS_H |
| 15 | #define BNX2X_INIT_OPS_H |
| 16 | |
| 17 | static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val); |
| 18 | static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len); |
| 19 | |
| 20 | static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data, |
| 21 | u32 len) |
| 22 | { |
| 23 | int i; |
| 24 | |
| 25 | for (i = 0; i < len; i++) { |
| 26 | REG_WR(bp, addr + i*4, data[i]); |
| 27 | if (!(i % 10000)) { |
| 28 | touch_softlockup_watchdog(); |
| 29 | cpu_relax(); |
| 30 | } |
| 31 | } |
| 32 | } |
| 33 | |
| 34 | static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data, |
| 35 | u16 len) |
| 36 | { |
| 37 | int i; |
| 38 | |
| 39 | for (i = 0; i < len; i++) { |
| 40 | REG_WR_IND(bp, addr + i*4, data[i]); |
| 41 | if (!(i % 10000)) { |
| 42 | touch_softlockup_watchdog(); |
| 43 | cpu_relax(); |
| 44 | } |
| 45 | } |
| 46 | } |
| 47 | |
| 48 | static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len) |
| 49 | { |
| 50 | int offset = 0; |
| 51 | |
| 52 | if (bp->dmae_ready) { |
| 53 | while (len > DMAE_LEN32_WR_MAX) { |
| 54 | bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, |
| 55 | addr + offset, DMAE_LEN32_WR_MAX); |
| 56 | offset += DMAE_LEN32_WR_MAX * 4; |
| 57 | len -= DMAE_LEN32_WR_MAX; |
| 58 | } |
| 59 | bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, |
| 60 | addr + offset, len); |
| 61 | } else |
| 62 | bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len); |
| 63 | } |
| 64 | |
| 65 | static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) |
| 66 | { |
| 67 | u32 buf_len = (((len * 4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len * 4)); |
| 68 | u32 buf_len32 = buf_len / 4; |
| 69 | int i; |
| 70 | |
| 71 | memset(bp->gunzip_buf, fill, buf_len); |
| 72 | |
| 73 | for (i = 0; i < len; i += buf_len32) { |
| 74 | u32 cur_len = min(buf_len32, len - i); |
| 75 | |
| 76 | bnx2x_write_big_buf(bp, addr + i * 4, cur_len); |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data, |
| 81 | u32 len64) |
| 82 | { |
| 83 | u32 buf_len32 = FW_BUF_SIZE / 4; |
| 84 | u32 len = len64 * 2; |
| 85 | u64 data64 = 0; |
| 86 | int i; |
| 87 | |
| 88 | /* 64 bit value is in a blob: first low DWORD, then high DWORD */ |
| 89 | data64 = HILO_U64((*(data + 1)), (*data)); |
| 90 | len64 = min((u32)(FW_BUF_SIZE/8), len64); |
| 91 | for (i = 0; i < len64; i++) { |
| 92 | u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i; |
| 93 | |
| 94 | *pdata = data64; |
| 95 | } |
| 96 | |
| 97 | for (i = 0; i < len; i += buf_len32) { |
| 98 | u32 cur_len = min(buf_len32, len - i); |
| 99 | |
| 100 | bnx2x_write_big_buf(bp, addr + i * 4, cur_len); |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | /********************************************************* |
| 105 | There are different blobs for each PRAM section. |
| 106 | In addition, each blob write operation is divided into a few operations |
| 107 | in order to decrease the amount of phys. contiguous buffer needed. |
| 108 | Thus, when we select a blob the address may be with some offset |
| 109 | from the beginning of PRAM section. |
| 110 | The same holds for the INT_TABLE sections. |
| 111 | **********************************************************/ |
| 112 | #define IF_IS_INT_TABLE_ADDR(base, addr) \ |
| 113 | if (((base) <= (addr)) && ((base) + 0x400 >= (addr))) |
| 114 | |
| 115 | #define IF_IS_PRAM_ADDR(base, addr) \ |
| 116 | if (((base) <= (addr)) && ((base) + 0x40000 >= (addr))) |
| 117 | |
| 118 | static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data) |
| 119 | { |
| 120 | IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr) |
| 121 | data = bp->tsem_int_table_data; |
| 122 | else IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr) |
| 123 | data = bp->csem_int_table_data; |
| 124 | else IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr) |
| 125 | data = bp->usem_int_table_data; |
| 126 | else IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr) |
| 127 | data = bp->xsem_int_table_data; |
| 128 | else IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr) |
| 129 | data = bp->tsem_pram_data; |
| 130 | else IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr) |
| 131 | data = bp->csem_pram_data; |
| 132 | else IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr) |
| 133 | data = bp->usem_pram_data; |
| 134 | else IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr) |
| 135 | data = bp->xsem_pram_data; |
| 136 | |
| 137 | return data; |
| 138 | } |
| 139 | |
| 140 | static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len) |
| 141 | { |
| 142 | int offset = 0; |
| 143 | |
| 144 | if (bp->dmae_ready) { |
| 145 | while (len > DMAE_LEN32_WR_MAX) { |
| 146 | bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, |
| 147 | addr + offset, DMAE_LEN32_WR_MAX); |
| 148 | offset += DMAE_LEN32_WR_MAX * 4; |
| 149 | len -= DMAE_LEN32_WR_MAX; |
| 150 | } |
| 151 | bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, |
| 152 | addr + offset, len); |
| 153 | } else |
| 154 | bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len); |
| 155 | } |
| 156 | |
| 157 | static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data, |
| 158 | u32 len) |
| 159 | { |
| 160 | /* This is needed for NO_ZIP mode, currently supported |
| 161 | in little endian mode only */ |
| 162 | data = (const u32*)bnx2x_sel_blob(bp, addr, (const u8*)data); |
| 163 | |
| 164 | if ((len * 4) > FW_BUF_SIZE) { |
| 165 | BNX2X_ERR("LARGE DMAE OPERATION ! " |
| 166 | "addr 0x%x len 0x%x\n", addr, len*4); |
| 167 | return; |
| 168 | } |
| 169 | memcpy(bp->gunzip_buf, data, len * 4); |
| 170 | |
| 171 | bnx2x_write_big_buf_wb(bp, addr, len); |
| 172 | } |
| 173 | |
| 174 | static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, |
| 175 | u32 len, u32 blob_off) |
| 176 | { |
| 177 | int rc, i; |
| 178 | const u8 *data = NULL; |
| 179 | |
| 180 | data = bnx2x_sel_blob(bp, addr, data) + 4*blob_off; |
| 181 | |
| 182 | if (data == NULL) { |
| 183 | panic("Blob not found for addr 0x%x\n", addr); |
| 184 | return; |
| 185 | } |
| 186 | |
| 187 | rc = bnx2x_gunzip(bp, data, len); |
| 188 | if (rc) { |
| 189 | BNX2X_ERR("gunzip failed ! addr 0x%x rc %d\n", addr, rc); |
| 190 | BNX2X_ERR("blob_offset=0x%x\n", blob_off); |
| 191 | return; |
| 192 | } |
| 193 | |
| 194 | /* gunzip_outlen is in dwords */ |
| 195 | len = bp->gunzip_outlen; |
| 196 | for (i = 0; i < len; i++) |
| 197 | ((u32 *)bp->gunzip_buf)[i] = |
| 198 | cpu_to_le32(((u32 *)bp->gunzip_buf)[i]); |
| 199 | |
| 200 | bnx2x_write_big_buf_wb(bp, addr, len); |
| 201 | } |
| 202 | |
| 203 | static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage) |
| 204 | { |
| 205 | int hw_wr, i; |
| 206 | u16 op_start = |
| 207 | bp->init_ops_offsets[BLOCK_OPS_IDX(block,stage,STAGE_START)]; |
| 208 | u16 op_end = |
| 209 | bp->init_ops_offsets[BLOCK_OPS_IDX(block,stage,STAGE_END)]; |
| 210 | union init_op *op; |
| 211 | u32 op_type, addr, len; |
| 212 | const u32 *data, *data_base; |
| 213 | |
| 214 | /* If empty block */ |
| 215 | if (op_start == op_end) |
| 216 | return; |
| 217 | |
| 218 | if (CHIP_REV_IS_FPGA(bp)) |
| 219 | hw_wr = OP_WR_FPGA; |
| 220 | else if (CHIP_REV_IS_EMUL(bp)) |
| 221 | hw_wr = OP_WR_EMUL; |
| 222 | else |
| 223 | hw_wr = OP_WR_ASIC; |
| 224 | |
| 225 | data_base = bp->init_data; |
| 226 | |
| 227 | for (i = op_start; i < op_end; i++) { |
| 228 | |
| 229 | op = (union init_op *)&(bp->init_ops[i]); |
| 230 | |
| 231 | op_type = op->str_wr.op; |
| 232 | addr = op->str_wr.offset; |
| 233 | len = op->str_wr.data_len; |
| 234 | data = data_base + op->str_wr.data_off; |
| 235 | |
| 236 | /* HW/EMUL specific */ |
| 237 | if (unlikely((op_type > OP_WB) && (op_type == hw_wr))) |
| 238 | op_type = OP_WR; |
| 239 | |
| 240 | switch (op_type) { |
| 241 | case OP_RD: |
| 242 | REG_RD(bp, addr); |
| 243 | break; |
| 244 | case OP_WR: |
| 245 | REG_WR(bp, addr, op->write.val); |
| 246 | break; |
| 247 | case OP_SW: |
| 248 | bnx2x_init_str_wr(bp, addr, data, len); |
| 249 | break; |
| 250 | case OP_WB: |
| 251 | bnx2x_init_wr_wb(bp, addr, data, len); |
| 252 | break; |
| 253 | case OP_SI: |
| 254 | bnx2x_init_ind_wr(bp, addr, data, len); |
| 255 | break; |
| 256 | case OP_ZR: |
| 257 | bnx2x_init_fill(bp, addr, 0, op->zero.len); |
| 258 | break; |
| 259 | case OP_ZP: |
| 260 | bnx2x_init_wr_zp(bp, addr, len, |
| 261 | op->str_wr.data_off); |
| 262 | break; |
| 263 | case OP_WR_64: |
| 264 | bnx2x_init_wr_64(bp, addr, data, len); |
| 265 | break; |
| 266 | default: |
| 267 | /* happens whenever an op is of a diff HW */ |
| 268 | #if 0 |
| 269 | DP(NETIF_MSG_HW, "skipping init operation " |
| 270 | "index %d[%d:%d]: type %d addr 0x%x " |
| 271 | "len %d(0x%x)\n", |
| 272 | i, op_start, op_end, op_type, addr, len, len); |
| 273 | #endif |
| 274 | break; |
| 275 | } |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | /* PXP */ |
| 280 | static void bnx2x_init_pxp(struct bnx2x *bp) |
| 281 | { |
| 282 | u16 devctl; |
| 283 | int r_order, w_order; |
| 284 | u32 val, i; |
| 285 | |
| 286 | pci_read_config_word(bp->pdev, |
| 287 | bp->pcie_cap + PCI_EXP_DEVCTL, &devctl); |
| 288 | DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); |
| 289 | w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); |
| 290 | if (bp->mrrs == -1) |
| 291 | r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); |
| 292 | else { |
| 293 | DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); |
| 294 | r_order = bp->mrrs; |
| 295 | } |
| 296 | |
| 297 | if (r_order > MAX_RD_ORD) { |
| 298 | DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n", |
| 299 | r_order, MAX_RD_ORD); |
| 300 | r_order = MAX_RD_ORD; |
| 301 | } |
| 302 | if (w_order > MAX_WR_ORD) { |
| 303 | DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n", |
| 304 | w_order, MAX_WR_ORD); |
| 305 | w_order = MAX_WR_ORD; |
| 306 | } |
| 307 | if (CHIP_REV_IS_FPGA(bp)) { |
| 308 | DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n"); |
| 309 | w_order = 0; |
| 310 | } |
| 311 | DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order); |
| 312 | |
| 313 | for (i = 0; i < NUM_RD_Q-1; i++) { |
| 314 | REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l); |
| 315 | REG_WR(bp, read_arb_addr[i].add, |
| 316 | read_arb_data[i][r_order].add); |
| 317 | REG_WR(bp, read_arb_addr[i].ubound, |
| 318 | read_arb_data[i][r_order].ubound); |
| 319 | } |
| 320 | |
| 321 | for (i = 0; i < NUM_WR_Q-1; i++) { |
| 322 | if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || |
| 323 | (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { |
| 324 | |
| 325 | REG_WR(bp, write_arb_addr[i].l, |
| 326 | write_arb_data[i][w_order].l); |
| 327 | |
| 328 | REG_WR(bp, write_arb_addr[i].add, |
| 329 | write_arb_data[i][w_order].add); |
| 330 | |
| 331 | REG_WR(bp, write_arb_addr[i].ubound, |
| 332 | write_arb_data[i][w_order].ubound); |
| 333 | } else { |
| 334 | |
| 335 | val = REG_RD(bp, write_arb_addr[i].l); |
| 336 | REG_WR(bp, write_arb_addr[i].l, |
| 337 | val | (write_arb_data[i][w_order].l << 10)); |
| 338 | |
| 339 | val = REG_RD(bp, write_arb_addr[i].add); |
| 340 | REG_WR(bp, write_arb_addr[i].add, |
| 341 | val | (write_arb_data[i][w_order].add << 10)); |
| 342 | |
| 343 | val = REG_RD(bp, write_arb_addr[i].ubound); |
| 344 | REG_WR(bp, write_arb_addr[i].ubound, |
| 345 | val | (write_arb_data[i][w_order].ubound << 7)); |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | val = write_arb_data[NUM_WR_Q-1][w_order].add; |
| 350 | val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; |
| 351 | val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; |
| 352 | REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val); |
| 353 | |
| 354 | val = read_arb_data[NUM_RD_Q-1][r_order].add; |
| 355 | val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; |
| 356 | val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; |
| 357 | REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val); |
| 358 | |
| 359 | REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order); |
| 360 | REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order); |
| 361 | REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order); |
| 362 | REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order); |
| 363 | |
| 364 | if (r_order == MAX_RD_ORD) |
| 365 | REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00); |
| 366 | |
| 367 | REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); |
| 368 | |
| 369 | if (CHIP_IS_E1H(bp)) { |
| 370 | val = ((w_order == 0) ? 2 : 3); |
| 371 | REG_WR(bp, PXP2_REG_WR_HC_MPS, val); |
| 372 | REG_WR(bp, PXP2_REG_WR_USDM_MPS, val); |
| 373 | REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val); |
| 374 | REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val); |
| 375 | REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val); |
| 376 | REG_WR(bp, PXP2_REG_WR_QM_MPS, val); |
| 377 | REG_WR(bp, PXP2_REG_WR_TM_MPS, val); |
| 378 | REG_WR(bp, PXP2_REG_WR_SRC_MPS, val); |
| 379 | REG_WR(bp, PXP2_REG_WR_DBG_MPS, val); |
| 380 | REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */ |
| 381 | REG_WR(bp, PXP2_REG_WR_CDU_MPS, val); |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | /***************************************************************************** |
| 386 | * Description: |
| 387 | * Calculates crc 8 on a word value: polynomial 0-1-2-8 |
| 388 | * Code was translated from Verilog. |
| 389 | ****************************************************************************/ |
| 390 | static u8 calc_crc8(u32 data, u8 crc) |
| 391 | { |
| 392 | u8 D[32]; |
| 393 | u8 NewCRC[8]; |
| 394 | u8 C[8]; |
| 395 | u8 crc_res; |
| 396 | u8 i; |
| 397 | |
| 398 | /* split the data into 31 bits */ |
| 399 | for (i = 0; i < 32; i++) { |
| 400 | D[i] = data & 1; |
| 401 | data = data >> 1; |
| 402 | } |
| 403 | |
| 404 | /* split the crc into 8 bits */ |
| 405 | for (i = 0; i < 8; i++) { |
| 406 | C[i] = crc & 1; |
| 407 | crc = crc >> 1; |
| 408 | } |
| 409 | |
| 410 | NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^ |
| 411 | D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^ |
| 412 | C[6] ^ C[7]; |
| 413 | NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^ |
| 414 | D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^ |
| 415 | D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6]; |
| 416 | NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^ |
| 417 | D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^ |
| 418 | C[0] ^ C[1] ^ C[4] ^ C[5]; |
| 419 | NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^ |
| 420 | D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^ |
| 421 | C[1] ^ C[2] ^ C[5] ^ C[6]; |
| 422 | NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^ |
| 423 | D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^ |
| 424 | C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7]; |
| 425 | NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^ |
| 426 | D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^ |
| 427 | C[3] ^ C[4] ^ C[7]; |
| 428 | NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^ |
| 429 | D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^ |
| 430 | C[5]; |
| 431 | NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^ |
| 432 | D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^ |
| 433 | C[6]; |
| 434 | |
| 435 | crc_res = 0; |
| 436 | for (i = 0; i < 8; i++) |
| 437 | crc_res |= (NewCRC[i] << i); |
| 438 | |
| 439 | return crc_res; |
| 440 | } |
| 441 | |
| 442 | #endif /* BNX2X_INIT_OPS_H */ |