Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #ifndef _M68K_DMA_H |
| 2 | #define _M68K_DMA_H 1 |
| 3 | |
| 4 | //#define DMA_DEBUG 1 |
| 5 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6 | |
| 7 | #ifdef CONFIG_COLDFIRE |
| 8 | /* |
| 9 | * ColdFire DMA Model: |
| 10 | * ColdFire DMA supports two forms of DMA: Single and Dual address. Single |
| 11 | * address mode emits a source address, and expects that the device will either |
| 12 | * pick up the data (DMA READ) or source data (DMA WRITE). This implies that |
| 13 | * the device will place data on the correct byte(s) of the data bus, as the |
| 14 | * memory transactions are always 32 bits. This implies that only 32 bit |
| 15 | * devices will find single mode transfers useful. Dual address DMA mode |
| 16 | * performs two cycles: source read and destination write. ColdFire will |
| 17 | * align the data so that the device will always get the correct bytes, thus |
| 18 | * is useful for 8 and 16 bit devices. This is the mode that is supported |
| 19 | * below. |
| 20 | * |
| 21 | * AUG/22/2000 : added support for 32-bit Dual-Address-Mode (K) 2000 |
| 22 | * Oliver Kamphenkel (O.Kamphenkel@tu-bs.de) |
| 23 | * |
| 24 | * AUG/25/2000 : addad support for 8, 16 and 32-bit Single-Address-Mode (K)2000 |
| 25 | * Oliver Kamphenkel (O.Kamphenkel@tu-bs.de) |
| 26 | * |
| 27 | * APR/18/2002 : added proper support for MCF5272 DMA controller. |
| 28 | * Arthur Shipkowski (art@videon-central.com) |
| 29 | */ |
| 30 | |
| 31 | #include <asm/coldfire.h> |
| 32 | #include <asm/mcfsim.h> |
| 33 | #include <asm/mcfdma.h> |
| 34 | |
| 35 | /* |
| 36 | * Set number of channels of DMA on ColdFire for different implementations. |
| 37 | */ |
Sebastian Siewior | 6cca491 | 2008-05-01 12:17:36 +1000 | [diff] [blame] | 38 | #if defined(CONFIG_M5249) || defined(CONFIG_M5307) || defined(CONFIG_M5407) || \ |
| 39 | defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 40 | #define MAX_M68K_DMA_CHANNELS 4 |
| 41 | #elif defined(CONFIG_M5272) |
| 42 | #define MAX_M68K_DMA_CHANNELS 1 |
Greg Ungerer | ee8c8ad | 2007-10-24 12:04:08 +1000 | [diff] [blame] | 43 | #elif defined(CONFIG_M532x) |
| 44 | #define MAX_M68K_DMA_CHANNELS 0 |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 45 | #else |
| 46 | #define MAX_M68K_DMA_CHANNELS 2 |
| 47 | #endif |
| 48 | |
| 49 | extern unsigned int dma_base_addr[MAX_M68K_DMA_CHANNELS]; |
| 50 | extern unsigned int dma_device_address[MAX_M68K_DMA_CHANNELS]; |
| 51 | |
| 52 | #if !defined(CONFIG_M5272) |
| 53 | #define DMA_MODE_WRITE_BIT 0x01 /* Memory/IO to IO/Memory select */ |
| 54 | #define DMA_MODE_WORD_BIT 0x02 /* 8 or 16 bit transfers */ |
| 55 | #define DMA_MODE_LONG_BIT 0x04 /* or 32 bit transfers */ |
| 56 | #define DMA_MODE_SINGLE_BIT 0x08 /* single-address-mode */ |
| 57 | |
| 58 | /* I/O to memory, 8 bits, mode */ |
| 59 | #define DMA_MODE_READ 0 |
| 60 | /* memory to I/O, 8 bits, mode */ |
| 61 | #define DMA_MODE_WRITE 1 |
| 62 | /* I/O to memory, 16 bits, mode */ |
| 63 | #define DMA_MODE_READ_WORD 2 |
| 64 | /* memory to I/O, 16 bits, mode */ |
| 65 | #define DMA_MODE_WRITE_WORD 3 |
| 66 | /* I/O to memory, 32 bits, mode */ |
| 67 | #define DMA_MODE_READ_LONG 4 |
| 68 | /* memory to I/O, 32 bits, mode */ |
| 69 | #define DMA_MODE_WRITE_LONG 5 |
| 70 | /* I/O to memory, 8 bits, single-address-mode */ |
| 71 | #define DMA_MODE_READ_SINGLE 8 |
| 72 | /* memory to I/O, 8 bits, single-address-mode */ |
| 73 | #define DMA_MODE_WRITE_SINGLE 9 |
| 74 | /* I/O to memory, 16 bits, single-address-mode */ |
| 75 | #define DMA_MODE_READ_WORD_SINGLE 10 |
| 76 | /* memory to I/O, 16 bits, single-address-mode */ |
| 77 | #define DMA_MODE_WRITE_WORD_SINGLE 11 |
| 78 | /* I/O to memory, 32 bits, single-address-mode */ |
| 79 | #define DMA_MODE_READ_LONG_SINGLE 12 |
| 80 | /* memory to I/O, 32 bits, single-address-mode */ |
| 81 | #define DMA_MODE_WRITE_LONG_SINGLE 13 |
| 82 | |
| 83 | #else /* CONFIG_M5272 is defined */ |
| 84 | |
| 85 | /* Source static-address mode */ |
| 86 | #define DMA_MODE_SRC_SA_BIT 0x01 |
| 87 | /* Two bits to select between all four modes */ |
| 88 | #define DMA_MODE_SSIZE_MASK 0x06 |
| 89 | /* Offset to shift bits in */ |
| 90 | #define DMA_MODE_SSIZE_OFF 0x01 |
| 91 | /* Destination static-address mode */ |
| 92 | #define DMA_MODE_DES_SA_BIT 0x10 |
| 93 | /* Two bits to select between all four modes */ |
| 94 | #define DMA_MODE_DSIZE_MASK 0x60 |
| 95 | /* Offset to shift bits in */ |
| 96 | #define DMA_MODE_DSIZE_OFF 0x05 |
| 97 | /* Size modifiers */ |
| 98 | #define DMA_MODE_SIZE_LONG 0x00 |
| 99 | #define DMA_MODE_SIZE_BYTE 0x01 |
| 100 | #define DMA_MODE_SIZE_WORD 0x02 |
| 101 | #define DMA_MODE_SIZE_LINE 0x03 |
| 102 | |
| 103 | /* |
| 104 | * Aliases to help speed quick ports; these may be suboptimal, however. They |
| 105 | * do not include the SINGLE mode modifiers since the MCF5272 does not have a |
| 106 | * mode where the device is in control of its addressing. |
| 107 | */ |
| 108 | |
| 109 | /* I/O to memory, 8 bits, mode */ |
| 110 | #define DMA_MODE_READ ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT) |
| 111 | /* memory to I/O, 8 bits, mode */ |
| 112 | #define DMA_MODE_WRITE ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT) |
| 113 | /* I/O to memory, 16 bits, mode */ |
| 114 | #define DMA_MODE_READ_WORD ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT) |
| 115 | /* memory to I/O, 16 bits, mode */ |
| 116 | #define DMA_MODE_WRITE_WORD ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT) |
| 117 | /* I/O to memory, 32 bits, mode */ |
| 118 | #define DMA_MODE_READ_LONG ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT) |
| 119 | /* memory to I/O, 32 bits, mode */ |
| 120 | #define DMA_MODE_WRITE_LONG ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT) |
| 121 | |
| 122 | #endif /* !defined(CONFIG_M5272) */ |
| 123 | |
| 124 | #if !defined(CONFIG_M5272) |
| 125 | /* enable/disable a specific DMA channel */ |
| 126 | static __inline__ void enable_dma(unsigned int dmanr) |
| 127 | { |
| 128 | volatile unsigned short *dmawp; |
| 129 | |
| 130 | #ifdef DMA_DEBUG |
| 131 | printk("enable_dma(dmanr=%d)\n", dmanr); |
| 132 | #endif |
| 133 | |
| 134 | dmawp = (unsigned short *) dma_base_addr[dmanr]; |
| 135 | dmawp[MCFDMA_DCR] |= MCFDMA_DCR_EEXT; |
| 136 | } |
| 137 | |
| 138 | static __inline__ void disable_dma(unsigned int dmanr) |
| 139 | { |
| 140 | volatile unsigned short *dmawp; |
| 141 | volatile unsigned char *dmapb; |
| 142 | |
| 143 | #ifdef DMA_DEBUG |
| 144 | printk("disable_dma(dmanr=%d)\n", dmanr); |
| 145 | #endif |
| 146 | |
| 147 | dmawp = (unsigned short *) dma_base_addr[dmanr]; |
| 148 | dmapb = (unsigned char *) dma_base_addr[dmanr]; |
| 149 | |
| 150 | /* Turn off external requests, and stop any DMA in progress */ |
| 151 | dmawp[MCFDMA_DCR] &= ~MCFDMA_DCR_EEXT; |
| 152 | dmapb[MCFDMA_DSR] = MCFDMA_DSR_DONE; |
| 153 | } |
| 154 | |
| 155 | /* |
| 156 | * Clear the 'DMA Pointer Flip Flop'. |
| 157 | * Write 0 for LSB/MSB, 1 for MSB/LSB access. |
| 158 | * Use this once to initialize the FF to a known state. |
| 159 | * After that, keep track of it. :-) |
| 160 | * --- In order to do that, the DMA routines below should --- |
| 161 | * --- only be used while interrupts are disabled! --- |
| 162 | * |
| 163 | * This is a NOP for ColdFire. Provide a stub for compatibility. |
| 164 | */ |
| 165 | static __inline__ void clear_dma_ff(unsigned int dmanr) |
| 166 | { |
| 167 | } |
| 168 | |
| 169 | /* set mode (above) for a specific DMA channel */ |
| 170 | static __inline__ void set_dma_mode(unsigned int dmanr, char mode) |
| 171 | { |
| 172 | |
| 173 | volatile unsigned char *dmabp; |
| 174 | volatile unsigned short *dmawp; |
| 175 | |
| 176 | #ifdef DMA_DEBUG |
| 177 | printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode); |
| 178 | #endif |
| 179 | |
| 180 | dmabp = (unsigned char *) dma_base_addr[dmanr]; |
| 181 | dmawp = (unsigned short *) dma_base_addr[dmanr]; |
| 182 | |
| 183 | // Clear config errors |
| 184 | dmabp[MCFDMA_DSR] = MCFDMA_DSR_DONE; |
| 185 | |
| 186 | // Set command register |
| 187 | dmawp[MCFDMA_DCR] = |
| 188 | MCFDMA_DCR_INT | // Enable completion irq |
| 189 | MCFDMA_DCR_CS | // Force one xfer per request |
| 190 | MCFDMA_DCR_AA | // Enable auto alignment |
| 191 | // single-address-mode |
| 192 | ((mode & DMA_MODE_SINGLE_BIT) ? MCFDMA_DCR_SAA : 0) | |
| 193 | // sets s_rw (-> r/w) high if Memory to I/0 |
| 194 | ((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_S_RW : 0) | |
| 195 | // Memory to I/O or I/O to Memory |
| 196 | ((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_SINC : MCFDMA_DCR_DINC) | |
| 197 | // 32 bit, 16 bit or 8 bit transfers |
| 198 | ((mode & DMA_MODE_WORD_BIT) ? MCFDMA_DCR_SSIZE_WORD : |
| 199 | ((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_SSIZE_LONG : |
| 200 | MCFDMA_DCR_SSIZE_BYTE)) | |
| 201 | ((mode & DMA_MODE_WORD_BIT) ? MCFDMA_DCR_DSIZE_WORD : |
| 202 | ((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_DSIZE_LONG : |
| 203 | MCFDMA_DCR_DSIZE_BYTE)); |
| 204 | |
| 205 | #ifdef DEBUG_DMA |
| 206 | printk("%s(%d): dmanr=%d DSR[%x]=%x DCR[%x]=%x\n", __FILE__, __LINE__, |
| 207 | dmanr, (int) &dmabp[MCFDMA_DSR], dmabp[MCFDMA_DSR], |
| 208 | (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR]); |
| 209 | #endif |
| 210 | } |
| 211 | |
| 212 | /* Set transfer address for specific DMA channel */ |
| 213 | static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a) |
| 214 | { |
| 215 | volatile unsigned short *dmawp; |
| 216 | volatile unsigned int *dmalp; |
| 217 | |
| 218 | #ifdef DMA_DEBUG |
| 219 | printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a); |
| 220 | #endif |
| 221 | |
| 222 | dmawp = (unsigned short *) dma_base_addr[dmanr]; |
| 223 | dmalp = (unsigned int *) dma_base_addr[dmanr]; |
| 224 | |
| 225 | // Determine which address registers are used for memory/device accesses |
| 226 | if (dmawp[MCFDMA_DCR] & MCFDMA_DCR_SINC) { |
| 227 | // Source incrementing, must be memory |
| 228 | dmalp[MCFDMA_SAR] = a; |
| 229 | // Set dest address, must be device |
| 230 | dmalp[MCFDMA_DAR] = dma_device_address[dmanr]; |
| 231 | } else { |
| 232 | // Destination incrementing, must be memory |
| 233 | dmalp[MCFDMA_DAR] = a; |
| 234 | // Set source address, must be device |
| 235 | dmalp[MCFDMA_SAR] = dma_device_address[dmanr]; |
| 236 | } |
| 237 | |
| 238 | #ifdef DEBUG_DMA |
| 239 | printk("%s(%d): dmanr=%d DCR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n", |
| 240 | __FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR], |
| 241 | (int) &dmalp[MCFDMA_SAR], dmalp[MCFDMA_SAR], |
| 242 | (int) &dmalp[MCFDMA_DAR], dmalp[MCFDMA_DAR]); |
| 243 | #endif |
| 244 | } |
| 245 | |
| 246 | /* |
| 247 | * Specific for Coldfire - sets device address. |
| 248 | * Should be called after the mode set call, and before set DMA address. |
| 249 | */ |
| 250 | static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a) |
| 251 | { |
| 252 | #ifdef DMA_DEBUG |
| 253 | printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a); |
| 254 | #endif |
| 255 | |
| 256 | dma_device_address[dmanr] = a; |
| 257 | } |
| 258 | |
| 259 | /* |
| 260 | * NOTE 2: "count" represents _bytes_. |
| 261 | */ |
| 262 | static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count) |
| 263 | { |
| 264 | volatile unsigned short *dmawp; |
| 265 | |
| 266 | #ifdef DMA_DEBUG |
| 267 | printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count); |
| 268 | #endif |
| 269 | |
| 270 | dmawp = (unsigned short *) dma_base_addr[dmanr]; |
| 271 | dmawp[MCFDMA_BCR] = (unsigned short)count; |
| 272 | } |
| 273 | |
| 274 | /* |
| 275 | * Get DMA residue count. After a DMA transfer, this |
| 276 | * should return zero. Reading this while a DMA transfer is |
| 277 | * still in progress will return unpredictable results. |
| 278 | * Otherwise, it returns the number of _bytes_ left to transfer. |
| 279 | */ |
| 280 | static __inline__ int get_dma_residue(unsigned int dmanr) |
| 281 | { |
| 282 | volatile unsigned short *dmawp; |
| 283 | unsigned short count; |
| 284 | |
| 285 | #ifdef DMA_DEBUG |
| 286 | printk("get_dma_residue(dmanr=%d)\n", dmanr); |
| 287 | #endif |
| 288 | |
| 289 | dmawp = (unsigned short *) dma_base_addr[dmanr]; |
| 290 | count = dmawp[MCFDMA_BCR]; |
| 291 | return((int) count); |
| 292 | } |
| 293 | #else /* CONFIG_M5272 is defined */ |
| 294 | |
| 295 | /* |
| 296 | * The MCF5272 DMA controller is very different than the controller defined above |
| 297 | * in terms of register mapping. For instance, with the exception of the 16-bit |
| 298 | * interrupt register (IRQ#85, for reference), all of the registers are 32-bit. |
| 299 | * |
| 300 | * The big difference, however, is the lack of device-requested DMA. All modes |
| 301 | * are dual address transfer, and there is no 'device' setup or direction bit. |
| 302 | * You can DMA between a device and memory, between memory and memory, or even between |
| 303 | * two devices directly, with any combination of incrementing and non-incrementing |
| 304 | * addresses you choose. This puts a crimp in distinguishing between the 'device |
| 305 | * address' set up by set_dma_device_addr. |
| 306 | * |
| 307 | * Therefore, there are two options. One is to use set_dma_addr and set_dma_device_addr, |
| 308 | * which will act exactly as above in -- it will look to see if the source is set to |
| 309 | * autoincrement, and if so it will make the source use the set_dma_addr value and the |
| 310 | * destination the set_dma_device_addr value. Otherwise the source will be set to the |
| 311 | * set_dma_device_addr value and the destination will get the set_dma_addr value. |
| 312 | * |
| 313 | * The other is to use the provided set_dma_src_addr and set_dma_dest_addr functions |
| 314 | * and make it explicit. Depending on what you're doing, one of these two should work |
| 315 | * for you, but don't mix them in the same transfer setup. |
| 316 | */ |
| 317 | |
| 318 | /* enable/disable a specific DMA channel */ |
| 319 | static __inline__ void enable_dma(unsigned int dmanr) |
| 320 | { |
| 321 | volatile unsigned int *dmalp; |
| 322 | |
| 323 | #ifdef DMA_DEBUG |
| 324 | printk("enable_dma(dmanr=%d)\n", dmanr); |
| 325 | #endif |
| 326 | |
| 327 | dmalp = (unsigned int *) dma_base_addr[dmanr]; |
| 328 | dmalp[MCFDMA_DMR] |= MCFDMA_DMR_EN; |
| 329 | } |
| 330 | |
| 331 | static __inline__ void disable_dma(unsigned int dmanr) |
| 332 | { |
| 333 | volatile unsigned int *dmalp; |
| 334 | |
| 335 | #ifdef DMA_DEBUG |
| 336 | printk("disable_dma(dmanr=%d)\n", dmanr); |
| 337 | #endif |
| 338 | |
| 339 | dmalp = (unsigned int *) dma_base_addr[dmanr]; |
| 340 | |
| 341 | /* Turn off external requests, and stop any DMA in progress */ |
| 342 | dmalp[MCFDMA_DMR] &= ~MCFDMA_DMR_EN; |
| 343 | dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET; |
| 344 | } |
| 345 | |
| 346 | /* |
| 347 | * Clear the 'DMA Pointer Flip Flop'. |
| 348 | * Write 0 for LSB/MSB, 1 for MSB/LSB access. |
| 349 | * Use this once to initialize the FF to a known state. |
| 350 | * After that, keep track of it. :-) |
| 351 | * --- In order to do that, the DMA routines below should --- |
| 352 | * --- only be used while interrupts are disabled! --- |
| 353 | * |
| 354 | * This is a NOP for ColdFire. Provide a stub for compatibility. |
| 355 | */ |
| 356 | static __inline__ void clear_dma_ff(unsigned int dmanr) |
| 357 | { |
| 358 | } |
| 359 | |
| 360 | /* set mode (above) for a specific DMA channel */ |
| 361 | static __inline__ void set_dma_mode(unsigned int dmanr, char mode) |
| 362 | { |
| 363 | |
| 364 | volatile unsigned int *dmalp; |
| 365 | volatile unsigned short *dmawp; |
| 366 | |
| 367 | #ifdef DMA_DEBUG |
| 368 | printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode); |
| 369 | #endif |
| 370 | dmalp = (unsigned int *) dma_base_addr[dmanr]; |
| 371 | dmawp = (unsigned short *) dma_base_addr[dmanr]; |
| 372 | |
| 373 | // Clear config errors |
| 374 | dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET; |
| 375 | |
| 376 | // Set command register |
| 377 | dmalp[MCFDMA_DMR] = |
| 378 | MCFDMA_DMR_RQM_DUAL | // Mandatory Request Mode setting |
| 379 | MCFDMA_DMR_DSTT_SD | // Set up addressing types; set to supervisor-data. |
| 380 | MCFDMA_DMR_SRCT_SD | // Set up addressing types; set to supervisor-data. |
| 381 | // source static-address-mode |
| 382 | ((mode & DMA_MODE_SRC_SA_BIT) ? MCFDMA_DMR_SRCM_SA : MCFDMA_DMR_SRCM_IA) | |
| 383 | // dest static-address-mode |
| 384 | ((mode & DMA_MODE_DES_SA_BIT) ? MCFDMA_DMR_DSTM_SA : MCFDMA_DMR_DSTM_IA) | |
| 385 | // burst, 32 bit, 16 bit or 8 bit transfers are separately configurable on the MCF5272 |
| 386 | (((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_DSTS_OFF) | |
| 387 | (((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_SRCS_OFF); |
| 388 | |
| 389 | dmawp[MCFDMA_DIR] |= MCFDMA_DIR_ASCEN; /* Enable completion interrupts */ |
| 390 | |
| 391 | #ifdef DEBUG_DMA |
| 392 | printk("%s(%d): dmanr=%d DMR[%x]=%x DIR[%x]=%x\n", __FILE__, __LINE__, |
| 393 | dmanr, (int) &dmalp[MCFDMA_DMR], dmabp[MCFDMA_DMR], |
| 394 | (int) &dmawp[MCFDMA_DIR], dmawp[MCFDMA_DIR]); |
| 395 | #endif |
| 396 | } |
| 397 | |
| 398 | /* Set transfer address for specific DMA channel */ |
| 399 | static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a) |
| 400 | { |
| 401 | volatile unsigned int *dmalp; |
| 402 | |
| 403 | #ifdef DMA_DEBUG |
| 404 | printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a); |
| 405 | #endif |
| 406 | |
| 407 | dmalp = (unsigned int *) dma_base_addr[dmanr]; |
| 408 | |
| 409 | // Determine which address registers are used for memory/device accesses |
| 410 | if (dmalp[MCFDMA_DMR] & MCFDMA_DMR_SRCM) { |
| 411 | // Source incrementing, must be memory |
| 412 | dmalp[MCFDMA_DSAR] = a; |
| 413 | // Set dest address, must be device |
| 414 | dmalp[MCFDMA_DDAR] = dma_device_address[dmanr]; |
| 415 | } else { |
| 416 | // Destination incrementing, must be memory |
| 417 | dmalp[MCFDMA_DDAR] = a; |
| 418 | // Set source address, must be device |
| 419 | dmalp[MCFDMA_DSAR] = dma_device_address[dmanr]; |
| 420 | } |
| 421 | |
| 422 | #ifdef DEBUG_DMA |
| 423 | printk("%s(%d): dmanr=%d DMR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n", |
| 424 | __FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DMR], dmawp[MCFDMA_DMR], |
| 425 | (int) &dmalp[MCFDMA_DSAR], dmalp[MCFDMA_DSAR], |
| 426 | (int) &dmalp[MCFDMA_DDAR], dmalp[MCFDMA_DDAR]); |
| 427 | #endif |
| 428 | } |
| 429 | |
| 430 | /* |
| 431 | * Specific for Coldfire - sets device address. |
| 432 | * Should be called after the mode set call, and before set DMA address. |
| 433 | */ |
| 434 | static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a) |
| 435 | { |
| 436 | #ifdef DMA_DEBUG |
| 437 | printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a); |
| 438 | #endif |
| 439 | |
| 440 | dma_device_address[dmanr] = a; |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * NOTE 2: "count" represents _bytes_. |
| 445 | * |
| 446 | * NOTE 3: While a 32-bit register, "count" is only a maximum 24-bit value. |
| 447 | */ |
| 448 | static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count) |
| 449 | { |
| 450 | volatile unsigned int *dmalp; |
| 451 | |
| 452 | #ifdef DMA_DEBUG |
| 453 | printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count); |
| 454 | #endif |
| 455 | |
| 456 | dmalp = (unsigned int *) dma_base_addr[dmanr]; |
| 457 | dmalp[MCFDMA_DBCR] = count; |
| 458 | } |
| 459 | |
| 460 | /* |
| 461 | * Get DMA residue count. After a DMA transfer, this |
| 462 | * should return zero. Reading this while a DMA transfer is |
| 463 | * still in progress will return unpredictable results. |
| 464 | * Otherwise, it returns the number of _bytes_ left to transfer. |
| 465 | */ |
| 466 | static __inline__ int get_dma_residue(unsigned int dmanr) |
| 467 | { |
| 468 | volatile unsigned int *dmalp; |
| 469 | unsigned int count; |
| 470 | |
| 471 | #ifdef DMA_DEBUG |
| 472 | printk("get_dma_residue(dmanr=%d)\n", dmanr); |
| 473 | #endif |
| 474 | |
| 475 | dmalp = (unsigned int *) dma_base_addr[dmanr]; |
| 476 | count = dmalp[MCFDMA_DBCR]; |
| 477 | return(count); |
| 478 | } |
| 479 | |
| 480 | #endif /* !defined(CONFIG_M5272) */ |
| 481 | #endif /* CONFIG_COLDFIRE */ |
| 482 | |
| 483 | #define MAX_DMA_CHANNELS 8 |
| 484 | |
| 485 | /* Don't define MAX_DMA_ADDRESS; it's useless on the m68k/coldfire and any |
| 486 | occurrence should be flagged as an error. */ |
| 487 | /* under 2.4 it is actually needed by the new bootmem allocator */ |
| 488 | #define MAX_DMA_ADDRESS PAGE_OFFSET |
| 489 | |
| 490 | /* These are in kernel/dma.c: */ |
| 491 | extern int request_dma(unsigned int dmanr, const char *device_id); /* reserve a DMA channel */ |
| 492 | extern void free_dma(unsigned int dmanr); /* release it again */ |
| 493 | |
| 494 | #endif /* _M68K_DMA_H */ |