blob: ea7dd38c0568b860e083feafd7bbe17f083ce39b [file] [log] [blame]
Chris Metcalf867e3592010-05-28 23:09:12 -04001/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
Chris Metcalf867e3592010-05-28 23:09:12 -040020#include <linux/highmem.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/spinlock.h>
24#include <linux/cpumask.h>
25#include <linux/module.h>
26#include <linux/io.h>
27#include <linux/vmalloc.h>
28#include <linux/smp.h>
29
Chris Metcalf867e3592010-05-28 23:09:12 -040030#include <asm/pgtable.h>
31#include <asm/pgalloc.h>
32#include <asm/fixmap.h>
33#include <asm/tlb.h>
34#include <asm/tlbflush.h>
35#include <asm/homecache.h>
36
37#define K(x) ((x) << (PAGE_SHIFT-10))
38
39/*
40 * The normal show_free_areas() is too verbose on Tile, with dozens
41 * of processors and often four NUMA zones each with high and lowmem.
42 */
David Rientjesb2b755b2011-03-24 15:18:15 -070043void show_mem(unsigned int filter)
Chris Metcalf867e3592010-05-28 23:09:12 -040044{
45 struct zone *zone;
46
Chris Metcalf0707ad32010-06-25 17:04:17 -040047 pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu"
Chris Metcalf867e3592010-05-28 23:09:12 -040048 " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu"
49 " pagecache:%lu swap:%lu\n",
50 (global_page_state(NR_ACTIVE_ANON) +
51 global_page_state(NR_ACTIVE_FILE)),
52 (global_page_state(NR_INACTIVE_ANON) +
53 global_page_state(NR_INACTIVE_FILE)),
54 global_page_state(NR_FILE_DIRTY),
55 global_page_state(NR_WRITEBACK),
56 global_page_state(NR_UNSTABLE_NFS),
57 global_page_state(NR_FREE_PAGES),
58 (global_page_state(NR_SLAB_RECLAIMABLE) +
59 global_page_state(NR_SLAB_UNRECLAIMABLE)),
60 global_page_state(NR_FILE_MAPPED),
61 global_page_state(NR_PAGETABLE),
62 global_page_state(NR_BOUNCE),
63 global_page_state(NR_FILE_PAGES),
Shaohua Li1abbca72013-02-22 16:34:38 -080064 get_nr_swap_pages());
Chris Metcalf867e3592010-05-28 23:09:12 -040065
66 for_each_zone(zone) {
67 unsigned long flags, order, total = 0, largest_order = -1;
68
69 if (!populated_zone(zone))
70 continue;
71
Chris Metcalf867e3592010-05-28 23:09:12 -040072 spin_lock_irqsave(&zone->lock, flags);
73 for (order = 0; order < MAX_ORDER; order++) {
74 int nr = zone->free_area[order].nr_free;
75 total += nr << order;
76 if (nr)
77 largest_order = order;
78 }
79 spin_unlock_irqrestore(&zone->lock, flags);
Chris Metcalf0707ad32010-06-25 17:04:17 -040080 pr_err("Node %d %7s: %lukB (largest %luKb)\n",
81 zone_to_nid(zone), zone->name,
Chris Metcalf867e3592010-05-28 23:09:12 -040082 K(total), largest_order ? K(1UL) << largest_order : 0);
83 }
84}
85
86/*
87 * Associate a virtual page frame with a given physical page frame
88 * and protection flags for that frame.
89 */
90static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
91{
92 pgd_t *pgd;
93 pud_t *pud;
94 pmd_t *pmd;
95 pte_t *pte;
96
97 pgd = swapper_pg_dir + pgd_index(vaddr);
98 if (pgd_none(*pgd)) {
99 BUG();
100 return;
101 }
102 pud = pud_offset(pgd, vaddr);
103 if (pud_none(*pud)) {
104 BUG();
105 return;
106 }
107 pmd = pmd_offset(pud, vaddr);
108 if (pmd_none(*pmd)) {
109 BUG();
110 return;
111 }
112 pte = pte_offset_kernel(pmd, vaddr);
113 /* <pfn,flags> stored as-is, to permit clearing entries */
114 set_pte(pte, pfn_pte(pfn, flags));
115
116 /*
117 * It's enough to flush this one mapping.
118 * This appears conservative since it is only called
119 * from __set_fixmap.
120 */
121 local_flush_tlb_page(NULL, vaddr, PAGE_SIZE);
122}
123
Chris Metcalf867e3592010-05-28 23:09:12 -0400124void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
125{
126 unsigned long address = __fix_to_virt(idx);
127
128 if (idx >= __end_of_fixed_addresses) {
129 BUG();
130 return;
131 }
132 set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
133}
134
135#if defined(CONFIG_HIGHPTE)
Chris Metcalf38a6f422010-11-01 15:21:35 -0400136pte_t *_pte_offset_map(pmd_t *dir, unsigned long address)
Chris Metcalf867e3592010-05-28 23:09:12 -0400137{
Chris Metcalf38a6f422010-11-01 15:21:35 -0400138 pte_t *pte = kmap_atomic(pmd_page(*dir)) +
Chris Metcalf867e3592010-05-28 23:09:12 -0400139 (pmd_ptfn(*dir) << HV_LOG2_PAGE_TABLE_ALIGN) & ~PAGE_MASK;
140 return &pte[pte_index(address)];
141}
142#endif
143
Chris Metcalf76c567f2011-02-28 16:37:34 -0500144/**
145 * shatter_huge_page() - ensure a given address is mapped by a small page.
146 *
147 * This function converts a huge PTE mapping kernel LOWMEM into a bunch
148 * of small PTEs with the same caching. No cache flush required, but we
149 * must do a global TLB flush.
150 *
151 * Any caller that wishes to modify a kernel mapping that might
152 * have been made with a huge page should call this function,
153 * since doing so properly avoids race conditions with installing the
154 * newly-shattered page and then flushing all the TLB entries.
155 *
156 * @addr: Address at which to shatter any existing huge page.
157 */
158void shatter_huge_page(unsigned long addr)
159{
160 pgd_t *pgd;
161 pud_t *pud;
162 pmd_t *pmd;
163 unsigned long flags = 0; /* happy compiler */
164#ifdef __PAGETABLE_PMD_FOLDED
165 struct list_head *pos;
166#endif
167
168 /* Get a pointer to the pmd entry that we need to change. */
169 addr &= HPAGE_MASK;
170 BUG_ON(pgd_addr_invalid(addr));
171 BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */
172 pgd = swapper_pg_dir + pgd_index(addr);
173 pud = pud_offset(pgd, addr);
174 BUG_ON(!pud_present(*pud));
175 pmd = pmd_offset(pud, addr);
176 BUG_ON(!pmd_present(*pmd));
177 if (!pmd_huge_page(*pmd))
178 return;
179
Chris Metcalf719ea792012-03-29 15:50:08 -0400180 spin_lock_irqsave(&init_mm.page_table_lock, flags);
Chris Metcalf76c567f2011-02-28 16:37:34 -0500181 if (!pmd_huge_page(*pmd)) {
182 /* Lost the race to convert the huge page. */
Chris Metcalf719ea792012-03-29 15:50:08 -0400183 spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
Chris Metcalf76c567f2011-02-28 16:37:34 -0500184 return;
185 }
186
187 /* Shatter the huge page into the preallocated L2 page table. */
188 pmd_populate_kernel(&init_mm, pmd,
189 get_prealloc_pte(pte_pfn(*(pte_t *)pmd)));
190
191#ifdef __PAGETABLE_PMD_FOLDED
192 /* Walk every pgd on the system and update the pmd there. */
Chris Metcalf719ea792012-03-29 15:50:08 -0400193 spin_lock(&pgd_lock);
Chris Metcalf76c567f2011-02-28 16:37:34 -0500194 list_for_each(pos, &pgd_list) {
195 pmd_t *copy_pmd;
196 pgd = list_to_pgd(pos) + pgd_index(addr);
197 pud = pud_offset(pgd, addr);
198 copy_pmd = pmd_offset(pud, addr);
199 __set_pmd(copy_pmd, *pmd);
200 }
Chris Metcalf719ea792012-03-29 15:50:08 -0400201 spin_unlock(&pgd_lock);
Chris Metcalf76c567f2011-02-28 16:37:34 -0500202#endif
203
204 /* Tell every cpu to notice the change. */
205 flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
206 cpu_possible_mask, NULL, 0);
207
208 /* Hold the lock until the TLB flush is finished to avoid races. */
Chris Metcalf719ea792012-03-29 15:50:08 -0400209 spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
Chris Metcalf76c567f2011-02-28 16:37:34 -0500210}
211
Chris Metcalf867e3592010-05-28 23:09:12 -0400212/*
213 * List of all pgd's needed so it can invalidate entries in both cached
214 * and uncached pgd's. This is essentially codepath-based locking
215 * against pageattr.c; it is the unique case in which a valid change
216 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
217 * vmalloc faults work because attached pagetables are never freed.
Chris Metcalf719ea792012-03-29 15:50:08 -0400218 *
219 * The lock is always taken with interrupts disabled, unlike on x86
220 * and other platforms, because we need to take the lock in
221 * shatter_huge_page(), which may be called from an interrupt context.
222 * We are not at risk from the tlbflush IPI deadlock that was seen on
223 * x86, since we use the flush_remote() API to have the hypervisor do
224 * the TLB flushes regardless of irq disabling.
Chris Metcalf867e3592010-05-28 23:09:12 -0400225 */
226DEFINE_SPINLOCK(pgd_lock);
227LIST_HEAD(pgd_list);
228
229static inline void pgd_list_add(pgd_t *pgd)
230{
231 list_add(pgd_to_list(pgd), &pgd_list);
232}
233
234static inline void pgd_list_del(pgd_t *pgd)
235{
236 list_del(pgd_to_list(pgd));
237}
238
239#define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
240#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
241
242static void pgd_ctor(pgd_t *pgd)
243{
244 unsigned long flags;
245
246 memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
247 spin_lock_irqsave(&pgd_lock, flags);
248
249#ifndef __tilegx__
250 /*
251 * Check that the user interrupt vector has no L2.
252 * It never should for the swapper, and new page tables
253 * should always start with an empty user interrupt vector.
254 */
255 BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
256#endif
257
Chris Metcalf76c567f2011-02-28 16:37:34 -0500258 memcpy(pgd + KERNEL_PGD_INDEX_START,
259 swapper_pg_dir + KERNEL_PGD_INDEX_START,
260 KERNEL_PGD_PTRS * sizeof(pgd_t));
Chris Metcalf867e3592010-05-28 23:09:12 -0400261
262 pgd_list_add(pgd);
263 spin_unlock_irqrestore(&pgd_lock, flags);
264}
265
266static void pgd_dtor(pgd_t *pgd)
267{
268 unsigned long flags; /* can be called from interrupt context */
269
270 spin_lock_irqsave(&pgd_lock, flags);
271 pgd_list_del(pgd);
272 spin_unlock_irqrestore(&pgd_lock, flags);
273}
274
275pgd_t *pgd_alloc(struct mm_struct *mm)
276{
277 pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
278 if (pgd)
279 pgd_ctor(pgd);
280 return pgd;
281}
282
283void pgd_free(struct mm_struct *mm, pgd_t *pgd)
284{
285 pgd_dtor(pgd);
286 kmem_cache_free(pgd_cache, pgd);
287}
288
289
290#define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
291
292struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
293{
Chris Metcalf76c567f2011-02-28 16:37:34 -0500294 gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
Chris Metcalf867e3592010-05-28 23:09:12 -0400295 struct page *p;
Chris Metcalf76c567f2011-02-28 16:37:34 -0500296#if L2_USER_PGTABLE_ORDER > 0
297 int i;
298#endif
Chris Metcalf867e3592010-05-28 23:09:12 -0400299
300#ifdef CONFIG_HIGHPTE
301 flags |= __GFP_HIGHMEM;
302#endif
303
304 p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
305 if (p == NULL)
306 return NULL;
307
Chris Metcalf76c567f2011-02-28 16:37:34 -0500308#if L2_USER_PGTABLE_ORDER > 0
309 /*
310 * Make every page have a page_count() of one, not just the first.
311 * We don't use __GFP_COMP since it doesn't look like it works
312 * correctly with tlb_remove_page().
313 */
314 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
315 init_page_count(p+i);
316 inc_zone_page_state(p+i, NR_PAGETABLE);
317 }
318#endif
319
Chris Metcalf867e3592010-05-28 23:09:12 -0400320 pgtable_page_ctor(p);
321 return p;
322}
323
324/*
325 * Free page immediately (used in __pte_alloc if we raced with another
326 * process). We have to correct whatever pte_alloc_one() did before
327 * returning the pages to the allocator.
328 */
329void pte_free(struct mm_struct *mm, struct page *p)
330{
Chris Metcalf76c567f2011-02-28 16:37:34 -0500331 int i;
332
Chris Metcalf867e3592010-05-28 23:09:12 -0400333 pgtable_page_dtor(p);
Chris Metcalf76c567f2011-02-28 16:37:34 -0500334 __free_page(p);
335
336 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
337 __free_page(p+i);
338 dec_zone_page_state(p+i, NR_PAGETABLE);
339 }
Chris Metcalf867e3592010-05-28 23:09:12 -0400340}
341
342void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte,
343 unsigned long address)
344{
345 int i;
346
347 pgtable_page_dtor(pte);
Chris Metcalf76c567f2011-02-28 16:37:34 -0500348 tlb_remove_page(tlb, pte);
349
350 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
Peter Zijlstra342d87e2011-01-25 18:31:12 +0100351 tlb_remove_page(tlb, pte + i);
Chris Metcalf76c567f2011-02-28 16:37:34 -0500352 dec_zone_page_state(pte + i, NR_PAGETABLE);
353 }
Chris Metcalf867e3592010-05-28 23:09:12 -0400354}
355
356#ifndef __tilegx__
357
358/*
359 * FIXME: needs to be atomic vs hypervisor writes. For now we make the
360 * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
361 */
362int ptep_test_and_clear_young(struct vm_area_struct *vma,
363 unsigned long addr, pte_t *ptep)
364{
365#if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
366# error Code assumes HV_PTE "accessed" bit in second byte
367#endif
368 u8 *tmp = (u8 *)ptep;
369 u8 second_byte = tmp[1];
370 if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
371 return 0;
372 tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
373 return 1;
374}
375
376/*
377 * This implementation is atomic vs hypervisor writes, since the hypervisor
378 * always writes the low word (where "accessed" and "dirty" are) and this
379 * routine only writes the high word.
380 */
381void ptep_set_wrprotect(struct mm_struct *mm,
382 unsigned long addr, pte_t *ptep)
383{
384#if HV_PTE_INDEX_WRITABLE < 32
385# error Code assumes HV_PTE "writable" bit in high word
386#endif
387 u32 *tmp = (u32 *)ptep;
388 tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
389}
390
391#endif
392
393pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
394{
395 pgd_t *pgd;
396 pud_t *pud;
397 pmd_t *pmd;
398
399 if (pgd_addr_invalid(addr))
400 return NULL;
401
402 pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
403 pud = pud_offset(pgd, addr);
404 if (!pud_present(*pud))
405 return NULL;
406 pmd = pmd_offset(pud, addr);
407 if (pmd_huge_page(*pmd))
408 return (pte_t *)pmd;
409 if (!pmd_present(*pmd))
410 return NULL;
411 return pte_offset_kernel(pmd, addr);
412}
413
414pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
415{
416 unsigned int width = smp_width;
417 int x = cpu % width;
418 int y = cpu / width;
419 BUG_ON(y >= smp_height);
420 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
421 BUG_ON(cpu < 0 || cpu >= NR_CPUS);
422 BUG_ON(!cpu_is_valid_lotar(cpu));
423 return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
424}
425
426int get_remote_cache_cpu(pgprot_t prot)
427{
428 HV_LOTAR lotar = hv_pte_get_lotar(prot);
429 int x = HV_LOTAR_X(lotar);
430 int y = HV_LOTAR_Y(lotar);
431 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
432 return x + y * smp_width;
433}
434
Chris Metcalf76c567f2011-02-28 16:37:34 -0500435/*
436 * Convert a kernel VA to a PA and homing information.
437 */
438int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
Chris Metcalf867e3592010-05-28 23:09:12 -0400439{
Chris Metcalf76c567f2011-02-28 16:37:34 -0500440 struct page *page = virt_to_page(va);
441 pte_t null_pte = { 0 };
442
443 *cpa = __pa(va);
444
445 /* Note that this is not writing a page table, just returning a pte. */
446 *pte = pte_set_home(null_pte, page_home(page));
447
448 return 0; /* return non-zero if not hfh? */
449}
450EXPORT_SYMBOL(va_to_cpa_and_pte);
451
452void __set_pte(pte_t *ptep, pte_t pte)
453{
454#ifdef __tilegx__
455 *ptep = pte;
456#else
457# if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
458# error Must write the present and migrating bits last
459# endif
460 if (pte_present(pte)) {
461 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
462 barrier();
463 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
464 } else {
465 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
466 barrier();
467 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
468 }
469#endif /* __tilegx__ */
470}
471
472void set_pte(pte_t *ptep, pte_t pte)
473{
Chris Metcalf12400f12012-03-29 15:36:53 -0400474 if (pte_present(pte) &&
475 (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) {
476 /* The PTE actually references physical memory. */
477 unsigned long pfn = pte_pfn(pte);
478 if (pfn_valid(pfn)) {
479 /* Update the home of the PTE from the struct page. */
480 pte = pte_set_home(pte, page_home(pfn_to_page(pfn)));
481 } else if (hv_pte_get_mode(pte) == 0) {
482 /* remap_pfn_range(), etc, must supply PTE mode. */
483 panic("set_pte(): out-of-range PFN and mode 0\n");
484 }
485 }
Chris Metcalf867e3592010-05-28 23:09:12 -0400486
Chris Metcalf76c567f2011-02-28 16:37:34 -0500487 __set_pte(ptep, pte);
Chris Metcalf867e3592010-05-28 23:09:12 -0400488}
489
490/* Can this mm load a PTE with cached_priority set? */
491static inline int mm_is_priority_cached(struct mm_struct *mm)
492{
493 return mm->context.priority_cached;
494}
495
496/*
497 * Add a priority mapping to an mm_context and
498 * notify the hypervisor if this is the first one.
499 */
500void start_mm_caching(struct mm_struct *mm)
501{
502 if (!mm_is_priority_cached(mm)) {
503 mm->context.priority_cached = -1U;
504 hv_set_caching(-1U);
505 }
506}
507
508/*
509 * Validate and return the priority_cached flag. We know if it's zero
510 * that we don't need to scan, since we immediately set it non-zero
511 * when we first consider a MAP_CACHE_PRIORITY mapping.
512 *
513 * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
514 * since we're in an interrupt context (servicing switch_mm) we don't
515 * worry about it and don't unset the "priority_cached" field.
516 * Presumably we'll come back later and have more luck and clear
517 * the value then; for now we'll just keep the cache marked for priority.
518 */
519static unsigned int update_priority_cached(struct mm_struct *mm)
520{
521 if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
522 struct vm_area_struct *vm;
523 for (vm = mm->mmap; vm; vm = vm->vm_next) {
524 if (hv_pte_get_cached_priority(vm->vm_page_prot))
525 break;
526 }
527 if (vm == NULL)
528 mm->context.priority_cached = 0;
529 up_write(&mm->mmap_sem);
530 }
531 return mm->context.priority_cached;
532}
533
534/* Set caching correctly for an mm that we are switching to. */
535void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
536{
537 if (!mm_is_priority_cached(next)) {
538 /*
539 * If the new mm doesn't use priority caching, just see if we
540 * need the hv_set_caching(), or can assume it's already zero.
541 */
542 if (mm_is_priority_cached(prev))
543 hv_set_caching(0);
544 } else {
545 hv_set_caching(update_priority_cached(next));
546 }
547}
548
549#if CHIP_HAS_MMIO()
550
551/* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
552void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
553 pgprot_t home)
554{
555 void *addr;
556 struct vm_struct *area;
557 unsigned long offset, last_addr;
558 pgprot_t pgprot;
559
560 /* Don't allow wraparound or zero size */
561 last_addr = phys_addr + size - 1;
562 if (!size || last_addr < phys_addr)
563 return NULL;
564
565 /* Create a read/write, MMIO VA mapping homed at the requested shim. */
566 pgprot = PAGE_KERNEL;
567 pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
568 pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
569
570 /*
571 * Mappings have to be page-aligned
572 */
573 offset = phys_addr & ~PAGE_MASK;
574 phys_addr &= PAGE_MASK;
575 size = PAGE_ALIGN(last_addr+1) - phys_addr;
576
577 /*
578 * Ok, go for it..
579 */
580 area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
581 if (!area)
582 return NULL;
583 area->phys_addr = phys_addr;
584 addr = area->addr;
585 if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
586 phys_addr, pgprot)) {
587 remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr));
588 return NULL;
589 }
590 return (__force void __iomem *) (offset + (char *)addr);
591}
592EXPORT_SYMBOL(ioremap_prot);
593
594/* Map a PCI MMIO bus address into VA space. */
595void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
596{
597 panic("ioremap for PCI MMIO is not supported");
598}
599EXPORT_SYMBOL(ioremap);
600
601/* Unmap an MMIO VA mapping. */
602void iounmap(volatile void __iomem *addr_in)
603{
604 volatile void __iomem *addr = (volatile void __iomem *)
605 (PAGE_MASK & (unsigned long __force)addr_in);
606#if 1
607 vunmap((void * __force)addr);
608#else
609 /* x86 uses this complicated flow instead of vunmap(). Is
610 * there any particular reason we should do the same? */
611 struct vm_struct *p, *o;
612
613 /* Use the vm area unlocked, assuming the caller
614 ensures there isn't another iounmap for the same address
615 in parallel. Reuse of the virtual address is prevented by
616 leaving it in the global lists until we're done with it.
617 cpa takes care of the direct mappings. */
618 read_lock(&vmlist_lock);
619 for (p = vmlist; p; p = p->next) {
620 if (p->addr == addr)
621 break;
622 }
623 read_unlock(&vmlist_lock);
624
625 if (!p) {
Chris Metcalf0707ad32010-06-25 17:04:17 -0400626 pr_err("iounmap: bad address %p\n", addr);
Chris Metcalf867e3592010-05-28 23:09:12 -0400627 dump_stack();
628 return;
629 }
630
631 /* Finally remove it */
632 o = remove_vm_area((void *)addr);
633 BUG_ON(p != o || o == NULL);
634 kfree(p);
635#endif
636}
637EXPORT_SYMBOL(iounmap);
638
639#endif /* CHIP_HAS_MMIO() */