| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "thread.h" |
| |
| #include <dynamic_annotations.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <sys/resource.h> |
| #include <sys/time.h> |
| |
| #include <algorithm> |
| #include <bitset> |
| #include <cerrno> |
| #include <iostream> |
| #include <list> |
| |
| #include "class_linker.h" |
| #include "class_loader.h" |
| #include "cutils/atomic.h" |
| #include "cutils/atomic-inline.h" |
| #include "debugger.h" |
| #include "gc_map.h" |
| #include "heap.h" |
| #include "jni_internal.h" |
| #include "monitor.h" |
| #include "mutex.h" |
| #include "oat/runtime/context.h" |
| #include "object.h" |
| #include "object_utils.h" |
| #include "reflection.h" |
| #include "runtime.h" |
| #include "runtime_support.h" |
| #include "scoped_thread_state_change.h" |
| #include "ScopedLocalRef.h" |
| #include "space.h" |
| #include "stack.h" |
| #include "stack_indirect_reference_table.h" |
| #include "thread_list.h" |
| #include "utils.h" |
| #include "well_known_classes.h" |
| |
| namespace art { |
| |
| pthread_key_t Thread::pthread_key_self_; |
| ConditionVariable* Thread::resume_cond_; |
| |
| static const char* kThreadNameDuringStartup = "<native thread without managed peer>"; |
| |
| void Thread::InitCardTable() { |
| card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin(); |
| } |
| |
| #if !defined(__APPLE__) |
| static void UnimplementedEntryPoint() { |
| UNIMPLEMENTED(FATAL); |
| } |
| #endif |
| |
| void Thread::InitFunctionPointers() { |
| #if !defined(__APPLE__) // The Mac GCC is too old to accept this code. |
| // Insert a placeholder so we can easily tell if we call an unimplemented entry point. |
| uintptr_t* begin = reinterpret_cast<uintptr_t*>(&entrypoints_); |
| uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(entrypoints_)); |
| for (uintptr_t* it = begin; it != end; ++it) { |
| *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint); |
| } |
| #endif |
| InitEntryPoints(&entrypoints_); |
| } |
| |
| void Thread::SetDebuggerUpdatesEnabled(bool enabled) { |
| LOG(INFO) << "Turning debugger updates " << (enabled ? "on" : "off") << " for " << *this; |
| #if !defined(ART_USE_LLVM_COMPILER) |
| ChangeDebuggerEntryPoint(&entrypoints_, enabled); |
| #else |
| UNIMPLEMENTED(FATAL); |
| #endif |
| } |
| |
| void Thread::InitTid() { |
| tid_ = ::art::GetTid(); |
| } |
| |
| void Thread::InitAfterFork() { |
| // One thread (us) survived the fork, but we have a new tid so we need to |
| // update the value stashed in this Thread*. |
| InitTid(); |
| } |
| |
| void* Thread::CreateCallback(void* arg) { |
| Thread* self = reinterpret_cast<Thread*>(arg); |
| self->Init(); |
| |
| { |
| ScopedObjectAccess soa(self); |
| { |
| SirtRef<String> thread_name(self->GetThreadName(soa)); |
| self->SetThreadName(thread_name->ToModifiedUtf8().c_str()); |
| } |
| |
| Dbg::PostThreadStart(self); |
| |
| // Invoke the 'run' method of our java.lang.Thread. |
| CHECK(self->peer_ != NULL); |
| Object* receiver = soa.Decode<Object*>(self->peer_); |
| jmethodID mid = WellKnownClasses::java_lang_Thread_run; |
| AbstractMethod* m = receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(soa.DecodeMethod(mid)); |
| m->Invoke(self, receiver, NULL, NULL); |
| } |
| |
| // Detach and delete self. |
| Runtime::Current()->GetThreadList()->Unregister(self); |
| |
| return NULL; |
| } |
| |
| static void SetVmData(const ScopedObjectAccess& soa, Object* managed_thread, |
| Thread* native_thread) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| Field* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_vmData); |
| f->SetInt(managed_thread, reinterpret_cast<uintptr_t>(native_thread)); |
| } |
| |
| Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, Object* thread_peer) { |
| Field* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_vmData); |
| Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetInt(thread_peer))); |
| // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_ |
| // to stop it from going away. |
| if (kIsDebugBuild) { |
| MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_); |
| if (result != NULL && !result->IsSuspended()) { |
| Locks::thread_list_lock_->AssertHeld(soa.Self()); |
| } |
| } |
| return result; |
| } |
| |
| Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, jobject java_thread) { |
| return FromManagedThread(soa, soa.Decode<Object*>(java_thread)); |
| } |
| |
| static size_t FixStackSize(size_t stack_size) { |
| // A stack size of zero means "use the default". |
| if (stack_size == 0) { |
| stack_size = Runtime::Current()->GetDefaultStackSize(); |
| } |
| |
| // Dalvik used the bionic pthread default stack size for native threads, |
| // so include that here to support apps that expect large native stacks. |
| stack_size += 1 * MB; |
| |
| // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN. |
| if (stack_size < PTHREAD_STACK_MIN) { |
| stack_size = PTHREAD_STACK_MIN; |
| } |
| |
| // It's likely that callers are trying to ensure they have at least a certain amount of |
| // stack space, so we should add our reserved space on top of what they requested, rather |
| // than implicitly take it away from them. |
| stack_size += Thread::kStackOverflowReservedBytes; |
| |
| // Some systems require the stack size to be a multiple of the system page size, so round up. |
| stack_size = RoundUp(stack_size, kPageSize); |
| |
| return stack_size; |
| } |
| |
| static void SigAltStack(stack_t* new_stack, stack_t* old_stack) { |
| if (sigaltstack(new_stack, old_stack) == -1) { |
| PLOG(FATAL) << "sigaltstack failed"; |
| } |
| } |
| |
| static void SetUpAlternateSignalStack() { |
| // Create and set an alternate signal stack. |
| stack_t ss; |
| ss.ss_sp = new uint8_t[SIGSTKSZ]; |
| ss.ss_size = SIGSTKSZ; |
| ss.ss_flags = 0; |
| CHECK(ss.ss_sp != NULL); |
| SigAltStack(&ss, NULL); |
| |
| // Double-check that it worked. |
| ss.ss_sp = NULL; |
| SigAltStack(NULL, &ss); |
| VLOG(threads) << "Alternate signal stack is " << PrettySize(ss.ss_size) << " at " << ss.ss_sp; |
| } |
| |
| static void TearDownAlternateSignalStack() { |
| // Get the pointer so we can free the memory. |
| stack_t ss; |
| SigAltStack(NULL, &ss); |
| uint8_t* allocated_signal_stack = reinterpret_cast<uint8_t*>(ss.ss_sp); |
| |
| // Tell the kernel to stop using it. |
| ss.ss_sp = NULL; |
| ss.ss_flags = SS_DISABLE; |
| ss.ss_size = SIGSTKSZ; // Avoid ENOMEM failure with Mac OS' buggy libc. |
| SigAltStack(&ss, NULL); |
| |
| // Free it. |
| delete[] allocated_signal_stack; |
| } |
| |
| void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool daemon) { |
| CHECK(java_peer != NULL); |
| |
| Thread* native_thread = new Thread(daemon); |
| { |
| ScopedObjectAccess soa(env); |
| // Use global JNI ref to hold peer live whilst child thread starts. |
| native_thread->peer_ = env->NewGlobalRef(java_peer); |
| stack_size = FixStackSize(stack_size); |
| |
| // Thread.start is synchronized, so we know that vmData is 0, and know that we're not racing to |
| // assign it. |
| Object* peer = soa.Decode<Object*>(native_thread->peer_); |
| CHECK(peer != NULL); |
| SetVmData(soa, peer, native_thread); |
| } |
| |
| pthread_t new_pthread; |
| pthread_attr_t attr; |
| CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread"); |
| CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED"); |
| CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size); |
| int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, native_thread); |
| CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread"); |
| |
| if (UNLIKELY(pthread_create_result != 0)) { |
| // pthread_create(3) failed, so clean up. |
| { |
| ScopedObjectAccess soa(env); |
| Object* peer = soa.Decode<Object*>(java_peer); |
| SetVmData(soa, peer, 0); |
| |
| std::string msg(StringPrintf("pthread_create (%s stack) failed: %s", |
| PrettySize(stack_size).c_str(), strerror(pthread_create_result))); |
| Thread::Current()->ThrowOutOfMemoryError(msg.c_str()); |
| } |
| // If we failed, manually delete the global reference since Thread::Init will not have been run. |
| env->DeleteGlobalRef(native_thread->peer_); |
| native_thread->peer_ = NULL; |
| delete native_thread; |
| return; |
| } |
| } |
| |
| void Thread::Init() { |
| // This function does all the initialization that must be run by the native thread it applies to. |
| // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so |
| // we can handshake with the corresponding native thread when it's ready.) Check this native |
| // thread hasn't been through here already... |
| CHECK(Thread::Current() == NULL); |
| |
| SetUpAlternateSignalStack(); |
| InitCpu(); |
| InitFunctionPointers(); |
| #ifdef ART_USE_GREENLAND_COMPILER |
| InitRuntimeEntryPoints(&runtime_entry_points_); |
| #endif |
| InitCardTable(); |
| InitTid(); |
| |
| Runtime* runtime = Runtime::Current(); |
| CHECK(runtime != NULL); |
| if (runtime->IsShuttingDown()) { |
| UNIMPLEMENTED(WARNING) << "Thread attaching whilst runtime is shutting down"; |
| } |
| thin_lock_id_ = runtime->GetThreadList()->AllocThreadId(); |
| pthread_self_ = pthread_self(); |
| |
| InitStackHwm(); |
| |
| CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self"); |
| |
| jni_env_ = new JNIEnvExt(this, runtime->GetJavaVM()); |
| |
| runtime->GetThreadList()->Register(this); |
| } |
| |
| Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group) { |
| Thread* self = new Thread(as_daemon); |
| self->Init(); |
| |
| CHECK_NE(self->GetState(), kRunnable); |
| self->SetState(kNative); |
| |
| // If we're the main thread, ClassLinker won't be created until after we're attached, |
| // so that thread needs a two-stage attach. Regular threads don't need this hack. |
| // In the compiler, all threads need this hack, because no-one's going to be getting |
| // a native peer! |
| if (self->thin_lock_id_ != ThreadList::kMainId && !Runtime::Current()->IsCompiler()) { |
| self->CreatePeer(thread_name, as_daemon, thread_group); |
| } else { |
| // These aren't necessary, but they improve diagnostics for unit tests & command-line tools. |
| if (thread_name != NULL) { |
| self->name_->assign(thread_name); |
| ::art::SetThreadName(thread_name); |
| } |
| } |
| |
| return self; |
| } |
| |
| void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) { |
| Runtime* runtime = Runtime::Current(); |
| CHECK(runtime->IsStarted()); |
| JNIEnv* env = jni_env_; |
| |
| if (thread_group == NULL) { |
| thread_group = runtime->GetMainThreadGroup(); |
| } |
| ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name)); |
| jint thread_priority = GetNativePriority(); |
| jboolean thread_is_daemon = as_daemon; |
| |
| ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread)); |
| if (peer.get() == NULL) { |
| CHECK(IsExceptionPending()); |
| return; |
| } |
| peer_ = env->NewGlobalRef(peer.get()); |
| env->CallNonvirtualVoidMethod(peer.get(), |
| WellKnownClasses::java_lang_Thread, |
| WellKnownClasses::java_lang_Thread_init, |
| thread_group, thread_name.get(), thread_priority, thread_is_daemon); |
| AssertNoPendingException(); |
| |
| ScopedObjectAccess soa(this); |
| Object* native_peer = soa.Decode<Object*>(peer.get()); |
| SetVmData(soa, native_peer, Thread::Current()); |
| SirtRef<String> peer_thread_name(GetThreadName(soa)); |
| if (peer_thread_name.get() == NULL) { |
| // The Thread constructor should have set the Thread.name to a |
| // non-null value. However, because we can run without code |
| // available (in the compiler, in tests), we manually assign the |
| // fields the constructor should have set. |
| soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)-> |
| SetBoolean(native_peer, thread_is_daemon); |
| soa.DecodeField(WellKnownClasses::java_lang_Thread_group)-> |
| SetObject(native_peer, soa.Decode<Object*>(thread_group)); |
| soa.DecodeField(WellKnownClasses::java_lang_Thread_name)-> |
| SetObject(native_peer, soa.Decode<Object*>(thread_name.get())); |
| soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)-> |
| SetInt(native_peer, thread_priority); |
| peer_thread_name.reset(GetThreadName(soa)); |
| } |
| // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null. |
| if (peer_thread_name.get() != NULL) { |
| SetThreadName(peer_thread_name->ToModifiedUtf8().c_str()); |
| } |
| } |
| |
| void Thread::SetThreadName(const char* name) { |
| name_->assign(name); |
| ::art::SetThreadName(name); |
| Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM")); |
| } |
| |
| void Thread::InitStackHwm() { |
| void* stack_base; |
| size_t stack_size; |
| GetThreadStack(stack_base, stack_size); |
| |
| // TODO: include this in the thread dumps; potentially useful in SIGQUIT output? |
| VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str()); |
| |
| stack_begin_ = reinterpret_cast<byte*>(stack_base); |
| stack_size_ = stack_size; |
| |
| if (stack_size_ <= kStackOverflowReservedBytes) { |
| LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)"; |
| } |
| |
| // TODO: move this into the Linux GetThreadStack implementation. |
| #if !defined(__APPLE__) |
| // If we're the main thread, check whether we were run with an unlimited stack. In that case, |
| // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection |
| // will be broken because we'll die long before we get close to 2GB. |
| if (thin_lock_id_ == 1) { |
| rlimit stack_limit; |
| if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) { |
| PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed"; |
| } |
| if (stack_limit.rlim_cur == RLIM_INFINITY) { |
| // Find the default stack size for new threads... |
| pthread_attr_t default_attributes; |
| size_t default_stack_size; |
| CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query"); |
| CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size), |
| "default stack size query"); |
| CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query"); |
| |
| // ...and use that as our limit. |
| size_t old_stack_size = stack_size_; |
| stack_size_ = default_stack_size; |
| stack_begin_ += (old_stack_size - stack_size_); |
| VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")" |
| << " to " << PrettySize(stack_size_) |
| << " with base " << reinterpret_cast<void*>(stack_begin_); |
| } |
| } |
| #endif |
| |
| // Set stack_end_ to the bottom of the stack saving space of stack overflows |
| ResetDefaultStackEnd(); |
| |
| // Sanity check. |
| int stack_variable; |
| CHECK_GT(&stack_variable, reinterpret_cast<void*>(stack_end_)); |
| } |
| |
| void Thread::ShortDump(std::ostream& os) const { |
| os << "Thread["; |
| if (GetThinLockId() != 0) { |
| // If we're in kStarting, we won't have a thin lock id or tid yet. |
| os << GetThinLockId() |
| << ",tid=" << GetTid() << ','; |
| } |
| os << GetState() |
| << ",Thread*=" << this |
| << ",peer=" << peer_ |
| << ",\"" << *name_ << "\"" |
| << "]"; |
| } |
| |
| void Thread::Dump(std::ostream& os) const { |
| DumpState(os); |
| DumpStack(os); |
| } |
| |
| String* Thread::GetThreadName(const ScopedObjectAccessUnchecked& soa) const { |
| Field* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name); |
| Object* native_peer = soa.Decode<Object*>(peer_); |
| return (peer_ != NULL) ? reinterpret_cast<String*>(f->GetObject(native_peer)) : NULL; |
| } |
| |
| void Thread::GetThreadName(std::string& name) const { |
| name.assign(*name_); |
| } |
| |
| void Thread::AtomicSetFlag(ThreadFlag flag) { |
| android_atomic_or(flag, &state_and_flags_.as_int); |
| } |
| |
| void Thread::AtomicClearFlag(ThreadFlag flag) { |
| android_atomic_and(-1 ^ flag, &state_and_flags_.as_int); |
| } |
| |
| ThreadState Thread::SetState(ThreadState new_state) { |
| // Cannot use this code to change into Runnable as changing to Runnable should fail if |
| // old_state_and_flags.suspend_request is true. |
| DCHECK_NE(new_state, kRunnable); |
| DCHECK_EQ(this, Thread::Current()); |
| union StateAndFlags old_state_and_flags = state_and_flags_; |
| state_and_flags_.as_struct.state = new_state; |
| return static_cast<ThreadState>(old_state_and_flags.as_struct.state); |
| } |
| |
| // Attempt to rectify locks so that we dump thread list with required locks before exiting. |
| static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS { |
| Locks::thread_suspend_count_lock_->Unlock(self); |
| if (!Locks::mutator_lock_->IsSharedHeld(self)) { |
| Locks::mutator_lock_->SharedTryLock(self); |
| if (!Locks::mutator_lock_->IsSharedHeld(self)) { |
| LOG(WARNING) << "Dumping thread list without holding mutator_lock_"; |
| } |
| } |
| if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { |
| Locks::thread_list_lock_->TryLock(self); |
| if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { |
| LOG(WARNING) << "Dumping thread list without holding thread_list_lock_"; |
| } |
| } |
| std::ostringstream ss; |
| Runtime::Current()->GetThreadList()->DumpLocked(ss); |
| LOG(FATAL) << *thread << " suspend count already zero.\n" << ss.str(); |
| } |
| |
| void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) { |
| DCHECK(delta == -1 || delta == +1 || delta == -debug_suspend_count_) |
| << delta << " " << debug_suspend_count_ << " " << this; |
| DCHECK_GE(suspend_count_, debug_suspend_count_) << this; |
| Locks::thread_suspend_count_lock_->AssertHeld(self); |
| |
| if (UNLIKELY(delta < 0 && suspend_count_ <= 0)) { |
| UnsafeLogFatalForSuspendCount(self, this); |
| return; |
| } |
| |
| suspend_count_ += delta; |
| if (for_debugger) { |
| debug_suspend_count_ += delta; |
| } |
| |
| if (suspend_count_ == 0) { |
| AtomicClearFlag(kSuspendRequest); |
| } else { |
| AtomicSetFlag(kSuspendRequest); |
| } |
| } |
| |
| void Thread::FullSuspendCheck() { |
| VLOG(threads) << this << " self-suspending"; |
| // Make thread appear suspended to other threads, release mutator_lock_. |
| TransitionFromRunnableToSuspended(kSuspended); |
| // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_. |
| TransitionFromSuspendedToRunnable(); |
| VLOG(threads) << this << " self-reviving"; |
| } |
| |
| void Thread::TransitionFromRunnableToSuspended(ThreadState new_state) { |
| AssertThreadSuspensionIsAllowable(); |
| DCHECK_NE(new_state, kRunnable); |
| DCHECK_EQ(this, Thread::Current()); |
| // Change to non-runnable state, thereby appearing suspended to the system. |
| DCHECK_EQ(GetState(), kRunnable); |
| state_and_flags_.as_struct.state = new_state; |
| // Release share on mutator_lock_. |
| Locks::mutator_lock_->SharedUnlock(this); |
| } |
| |
| ThreadState Thread::TransitionFromSuspendedToRunnable() { |
| bool done = false; |
| union StateAndFlags old_state_and_flags = state_and_flags_; |
| int16_t old_state = old_state_and_flags.as_struct.state; |
| DCHECK_NE(static_cast<ThreadState>(old_state), kRunnable); |
| do { |
| Locks::mutator_lock_->AssertNotHeld(this); // Otherwise we starve GC.. |
| old_state_and_flags = state_and_flags_; |
| DCHECK_EQ(old_state_and_flags.as_struct.state, old_state); |
| if ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) { |
| // Wait while our suspend count is non-zero. |
| MutexLock mu(this, *Locks::thread_suspend_count_lock_); |
| old_state_and_flags = state_and_flags_; |
| DCHECK_EQ(old_state_and_flags.as_struct.state, old_state); |
| while ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) { |
| // Re-check when Thread::resume_cond_ is notified. |
| Thread::resume_cond_->Wait(this, *Locks::thread_suspend_count_lock_); |
| old_state_and_flags = state_and_flags_; |
| DCHECK_EQ(old_state_and_flags.as_struct.state, old_state); |
| } |
| DCHECK_EQ(GetSuspendCount(), 0); |
| } |
| // Re-acquire shared mutator_lock_ access. |
| Locks::mutator_lock_->SharedLock(this); |
| // Atomically change from suspended to runnable if no suspend request pending. |
| old_state_and_flags = state_and_flags_; |
| DCHECK_EQ(old_state_and_flags.as_struct.state, old_state); |
| if ((old_state_and_flags.as_struct.flags & kSuspendRequest) == 0) { |
| union StateAndFlags new_state_and_flags = old_state_and_flags; |
| new_state_and_flags.as_struct.state = kRunnable; |
| done = android_atomic_cmpxchg(old_state_and_flags.as_int, new_state_and_flags.as_int, |
| &state_and_flags_.as_int) |
| == 0; |
| } |
| if (!done) { |
| // Failed to transition to Runnable. Release shared mutator_lock_ access and try again. |
| Locks::mutator_lock_->SharedUnlock(this); |
| } |
| } while (!done); |
| return static_cast<ThreadState>(old_state); |
| } |
| |
| Thread* Thread::SuspendForDebugger(jobject peer, bool request_suspension, bool* timeout) { |
| static const useconds_t kTimeoutUs = 30 * 1000000; // 30s. |
| useconds_t total_delay_us = 0; |
| useconds_t delay_us = 0; |
| bool did_suspend_request = false; |
| *timeout = false; |
| while (true) { |
| Thread* thread; |
| { |
| ScopedObjectAccess soa(Thread::Current()); |
| MutexLock mu(soa.Self(), *Locks::thread_list_lock_); |
| thread = Thread::FromManagedThread(soa, peer); |
| if (thread == NULL) { |
| LOG(WARNING) << "No such thread for suspend: " << peer; |
| return NULL; |
| } |
| { |
| MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_); |
| if (request_suspension) { |
| thread->ModifySuspendCount(soa.Self(), +1, true /* for_debugger */); |
| request_suspension = false; |
| did_suspend_request = true; |
| } |
| // IsSuspended on the current thread will fail as the current thread is changed into |
| // Runnable above. As the suspend count is now raised if this is the current thread |
| // it will self suspend on transition to Runnable, making it hard to work with. Its simpler |
| // to just explicitly handle the current thread in the callers to this code. |
| CHECK_NE(thread, soa.Self()) << "Attempt to suspend for debugger the current thread"; |
| // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend |
| // count, or else we've waited and it has self suspended) or is the current thread, we're |
| // done. |
| if (thread->IsSuspended()) { |
| return thread; |
| } |
| if (total_delay_us >= kTimeoutUs) { |
| LOG(ERROR) << "Thread suspension timed out: " << peer; |
| if (did_suspend_request) { |
| thread->ModifySuspendCount(soa.Self(), -1, true /* for_debugger */); |
| } |
| *timeout = true; |
| return NULL; |
| } |
| } |
| // Release locks and come out of runnable state. |
| } |
| for (int i = kMaxMutexLevel; i >= 0; --i) { |
| BaseMutex* held_mutex = Thread::Current()->GetHeldMutex(static_cast<LockLevel>(i)); |
| if (held_mutex != NULL) { |
| LOG(FATAL) << "Holding " << held_mutex->GetName() |
| << " while sleeping for thread suspension"; |
| } |
| } |
| { |
| useconds_t new_delay_us = delay_us * 2; |
| CHECK_GE(new_delay_us, delay_us); |
| if (new_delay_us < 500000) { // Don't allow sleeping to be more than 0.5s. |
| delay_us = new_delay_us; |
| } |
| } |
| if (delay_us == 0) { |
| sched_yield(); |
| // Default to 1 milliseconds (note that this gets multiplied by 2 before the first sleep). |
| delay_us = 500; |
| } else { |
| usleep(delay_us); |
| total_delay_us += delay_us; |
| } |
| } |
| } |
| |
| void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) { |
| std::string group_name; |
| int priority; |
| bool is_daemon = false; |
| Thread* self = Thread::Current(); |
| |
| if (thread != NULL && thread->peer_ != NULL) { |
| ScopedObjectAccess soa(self); |
| Object* native_peer = soa.Decode<Object*>(thread->peer_); |
| priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->GetInt(native_peer); |
| is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(native_peer); |
| |
| Object* thread_group = thread->GetThreadGroup(soa); |
| if (thread_group != NULL) { |
| Field* group_name_field = soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name); |
| String* group_name_string = reinterpret_cast<String*>(group_name_field->GetObject(thread_group)); |
| group_name = (group_name_string != NULL) ? group_name_string->ToModifiedUtf8() : "<null>"; |
| } |
| } else { |
| priority = GetNativePriority(); |
| } |
| |
| std::string scheduler_group_name(GetSchedulerGroupName(tid)); |
| if (scheduler_group_name.empty()) { |
| scheduler_group_name = "default"; |
| } |
| |
| if (thread != NULL) { |
| os << '"' << *thread->name_ << '"'; |
| if (is_daemon) { |
| os << " daemon"; |
| } |
| MutexLock mu(self, *Locks::thread_suspend_count_lock_); |
| os << " prio=" << priority |
| << " tid=" << thread->GetThinLockId() |
| << " " << thread->GetState() << "\n"; |
| } else { |
| os << '"' << ::art::GetThreadName(tid) << '"' |
| << " prio=" << priority |
| << " (not attached)\n"; |
| } |
| |
| if (thread != NULL) { |
| MutexLock mu(self, *Locks::thread_suspend_count_lock_); |
| os << " | group=\"" << group_name << "\"" |
| << " sCount=" << thread->suspend_count_ |
| << " dsCount=" << thread->debug_suspend_count_ |
| << " obj=" << reinterpret_cast<void*>(thread->peer_) |
| << " self=" << reinterpret_cast<const void*>(thread) << "\n"; |
| } |
| |
| os << " | sysTid=" << tid |
| << " nice=" << getpriority(PRIO_PROCESS, tid) |
| << " cgrp=" << scheduler_group_name; |
| if (thread != NULL) { |
| int policy; |
| sched_param sp; |
| CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->pthread_self_, &policy, &sp), __FUNCTION__); |
| os << " sched=" << policy << "/" << sp.sched_priority |
| << " handle=" << reinterpret_cast<void*>(thread->pthread_self_); |
| } |
| os << "\n"; |
| |
| // Grab the scheduler stats for this thread. |
| std::string scheduler_stats; |
| if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) { |
| scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'. |
| } else { |
| scheduler_stats = "0 0 0"; |
| } |
| |
| char native_thread_state = '?'; |
| int utime = 0; |
| int stime = 0; |
| int task_cpu = 0; |
| GetTaskStats(tid, native_thread_state, utime, stime, task_cpu); |
| |
| os << " | state=" << native_thread_state |
| << " schedstat=( " << scheduler_stats << " )" |
| << " utm=" << utime |
| << " stm=" << stime |
| << " core=" << task_cpu |
| << " HZ=" << sysconf(_SC_CLK_TCK) << "\n"; |
| if (thread != NULL) { |
| os << " | stack=" << reinterpret_cast<void*>(thread->stack_begin_) << "-" << reinterpret_cast<void*>(thread->stack_end_) |
| << " stackSize=" << PrettySize(thread->stack_size_) << "\n"; |
| } |
| } |
| |
| void Thread::DumpState(std::ostream& os) const { |
| Thread::DumpState(os, this, GetTid()); |
| } |
| |
| struct StackDumpVisitor : public StackVisitor { |
| StackDumpVisitor(std::ostream& os, const Thread* thread, Context* context, bool can_allocate) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| : StackVisitor(thread->GetManagedStack(), thread->GetTraceStack(), context), |
| os(os), thread(thread), can_allocate(can_allocate), |
| last_method(NULL), last_line_number(0), repetition_count(0), frame_count(0) { |
| } |
| |
| virtual ~StackDumpVisitor() { |
| if (frame_count == 0) { |
| os << " (no managed stack frames)\n"; |
| } |
| } |
| |
| bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| AbstractMethod* m = GetMethod(); |
| if (m->IsRuntimeMethod()) { |
| return true; |
| } |
| const int kMaxRepetition = 3; |
| Class* c = m->GetDeclaringClass(); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| const DexCache* dex_cache = c->GetDexCache(); |
| int line_number = -1; |
| if (dex_cache != NULL) { // be tolerant of bad input |
| const DexFile& dex_file = class_linker->FindDexFile(dex_cache); |
| line_number = dex_file.GetLineNumFromPC(m, GetDexPc()); |
| } |
| if (line_number == last_line_number && last_method == m) { |
| repetition_count++; |
| } else { |
| if (repetition_count >= kMaxRepetition) { |
| os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n"; |
| } |
| repetition_count = 0; |
| last_line_number = line_number; |
| last_method = m; |
| } |
| if (repetition_count < kMaxRepetition) { |
| os << " at " << PrettyMethod(m, false); |
| if (m->IsNative()) { |
| os << "(Native method)"; |
| } else { |
| mh.ChangeMethod(m); |
| const char* source_file(mh.GetDeclaringClassSourceFile()); |
| os << "(" << (source_file != NULL ? source_file : "unavailable") |
| << ":" << line_number << ")"; |
| } |
| os << "\n"; |
| if (frame_count == 0) { |
| Monitor::DescribeWait(os, thread); |
| } |
| if (can_allocate) { |
| Monitor::DescribeLocks(os, this); |
| } |
| } |
| |
| ++frame_count; |
| return true; |
| } |
| std::ostream& os; |
| const Thread* thread; |
| bool can_allocate; |
| MethodHelper mh; |
| AbstractMethod* last_method; |
| int last_line_number; |
| int repetition_count; |
| int frame_count; |
| }; |
| |
| void Thread::DumpStack(std::ostream& os) const { |
| // If we're currently in native code, dump that stack before dumping the managed stack. |
| if (GetState() == kNative) { |
| DumpKernelStack(os, GetTid(), " kernel: ", false); |
| DumpNativeStack(os, GetTid(), " native: ", false); |
| } |
| UniquePtr<Context> context(Context::Create()); |
| StackDumpVisitor dumper(os, this, context.get(), !throwing_OutOfMemoryError_); |
| dumper.WalkStack(); |
| } |
| |
| void Thread::ThreadExitCallback(void* arg) { |
| Thread* self = reinterpret_cast<Thread*>(arg); |
| if (self->thread_exit_check_count_ == 0) { |
| LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's going to use a pthread_key_create destructor?): " << *self; |
| CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self"); |
| self->thread_exit_check_count_ = 1; |
| } else { |
| LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self; |
| } |
| } |
| |
| void Thread::Startup() { |
| { |
| MutexLock mu(*Locks::thread_suspend_count_lock_); // Keep GCC happy. |
| resume_cond_ = new ConditionVariable("Thread resumption condition variable"); |
| } |
| |
| // Allocate a TLS slot. |
| CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key"); |
| |
| // Double-check the TLS slot allocation. |
| if (pthread_getspecific(pthread_key_self_) != NULL) { |
| LOG(FATAL) << "Newly-created pthread TLS slot is not NULL"; |
| } |
| } |
| |
| void Thread::FinishStartup() { |
| Runtime* runtime = Runtime::Current(); |
| CHECK(runtime->IsStarted()); |
| |
| // Finish attaching the main thread. |
| ScopedObjectAccess soa(Thread::Current()); |
| Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup()); |
| |
| Runtime::Current()->GetClassLinker()->RunRootClinits(); |
| } |
| |
| void Thread::Shutdown() { |
| CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key"); |
| } |
| |
| Thread::Thread(bool daemon) |
| : suspend_count_(0), |
| card_table_(NULL), |
| exception_(NULL), |
| stack_end_(NULL), |
| managed_stack_(), |
| jni_env_(NULL), |
| self_(NULL), |
| peer_(NULL), |
| stack_begin_(NULL), |
| stack_size_(0), |
| thin_lock_id_(0), |
| tid_(0), |
| wait_mutex_(new Mutex("a thread wait mutex")), |
| wait_cond_(new ConditionVariable("a thread wait condition variable")), |
| wait_monitor_(NULL), |
| interrupted_(false), |
| wait_next_(NULL), |
| monitor_enter_object_(NULL), |
| top_sirt_(NULL), |
| runtime_(NULL), |
| class_loader_override_(NULL), |
| long_jump_context_(NULL), |
| throwing_OutOfMemoryError_(false), |
| debug_suspend_count_(0), |
| debug_invoke_req_(new DebugInvokeReq), |
| trace_stack_(new std::vector<TraceStackFrame>), |
| name_(new std::string(kThreadNameDuringStartup)), |
| daemon_(daemon), |
| pthread_self_(0), |
| no_thread_suspension_(0), |
| last_no_thread_suspension_cause_(NULL), |
| thread_exit_check_count_(0) { |
| CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread); |
| state_and_flags_.as_struct.flags = 0; |
| state_and_flags_.as_struct.state = kNative; |
| memset(&held_mutexes_[0], 0, sizeof(held_mutexes_)); |
| } |
| |
| bool Thread::IsStillStarting() const { |
| // You might think you can check whether the state is kStarting, but for much of thread startup, |
| // the thread might also be in kVmWait. |
| // You might think you can check whether the peer is NULL, but the peer is actually created and |
| // assigned fairly early on, and needs to be. |
| // It turns out that the last thing to change is the thread name; that's a good proxy for "has |
| // this thread _ever_ entered kRunnable". |
| return (*name_ == kThreadNameDuringStartup); |
| } |
| |
| void Thread::AssertNoPendingException() const { |
| if (UNLIKELY(IsExceptionPending())) { |
| ScopedObjectAccess soa(Thread::Current()); |
| Throwable* exception = GetException(); |
| LOG(FATAL) << "No pending exception expected: " << exception->Dump(); |
| } |
| } |
| |
| static void MonitorExitVisitor(const Object* object, void* arg) NO_THREAD_SAFETY_ANALYSIS { |
| Thread* self = reinterpret_cast<Thread*>(arg); |
| Object* entered_monitor = const_cast<Object*>(object); |
| if (self->HoldsLock(entered_monitor)) { |
| LOG(WARNING) << "Calling MonitorExit on object " |
| << object << " (" << PrettyTypeOf(object) << ")" |
| << " left locked by native thread " |
| << *Thread::Current() << " which is detaching"; |
| entered_monitor->MonitorExit(self); |
| } |
| } |
| |
| void Thread::Destroy() { |
| // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited. |
| if (jni_env_ != NULL) { |
| jni_env_->monitors.VisitRoots(MonitorExitVisitor, Thread::Current()); |
| } |
| |
| if (peer_ != NULL) { |
| Thread* self = this; |
| |
| // We may need to call user-supplied managed code. |
| ScopedObjectAccess soa(this); |
| |
| HandleUncaughtExceptions(soa); |
| RemoveFromThreadGroup(soa); |
| |
| // this.vmData = 0; |
| SetVmData(soa, soa.Decode<Object*>(peer_), NULL); |
| |
| Dbg::PostThreadDeath(self); |
| |
| // Thread.join() is implemented as an Object.wait() on the Thread.lock |
| // object. Signal anyone who is waiting. |
| Object* lock = soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)-> |
| GetObject(soa.Decode<Object*>(peer_)); |
| // (This conditional is only needed for tests, where Thread.lock won't have been set.) |
| if (lock != NULL) { |
| lock->MonitorEnter(self); |
| lock->NotifyAll(); |
| lock->MonitorExit(self); |
| } |
| } |
| } |
| |
| Thread::~Thread() { |
| if (jni_env_ != NULL && peer_ != NULL) { |
| // If pthread_create fails we don't have a jni env here. |
| jni_env_->DeleteGlobalRef(peer_); |
| } |
| peer_ = NULL; |
| |
| delete jni_env_; |
| jni_env_ = NULL; |
| |
| CHECK_NE(GetState(), kRunnable); |
| // We may be deleting a still born thread. |
| SetStateUnsafe(kTerminated); |
| |
| delete wait_cond_; |
| delete wait_mutex_; |
| |
| #if !defined(ART_USE_LLVM_COMPILER) |
| delete long_jump_context_; |
| #endif |
| |
| delete debug_invoke_req_; |
| delete trace_stack_; |
| delete name_; |
| |
| TearDownAlternateSignalStack(); |
| } |
| |
| void Thread::HandleUncaughtExceptions(const ScopedObjectAccess& soa) { |
| if (!IsExceptionPending()) { |
| return; |
| } |
| // Get and clear the exception. |
| Object* exception = GetException(); |
| ClearException(); |
| |
| // If the thread has its own handler, use that. |
| Object* handler = |
| soa.DecodeField(WellKnownClasses::java_lang_Thread_uncaughtHandler)-> |
| GetObject(soa.Decode<Object*>(peer_)); |
| if (handler == NULL) { |
| // Otherwise use the thread group's default handler. |
| handler = GetThreadGroup(soa); |
| } |
| |
| // Call the handler. |
| jmethodID mid = WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException; |
| AbstractMethod* m = handler->GetClass()->FindVirtualMethodForVirtualOrInterface(soa.DecodeMethod(mid)); |
| JValue args[2]; |
| args[0].SetL(soa.Decode<Object*>(peer_)); |
| args[1].SetL(exception); |
| m->Invoke(this, handler, args, NULL); |
| |
| // If the handler threw, clear that exception too. |
| ClearException(); |
| } |
| |
| Object* Thread::GetThreadGroup(const ScopedObjectAccessUnchecked& soa) const { |
| return soa.DecodeField(WellKnownClasses::java_lang_Thread_group)-> |
| GetObject(soa.Decode<Object*>(peer_)); |
| } |
| |
| void Thread::RemoveFromThreadGroup(const ScopedObjectAccess& soa) { |
| // this.group.removeThread(this); |
| // group can be null if we're in the compiler or a test. |
| Object* group = GetThreadGroup(soa); |
| if (group != NULL) { |
| jmethodID mid = WellKnownClasses::java_lang_ThreadGroup_removeThread; |
| AbstractMethod* m = group->GetClass()->FindVirtualMethodForVirtualOrInterface(soa.DecodeMethod(mid)); |
| JValue args[1]; |
| args[0].SetL(soa.Decode<Object*>(peer_)); |
| m->Invoke(this, group, args, NULL); |
| } |
| } |
| |
| size_t Thread::NumSirtReferences() { |
| size_t count = 0; |
| for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { |
| count += cur->NumberOfReferences(); |
| } |
| return count; |
| } |
| |
| bool Thread::SirtContains(jobject obj) { |
| Object** sirt_entry = reinterpret_cast<Object**>(obj); |
| for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { |
| if (cur->Contains(sirt_entry)) { |
| return true; |
| } |
| } |
| // JNI code invoked from portable code uses shadow frames rather than the SIRT. |
| return managed_stack_.ShadowFramesContain(sirt_entry); |
| } |
| |
| void Thread::SirtVisitRoots(Heap::RootVisitor* visitor, void* arg) { |
| for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { |
| size_t num_refs = cur->NumberOfReferences(); |
| for (size_t j = 0; j < num_refs; j++) { |
| Object* object = cur->GetReference(j); |
| if (object != NULL) { |
| visitor(object, arg); |
| } |
| } |
| } |
| } |
| |
| Object* Thread::DecodeJObject(jobject obj) { |
| Locks::mutator_lock_->AssertSharedHeld(this); |
| if (obj == NULL) { |
| return NULL; |
| } |
| IndirectRef ref = reinterpret_cast<IndirectRef>(obj); |
| IndirectRefKind kind = GetIndirectRefKind(ref); |
| Object* result; |
| switch (kind) { |
| case kLocal: |
| { |
| IndirectReferenceTable& locals = jni_env_->locals; |
| result = const_cast<Object*>(locals.Get(ref)); |
| break; |
| } |
| case kGlobal: |
| { |
| JavaVMExt* vm = Runtime::Current()->GetJavaVM(); |
| IndirectReferenceTable& globals = vm->globals; |
| MutexLock mu(this, vm->globals_lock); |
| result = const_cast<Object*>(globals.Get(ref)); |
| break; |
| } |
| case kWeakGlobal: |
| { |
| JavaVMExt* vm = Runtime::Current()->GetJavaVM(); |
| IndirectReferenceTable& weak_globals = vm->weak_globals; |
| MutexLock mu(this, vm->weak_globals_lock); |
| result = const_cast<Object*>(weak_globals.Get(ref)); |
| if (result == kClearedJniWeakGlobal) { |
| // This is a special case where it's okay to return NULL. |
| return NULL; |
| } |
| break; |
| } |
| case kSirtOrInvalid: |
| default: |
| // TODO: make stack indirect reference table lookup more efficient |
| // Check if this is a local reference in the SIRT |
| if (SirtContains(obj)) { |
| result = *reinterpret_cast<Object**>(obj); // Read from SIRT |
| } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) { |
| // Assume an invalid local reference is actually a direct pointer. |
| result = reinterpret_cast<Object*>(obj); |
| } else { |
| result = kInvalidIndirectRefObject; |
| } |
| } |
| |
| if (result == NULL) { |
| JniAbortF(NULL, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj); |
| } else { |
| if (result != kInvalidIndirectRefObject) { |
| Runtime::Current()->GetHeap()->VerifyObject(result); |
| } |
| } |
| return result; |
| } |
| |
| // Implements java.lang.Thread.interrupted. |
| bool Thread::Interrupted() { |
| MutexLock mu(*wait_mutex_); |
| bool interrupted = interrupted_; |
| interrupted_ = false; |
| return interrupted; |
| } |
| |
| // Implements java.lang.Thread.isInterrupted. |
| bool Thread::IsInterrupted() { |
| MutexLock mu(*wait_mutex_); |
| return interrupted_; |
| } |
| |
| void Thread::Interrupt() { |
| MutexLock mu(*wait_mutex_); |
| if (interrupted_) { |
| return; |
| } |
| interrupted_ = true; |
| NotifyLocked(); |
| } |
| |
| void Thread::Notify() { |
| MutexLock mu(*wait_mutex_); |
| NotifyLocked(); |
| } |
| |
| void Thread::NotifyLocked() { |
| if (wait_monitor_ != NULL) { |
| wait_cond_->Signal(); |
| } |
| } |
| |
| class CountStackDepthVisitor : public StackVisitor { |
| public: |
| CountStackDepthVisitor(const ManagedStack* stack, |
| const std::vector<TraceStackFrame>* trace_stack) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| : StackVisitor(stack, trace_stack, NULL), |
| depth_(0), skip_depth_(0), skipping_(true) {} |
| |
| bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| // We want to skip frames up to and including the exception's constructor. |
| // Note we also skip the frame if it doesn't have a method (namely the callee |
| // save frame) |
| AbstractMethod* m = GetMethod(); |
| if (skipping_ && !m->IsRuntimeMethod() && |
| !Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) { |
| skipping_ = false; |
| } |
| if (!skipping_) { |
| if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save). |
| ++depth_; |
| } |
| } else { |
| ++skip_depth_; |
| } |
| return true; |
| } |
| |
| int GetDepth() const { |
| return depth_; |
| } |
| |
| int GetSkipDepth() const { |
| return skip_depth_; |
| } |
| |
| private: |
| uint32_t depth_; |
| uint32_t skip_depth_; |
| bool skipping_; |
| }; |
| |
| class BuildInternalStackTraceVisitor : public StackVisitor { |
| public: |
| explicit BuildInternalStackTraceVisitor(const ManagedStack* stack, |
| const std::vector<TraceStackFrame>* trace_stack, |
| int skip_depth) |
| : StackVisitor(stack, trace_stack, NULL), |
| skip_depth_(skip_depth), count_(0), dex_pc_trace_(NULL), method_trace_(NULL) {} |
| |
| bool Init(int depth, const ScopedObjectAccess& soa) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| // Allocate method trace with an extra slot that will hold the PC trace |
| SirtRef<ObjectArray<Object> > |
| method_trace(Runtime::Current()->GetClassLinker()->AllocObjectArray<Object>(depth + 1)); |
| if (method_trace.get() == NULL) { |
| return false; |
| } |
| IntArray* dex_pc_trace = IntArray::Alloc(depth); |
| if (dex_pc_trace == NULL) { |
| return false; |
| } |
| // Save PC trace in last element of method trace, also places it into the |
| // object graph. |
| method_trace->Set(depth, dex_pc_trace); |
| // Set the Object*s and assert that no thread suspension is now possible. |
| const char* last_no_suspend_cause = |
| soa.Self()->StartAssertNoThreadSuspension("Building internal stack trace"); |
| CHECK(last_no_suspend_cause == NULL) << last_no_suspend_cause; |
| method_trace_ = method_trace.get(); |
| dex_pc_trace_ = dex_pc_trace; |
| return true; |
| } |
| |
| virtual ~BuildInternalStackTraceVisitor() { |
| if (method_trace_ != NULL) { |
| Thread::Current()->EndAssertNoThreadSuspension(NULL); |
| } |
| } |
| |
| bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| if (method_trace_ == NULL || dex_pc_trace_ == NULL) { |
| return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError. |
| } |
| if (skip_depth_ > 0) { |
| skip_depth_--; |
| return true; |
| } |
| AbstractMethod* m = GetMethod(); |
| if (m->IsRuntimeMethod()) { |
| return true; // Ignore runtime frames (in particular callee save). |
| } |
| method_trace_->Set(count_, m); |
| dex_pc_trace_->Set(count_, GetDexPc()); |
| ++count_; |
| return true; |
| } |
| |
| ObjectArray<Object>* GetInternalStackTrace() const { |
| return method_trace_; |
| } |
| |
| private: |
| // How many more frames to skip. |
| int32_t skip_depth_; |
| // Current position down stack trace. |
| uint32_t count_; |
| // Array of dex PC values. |
| IntArray* dex_pc_trace_; |
| // An array of the methods on the stack, the last entry is a reference to the PC trace. |
| ObjectArray<Object>* method_trace_; |
| }; |
| |
| void Thread::PushSirt(StackIndirectReferenceTable* sirt) { |
| sirt->SetLink(top_sirt_); |
| top_sirt_ = sirt; |
| } |
| |
| StackIndirectReferenceTable* Thread::PopSirt() { |
| CHECK(top_sirt_ != NULL); |
| StackIndirectReferenceTable* sirt = top_sirt_; |
| top_sirt_ = top_sirt_->GetLink(); |
| return sirt; |
| } |
| |
| jobject Thread::CreateInternalStackTrace(const ScopedObjectAccess& soa) const { |
| // Compute depth of stack |
| CountStackDepthVisitor count_visitor(GetManagedStack(), GetTraceStack()); |
| count_visitor.WalkStack(); |
| int32_t depth = count_visitor.GetDepth(); |
| int32_t skip_depth = count_visitor.GetSkipDepth(); |
| |
| // Build internal stack trace |
| BuildInternalStackTraceVisitor build_trace_visitor(GetManagedStack(), GetTraceStack(), |
| skip_depth); |
| if (!build_trace_visitor.Init(depth, soa)) { |
| return NULL; // Allocation failed |
| } |
| build_trace_visitor.WalkStack(); |
| return soa.AddLocalReference<jobjectArray>(build_trace_visitor.GetInternalStackTrace()); |
| } |
| |
| jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal, |
| jobjectArray output_array, int* stack_depth) { |
| // Transition into runnable state to work on Object*/Array* |
| ScopedObjectAccess soa(env); |
| // Decode the internal stack trace into the depth, method trace and PC trace |
| ObjectArray<Object>* method_trace = soa.Decode<ObjectArray<Object>*>(internal); |
| int32_t depth = method_trace->GetLength() - 1; |
| IntArray* pc_trace = down_cast<IntArray*>(method_trace->Get(depth)); |
| |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| |
| jobjectArray result; |
| ObjectArray<StackTraceElement>* java_traces; |
| if (output_array != NULL) { |
| // Reuse the array we were given. |
| result = output_array; |
| java_traces = soa.Decode<ObjectArray<StackTraceElement>*>(output_array); |
| // ...adjusting the number of frames we'll write to not exceed the array length. |
| depth = std::min(depth, java_traces->GetLength()); |
| } else { |
| // Create java_trace array and place in local reference table |
| java_traces = class_linker->AllocStackTraceElementArray(depth); |
| if (java_traces == NULL) { |
| return NULL; |
| } |
| result = soa.AddLocalReference<jobjectArray>(java_traces); |
| } |
| |
| if (stack_depth != NULL) { |
| *stack_depth = depth; |
| } |
| |
| MethodHelper mh; |
| for (int32_t i = 0; i < depth; ++i) { |
| // Prepare parameters for StackTraceElement(String cls, String method, String file, int line) |
| AbstractMethod* method = down_cast<AbstractMethod*>(method_trace->Get(i)); |
| mh.ChangeMethod(method); |
| uint32_t dex_pc = pc_trace->Get(i); |
| int32_t line_number = mh.GetLineNumFromDexPC(dex_pc); |
| // Allocate element, potentially triggering GC |
| // TODO: reuse class_name_object via Class::name_? |
| const char* descriptor = mh.GetDeclaringClassDescriptor(); |
| CHECK(descriptor != NULL); |
| std::string class_name(PrettyDescriptor(descriptor)); |
| SirtRef<String> class_name_object(String::AllocFromModifiedUtf8(class_name.c_str())); |
| if (class_name_object.get() == NULL) { |
| return NULL; |
| } |
| const char* method_name = mh.GetName(); |
| CHECK(method_name != NULL); |
| SirtRef<String> method_name_object(String::AllocFromModifiedUtf8(method_name)); |
| if (method_name_object.get() == NULL) { |
| return NULL; |
| } |
| const char* source_file = mh.GetDeclaringClassSourceFile(); |
| SirtRef<String> source_name_object(String::AllocFromModifiedUtf8(source_file)); |
| StackTraceElement* obj = StackTraceElement::Alloc(class_name_object.get(), |
| method_name_object.get(), |
| source_name_object.get(), |
| line_number); |
| if (obj == NULL) { |
| return NULL; |
| } |
| #ifdef MOVING_GARBAGE_COLLECTOR |
| // Re-read after potential GC |
| java_traces = Decode<ObjectArray<Object>*>(soa.Env(), result); |
| method_trace = down_cast<ObjectArray<Object>*>(Decode<Object*>(soa.Env(), internal)); |
| pc_trace = down_cast<IntArray*>(method_trace->Get(depth)); |
| #endif |
| java_traces->Set(i, obj); |
| } |
| return result; |
| } |
| |
| void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) { |
| va_list args; |
| va_start(args, fmt); |
| ThrowNewExceptionV(exception_class_descriptor, fmt, args); |
| va_end(args); |
| } |
| |
| void Thread::ThrowNewExceptionV(const char* exception_class_descriptor, const char* fmt, va_list ap) { |
| std::string msg; |
| StringAppendV(&msg, fmt, ap); |
| ThrowNewException(exception_class_descriptor, msg.c_str()); |
| } |
| |
| void Thread::ThrowNewException(const char* exception_class_descriptor, const char* msg) { |
| AssertNoPendingException(); // Callers should either clear or call ThrowNewWrappedException. |
| ThrowNewWrappedException(exception_class_descriptor, msg); |
| } |
| |
| void Thread::ThrowNewWrappedException(const char* exception_class_descriptor, const char* msg) { |
| // Convert "Ljava/lang/Exception;" into JNI-style "java/lang/Exception". |
| CHECK_EQ('L', exception_class_descriptor[0]); |
| std::string descriptor(exception_class_descriptor + 1); |
| CHECK_EQ(';', descriptor[descriptor.length() - 1]); |
| descriptor.erase(descriptor.length() - 1); |
| |
| JNIEnv* env = GetJniEnv(); |
| jobject cause = env->ExceptionOccurred(); |
| env->ExceptionClear(); |
| |
| ScopedLocalRef<jclass> exception_class(env, env->FindClass(descriptor.c_str())); |
| if (exception_class.get() == NULL) { |
| LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI FindClass failed: " |
| << PrettyTypeOf(GetException()); |
| CHECK(IsExceptionPending()); |
| return; |
| } |
| if (!Runtime::Current()->IsStarted()) { |
| // Something is trying to throw an exception without a started |
| // runtime, which is the common case in the compiler. We won't be |
| // able to invoke the constructor of the exception, so use |
| // AllocObject which will not invoke a constructor. |
| ScopedLocalRef<jthrowable> exception( |
| env, reinterpret_cast<jthrowable>(env->AllocObject(exception_class.get()))); |
| if (exception.get() != NULL) { |
| ScopedObjectAccessUnchecked soa(env); |
| Throwable* t = reinterpret_cast<Throwable*>(soa.Self()->DecodeJObject(exception.get())); |
| t->SetDetailMessage(String::AllocFromModifiedUtf8(msg)); |
| soa.Self()->SetException(t); |
| } else { |
| LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI AllocObject failed: " |
| << PrettyTypeOf(GetException()); |
| CHECK(IsExceptionPending()); |
| } |
| return; |
| } |
| int rc = ::art::ThrowNewException(env, exception_class.get(), msg, cause); |
| if (rc != JNI_OK) { |
| LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI ThrowNew failed: " |
| << PrettyTypeOf(GetException()); |
| CHECK(IsExceptionPending()); |
| } |
| } |
| |
| void Thread::ThrowOutOfMemoryError(const char* msg) { |
| LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s", |
| msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : "")); |
| if (!throwing_OutOfMemoryError_) { |
| throwing_OutOfMemoryError_ = true; |
| ThrowNewException("Ljava/lang/OutOfMemoryError;", msg); |
| } else { |
| Dump(LOG(ERROR)); // The pre-allocated OOME has no stack, so help out and log one. |
| SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError()); |
| } |
| throwing_OutOfMemoryError_ = false; |
| } |
| |
| Thread* Thread::CurrentFromGdb() { |
| return Thread::Current(); |
| } |
| |
| void Thread::DumpFromGdb() const { |
| std::ostringstream ss; |
| Dump(ss); |
| std::string str(ss.str()); |
| // log to stderr for debugging command line processes |
| std::cerr << str; |
| #ifdef HAVE_ANDROID_OS |
| // log to logcat for debugging frameworks processes |
| LOG(INFO) << str; |
| #endif |
| } |
| |
| struct EntryPointInfo { |
| uint32_t offset; |
| const char* name; |
| }; |
| #define ENTRY_POINT_INFO(x) { ENTRYPOINT_OFFSET(x), #x } |
| static const EntryPointInfo gThreadEntryPointInfo[] = { |
| ENTRY_POINT_INFO(pAllocArrayFromCode), |
| ENTRY_POINT_INFO(pAllocArrayFromCodeWithAccessCheck), |
| ENTRY_POINT_INFO(pAllocObjectFromCode), |
| ENTRY_POINT_INFO(pAllocObjectFromCodeWithAccessCheck), |
| ENTRY_POINT_INFO(pCheckAndAllocArrayFromCode), |
| ENTRY_POINT_INFO(pCheckAndAllocArrayFromCodeWithAccessCheck), |
| ENTRY_POINT_INFO(pInstanceofNonTrivialFromCode), |
| ENTRY_POINT_INFO(pCanPutArrayElementFromCode), |
| ENTRY_POINT_INFO(pCheckCastFromCode), |
| ENTRY_POINT_INFO(pDebugMe), |
| ENTRY_POINT_INFO(pUpdateDebuggerFromCode), |
| ENTRY_POINT_INFO(pInitializeStaticStorage), |
| ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccessFromCode), |
| ENTRY_POINT_INFO(pInitializeTypeFromCode), |
| ENTRY_POINT_INFO(pResolveStringFromCode), |
| ENTRY_POINT_INFO(pGetAndClearException), |
| ENTRY_POINT_INFO(pSet32Instance), |
| ENTRY_POINT_INFO(pSet32Static), |
| ENTRY_POINT_INFO(pSet64Instance), |
| ENTRY_POINT_INFO(pSet64Static), |
| ENTRY_POINT_INFO(pSetObjInstance), |
| ENTRY_POINT_INFO(pSetObjStatic), |
| ENTRY_POINT_INFO(pGet32Instance), |
| ENTRY_POINT_INFO(pGet32Static), |
| ENTRY_POINT_INFO(pGet64Instance), |
| ENTRY_POINT_INFO(pGet64Static), |
| ENTRY_POINT_INFO(pGetObjInstance), |
| ENTRY_POINT_INFO(pGetObjStatic), |
| ENTRY_POINT_INFO(pHandleFillArrayDataFromCode), |
| ENTRY_POINT_INFO(pFindNativeMethod), |
| ENTRY_POINT_INFO(pJniMethodStart), |
| ENTRY_POINT_INFO(pJniMethodStartSynchronized), |
| ENTRY_POINT_INFO(pJniMethodEnd), |
| ENTRY_POINT_INFO(pJniMethodEndSynchronized), |
| ENTRY_POINT_INFO(pJniMethodEndWithReference), |
| ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized), |
| ENTRY_POINT_INFO(pLockObjectFromCode), |
| ENTRY_POINT_INFO(pUnlockObjectFromCode), |
| ENTRY_POINT_INFO(pCmpgDouble), |
| ENTRY_POINT_INFO(pCmpgFloat), |
| ENTRY_POINT_INFO(pCmplDouble), |
| ENTRY_POINT_INFO(pCmplFloat), |
| ENTRY_POINT_INFO(pDadd), |
| ENTRY_POINT_INFO(pDdiv), |
| ENTRY_POINT_INFO(pDmul), |
| ENTRY_POINT_INFO(pDsub), |
| ENTRY_POINT_INFO(pF2d), |
| ENTRY_POINT_INFO(pFmod), |
| ENTRY_POINT_INFO(pSqrt), |
| ENTRY_POINT_INFO(pI2d), |
| ENTRY_POINT_INFO(pL2d), |
| ENTRY_POINT_INFO(pD2f), |
| ENTRY_POINT_INFO(pFadd), |
| ENTRY_POINT_INFO(pFdiv), |
| ENTRY_POINT_INFO(pFmodf), |
| ENTRY_POINT_INFO(pFmul), |
| ENTRY_POINT_INFO(pFsub), |
| ENTRY_POINT_INFO(pI2f), |
| ENTRY_POINT_INFO(pL2f), |
| ENTRY_POINT_INFO(pD2iz), |
| ENTRY_POINT_INFO(pF2iz), |
| ENTRY_POINT_INFO(pIdivmod), |
| ENTRY_POINT_INFO(pD2l), |
| ENTRY_POINT_INFO(pF2l), |
| ENTRY_POINT_INFO(pLdiv), |
| ENTRY_POINT_INFO(pLdivmod), |
| ENTRY_POINT_INFO(pLmul), |
| ENTRY_POINT_INFO(pShlLong), |
| ENTRY_POINT_INFO(pShrLong), |
| ENTRY_POINT_INFO(pUshrLong), |
| ENTRY_POINT_INFO(pIndexOf), |
| ENTRY_POINT_INFO(pMemcmp16), |
| ENTRY_POINT_INFO(pStringCompareTo), |
| ENTRY_POINT_INFO(pMemcpy), |
| ENTRY_POINT_INFO(pUnresolvedDirectMethodTrampolineFromCode), |
| ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck), |
| ENTRY_POINT_INFO(pInvokeInterfaceTrampoline), |
| ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck), |
| ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck), |
| ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck), |
| ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck), |
| ENTRY_POINT_INFO(pCheckSuspendFromCode), |
| ENTRY_POINT_INFO(pTestSuspendFromCode), |
| ENTRY_POINT_INFO(pDeliverException), |
| ENTRY_POINT_INFO(pThrowAbstractMethodErrorFromCode), |
| ENTRY_POINT_INFO(pThrowArrayBoundsFromCode), |
| ENTRY_POINT_INFO(pThrowDivZeroFromCode), |
| ENTRY_POINT_INFO(pThrowNoSuchMethodFromCode), |
| ENTRY_POINT_INFO(pThrowNullPointerFromCode), |
| ENTRY_POINT_INFO(pThrowStackOverflowFromCode), |
| }; |
| #undef ENTRY_POINT_INFO |
| |
| void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) { |
| CHECK_EQ(size_of_pointers, 4U); // TODO: support 64-bit targets. |
| |
| #define DO_THREAD_OFFSET(x) if (offset == static_cast<uint32_t>(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { os << # x; return; } |
| DO_THREAD_OFFSET(state_and_flags_); |
| DO_THREAD_OFFSET(card_table_); |
| DO_THREAD_OFFSET(exception_); |
| DO_THREAD_OFFSET(jni_env_); |
| DO_THREAD_OFFSET(self_); |
| DO_THREAD_OFFSET(stack_end_); |
| DO_THREAD_OFFSET(suspend_count_); |
| DO_THREAD_OFFSET(thin_lock_id_); |
| //DO_THREAD_OFFSET(top_of_managed_stack_); |
| //DO_THREAD_OFFSET(top_of_managed_stack_pc_); |
| DO_THREAD_OFFSET(top_sirt_); |
| #undef DO_THREAD_OFFSET |
| |
| size_t entry_point_count = arraysize(gThreadEntryPointInfo); |
| CHECK_EQ(entry_point_count * size_of_pointers, sizeof(EntryPoints)); |
| uint32_t expected_offset = OFFSETOF_MEMBER(Thread, entrypoints_); |
| for (size_t i = 0; i < entry_point_count; ++i) { |
| CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset) << gThreadEntryPointInfo[i].name; |
| expected_offset += size_of_pointers; |
| if (gThreadEntryPointInfo[i].offset == offset) { |
| os << gThreadEntryPointInfo[i].name; |
| return; |
| } |
| } |
| os << offset; |
| } |
| |
| static const bool kDebugExceptionDelivery = false; |
| class CatchBlockStackVisitor : public StackVisitor { |
| public: |
| CatchBlockStackVisitor(Thread* self, Throwable* exception) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| : StackVisitor(self->GetManagedStack(), self->GetTraceStack(), self->GetLongJumpContext()), |
| self_(self), exception_(exception), to_find_(exception->GetClass()), throw_method_(NULL), |
| throw_frame_id_(0), throw_dex_pc_(0), handler_quick_frame_(NULL), |
| handler_quick_frame_pc_(0), handler_dex_pc_(0), native_method_count_(0), |
| method_tracing_active_(Runtime::Current()->IsMethodTracingActive()) { |
| // Exception not in root sets, can't allow GC. |
| last_no_assert_suspension_cause_ = self->StartAssertNoThreadSuspension("Finding catch block"); |
| } |
| |
| ~CatchBlockStackVisitor() { |
| LOG(FATAL) << "UNREACHABLE"; // Expected to take long jump. |
| } |
| |
| bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| AbstractMethod* method = GetMethod(); |
| if (method == NULL) { |
| // This is the upcall, we remember the frame and last pc so that we may long jump to them. |
| handler_quick_frame_pc_ = GetCurrentQuickFramePc(); |
| handler_quick_frame_ = GetCurrentQuickFrame(); |
| return false; // End stack walk. |
| } |
| uint32_t dex_pc = DexFile::kDexNoIndex; |
| if (method->IsRuntimeMethod()) { |
| // ignore callee save method |
| DCHECK(method->IsCalleeSaveMethod()); |
| } else { |
| if (throw_method_ == NULL) { |
| throw_method_ = method; |
| throw_frame_id_ = GetFrameId(); |
| throw_dex_pc_ = GetDexPc(); |
| } |
| if (method->IsNative()) { |
| native_method_count_++; |
| } else { |
| // Unwind stack when an exception occurs during method tracing |
| if (UNLIKELY(method_tracing_active_ && IsTraceExitPc(GetCurrentQuickFramePc()))) { |
| uintptr_t pc = TraceMethodUnwindFromCode(Thread::Current()); |
| dex_pc = method->ToDexPc(pc); |
| } else { |
| dex_pc = GetDexPc(); |
| } |
| } |
| } |
| if (dex_pc != DexFile::kDexNoIndex) { |
| uint32_t found_dex_pc = method->FindCatchBlock(to_find_, dex_pc); |
| if (found_dex_pc != DexFile::kDexNoIndex) { |
| handler_dex_pc_ = found_dex_pc; |
| handler_quick_frame_pc_ = method->ToNativePc(found_dex_pc); |
| handler_quick_frame_ = GetCurrentQuickFrame(); |
| return false; // End stack walk. |
| } |
| } |
| return true; // Continue stack walk. |
| } |
| |
| void DoLongJump() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| AbstractMethod* catch_method = *handler_quick_frame_; |
| Dbg::PostException(self_, throw_frame_id_, throw_method_, throw_dex_pc_, |
| catch_method, handler_dex_pc_, exception_); |
| if (kDebugExceptionDelivery) { |
| if (catch_method == NULL) { |
| LOG(INFO) << "Handler is upcall"; |
| } else { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| const DexFile& dex_file = |
| class_linker->FindDexFile(catch_method->GetDeclaringClass()->GetDexCache()); |
| int line_number = dex_file.GetLineNumFromPC(catch_method, handler_dex_pc_); |
| LOG(INFO) << "Handler: " << PrettyMethod(catch_method) << " (line: " << line_number << ")"; |
| } |
| } |
| self_->SetException(exception_); // Exception back in root set. |
| self_->EndAssertNoThreadSuspension(last_no_assert_suspension_cause_); |
| // Place context back on thread so it will be available when we continue. |
| self_->ReleaseLongJumpContext(context_); |
| context_->SetSP(reinterpret_cast<uintptr_t>(handler_quick_frame_)); |
| CHECK_NE(handler_quick_frame_pc_, 0u); |
| context_->SetPC(handler_quick_frame_pc_); |
| context_->SmashCallerSaves(); |
| context_->DoLongJump(); |
| } |
| |
| private: |
| Thread* self_; |
| Throwable* exception_; |
| // The type of the exception catch block to find. |
| Class* to_find_; |
| AbstractMethod* throw_method_; |
| JDWP::FrameId throw_frame_id_; |
| uint32_t throw_dex_pc_; |
| // Quick frame with found handler or last frame if no handler found. |
| AbstractMethod** handler_quick_frame_; |
| // PC to branch to for the handler. |
| uintptr_t handler_quick_frame_pc_; |
| // Associated dex PC. |
| uint32_t handler_dex_pc_; |
| // Number of native methods passed in crawl (equates to number of SIRTs to pop) |
| uint32_t native_method_count_; |
| // Is method tracing active? |
| const bool method_tracing_active_; |
| // Support for nesting no thread suspension checks. |
| const char* last_no_assert_suspension_cause_; |
| }; |
| |
| void Thread::DeliverException() { |
| Throwable* exception = GetException(); // Get exception from thread |
| CHECK(exception != NULL); |
| // Don't leave exception visible while we try to find the handler, which may cause class |
| // resolution. |
| ClearException(); |
| if (kDebugExceptionDelivery) { |
| String* msg = exception->GetDetailMessage(); |
| std::string str_msg(msg != NULL ? msg->ToModifiedUtf8() : ""); |
| DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception) |
| << ": " << str_msg << "\n"); |
| } |
| CatchBlockStackVisitor catch_finder(this, exception); |
| catch_finder.WalkStack(true); |
| catch_finder.DoLongJump(); |
| LOG(FATAL) << "UNREACHABLE"; |
| } |
| |
| Context* Thread::GetLongJumpContext() { |
| Context* result = long_jump_context_; |
| if (result == NULL) { |
| result = Context::Create(); |
| } else { |
| long_jump_context_ = NULL; // Avoid context being shared. |
| } |
| return result; |
| } |
| |
| AbstractMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, size_t* frame_id) const { |
| struct CurrentMethodVisitor : public StackVisitor { |
| CurrentMethodVisitor(const ManagedStack* stack, |
| const std::vector<TraceStackFrame>* trace_stack) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| : StackVisitor(stack, trace_stack, NULL), method_(NULL), dex_pc_(0), frame_id_(0) {} |
| |
| virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| AbstractMethod* m = GetMethod(); |
| if (m->IsRuntimeMethod()) { |
| // Continue if this is a runtime method. |
| return true; |
| } |
| method_ = m; |
| dex_pc_ = GetDexPc(); |
| frame_id_ = GetFrameId(); |
| return false; |
| } |
| AbstractMethod* method_; |
| uint32_t dex_pc_; |
| size_t frame_id_; |
| }; |
| |
| CurrentMethodVisitor visitor(GetManagedStack(), GetTraceStack()); |
| visitor.WalkStack(false); |
| if (dex_pc != NULL) { |
| *dex_pc = visitor.dex_pc_; |
| } |
| if (frame_id != NULL) { |
| *frame_id = visitor.frame_id_; |
| } |
| return visitor.method_; |
| } |
| |
| bool Thread::HoldsLock(Object* object) { |
| if (object == NULL) { |
| return false; |
| } |
| return object->GetThinLockId() == thin_lock_id_; |
| } |
| |
| class ReferenceMapVisitor : public StackVisitor { |
| public: |
| ReferenceMapVisitor(const ManagedStack* stack, const std::vector<TraceStackFrame>* trace_stack, |
| Context* context, Heap::RootVisitor* root_visitor, void* arg) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| : StackVisitor(stack, trace_stack, context), root_visitor_(root_visitor), arg_(arg) {} |
| |
| bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| if (false) { |
| LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod()) |
| << StringPrintf("@ PC:%04x", GetDexPc()); |
| } |
| ShadowFrame* shadow_frame = GetCurrentShadowFrame(); |
| if (shadow_frame != NULL) { |
| shadow_frame->VisitRoots(root_visitor_, arg_); |
| } else { |
| AbstractMethod* m = GetMethod(); |
| // Process register map (which native and runtime methods don't have) |
| if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) { |
| const uint8_t* native_gc_map = m->GetNativeGcMap(); |
| CHECK(native_gc_map != NULL) << PrettyMethod(m); |
| mh_.ChangeMethod(m); |
| const DexFile::CodeItem* code_item = mh_.GetCodeItem(); |
| DCHECK(code_item != NULL) << PrettyMethod(m); // Can't be NULL or how would we compile its instructions? |
| NativePcOffsetToReferenceMap map(native_gc_map); |
| size_t num_regs = std::min(map.RegWidth() * 8, |
| static_cast<size_t>(code_item->registers_size_)); |
| if (num_regs > 0) { |
| const uint8_t* reg_bitmap = map.FindBitMap(GetNativePcOffset()); |
| DCHECK(reg_bitmap != NULL); |
| const VmapTable vmap_table(m->GetVmapTableRaw()); |
| uint32_t core_spills = m->GetCoreSpillMask(); |
| uint32_t fp_spills = m->GetFpSpillMask(); |
| size_t frame_size = m->GetFrameSizeInBytes(); |
| // For all dex registers in the bitmap |
| AbstractMethod** cur_quick_frame = GetCurrentQuickFrame(); |
| DCHECK(cur_quick_frame != NULL); |
| for (size_t reg = 0; reg < num_regs; ++reg) { |
| // Does this register hold a reference? |
| if (TestBitmap(reg, reg_bitmap)) { |
| uint32_t vmap_offset; |
| Object* ref; |
| if (vmap_table.IsInContext(reg, vmap_offset)) { |
| // Compute the register we need to load from the context |
| uint32_t spill_mask = core_spills; |
| CHECK_LT(vmap_offset, static_cast<uint32_t>(__builtin_popcount(spill_mask))); |
| uint32_t matches = 0; |
| uint32_t spill_shifts = 0; |
| while (matches != (vmap_offset + 1)) { |
| DCHECK_NE(spill_mask, 0u); |
| matches += spill_mask & 1; // Add 1 if the low bit is set |
| spill_mask >>= 1; |
| spill_shifts++; |
| } |
| spill_shifts--; // wind back one as we want the last match |
| ref = reinterpret_cast<Object*>(GetGPR(spill_shifts)); |
| } else { |
| ref = reinterpret_cast<Object*>(GetVReg(cur_quick_frame, code_item, core_spills, |
| fp_spills, frame_size, reg)); |
| } |
| if (ref != NULL) { |
| root_visitor_(ref, arg_); |
| } |
| } |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| private: |
| bool TestBitmap(int reg, const uint8_t* reg_vector) { |
| return ((reg_vector[reg / 8] >> (reg % 8)) & 0x01) != 0; |
| } |
| |
| // Call-back when we visit a root. |
| Heap::RootVisitor* root_visitor_; |
| // Argument to call-back. |
| void* arg_; |
| // A method helper we keep around to avoid dex file/cache re-computations. |
| MethodHelper mh_; |
| }; |
| |
| void Thread::VisitRoots(Heap::RootVisitor* visitor, void* arg) { |
| if (exception_ != NULL) { |
| visitor(exception_, arg); |
| } |
| if (class_loader_override_ != NULL) { |
| visitor(class_loader_override_, arg); |
| } |
| jni_env_->locals.VisitRoots(visitor, arg); |
| jni_env_->monitors.VisitRoots(visitor, arg); |
| |
| SirtVisitRoots(visitor, arg); |
| |
| // Visit roots on this thread's stack |
| Context* context = GetLongJumpContext(); |
| ReferenceMapVisitor mapper(GetManagedStack(), GetTraceStack(), context, visitor, arg); |
| mapper.WalkStack(); |
| ReleaseLongJumpContext(context); |
| } |
| |
| #if VERIFY_OBJECT_ENABLED |
| static void VerifyObject(const Object* obj, void* arg) { |
| Heap* heap = reinterpret_cast<Heap*>(arg); |
| heap->VerifyObject(obj); |
| } |
| |
| void Thread::VerifyStack() { |
| UniquePtr<Context> context(Context::Create()); |
| ReferenceMapVisitor mapper(GetManagedStack(), GetTraceStack(), context.get(), VerifyObject, |
| Runtime::Current()->GetHeap()); |
| mapper.WalkStack(); |
| } |
| #endif |
| |
| // Set the stack end to that to be used during a stack overflow |
| void Thread::SetStackEndForStackOverflow() { |
| // During stack overflow we allow use of the full stack |
| if (stack_end_ == stack_begin_) { |
| DumpStack(std::cerr); |
| LOG(FATAL) << "Need to increase kStackOverflowReservedBytes (currently " |
| << kStackOverflowReservedBytes << ")"; |
| } |
| |
| stack_end_ = stack_begin_; |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const Thread& thread) { |
| thread.ShortDump(os); |
| return os; |
| } |
| |
| #ifndef NDEBUG |
| void Thread::AssertThreadSuspensionIsAllowable(bool check_locks) const { |
| CHECK_EQ(0u, no_thread_suspension_) << last_no_thread_suspension_cause_; |
| if (check_locks) { |
| bool bad_mutexes_held = false; |
| for (int i = kMaxMutexLevel; i >= 0; --i) { |
| // We expect no locks except the mutator_lock_. |
| if (i != kMutatorLock) { |
| BaseMutex* held_mutex = GetHeldMutex(static_cast<LockLevel>(i)); |
| if (held_mutex != NULL) { |
| LOG(ERROR) << "holding \"" << held_mutex->GetName() |
| << "\" at point where thread suspension is expected"; |
| bad_mutexes_held = true; |
| } |
| } |
| } |
| CHECK(!bad_mutexes_held); |
| } |
| } |
| #endif |
| |
| } // namespace art |