blob: 2e6e262451779cfb3b9cfe66e57826893765a623 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_ABSTRACT_METHOD_H_
#define ART_RUNTIME_MIRROR_ABSTRACT_METHOD_H_
#include "class.h"
#include "dex_file.h"
#include "invoke_type.h"
#include "locks.h"
#include "modifiers.h"
#include "object.h"
namespace art {
struct AbstractMethodOffsets;
struct ConstructorMethodOffsets;
union JValue;
struct MethodClassOffsets;
class MethodHelper;
struct MethodOffsets;
class StringPiece;
class ShadowFrame;
namespace mirror {
class StaticStorageBase;
typedef void (EntryPointFromInterpreter)(Thread* self, MethodHelper& mh,
const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame, JValue* result);
// C++ mirror of java.lang.reflect.Method and java.lang.reflect.Constructor
class MANAGED AbstractMethod : public Object {
public:
Class* GetDeclaringClass() const;
void SetDeclaringClass(Class *new_declaring_class) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset DeclaringClassOffset() {
return MemberOffset(OFFSETOF_MEMBER(AbstractMethod, declaring_class_));
}
static MemberOffset EntryPointFromCompiledCodeOffset() {
return MemberOffset(OFFSETOF_MEMBER(AbstractMethod, entry_point_from_compiled_code_));
}
uint32_t GetAccessFlags() const;
void SetAccessFlags(uint32_t new_access_flags) {
SetField32(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, access_flags_), new_access_flags, false);
}
// Approximate what kind of method call would be used for this method.
InvokeType GetInvokeType() const;
// Returns true if the method is declared public.
bool IsPublic() const {
return (GetAccessFlags() & kAccPublic) != 0;
}
// Returns true if the method is declared private.
bool IsPrivate() const {
return (GetAccessFlags() & kAccPrivate) != 0;
}
// Returns true if the method is declared static.
bool IsStatic() const {
return (GetAccessFlags() & kAccStatic) != 0;
}
// Returns true if the method is a constructor.
bool IsConstructor() const {
return (GetAccessFlags() & kAccConstructor) != 0;
}
// Returns true if the method is static, private, or a constructor.
bool IsDirect() const {
return IsDirect(GetAccessFlags());
}
static bool IsDirect(uint32_t access_flags) {
return (access_flags & (kAccStatic | kAccPrivate | kAccConstructor)) != 0;
}
// Returns true if the method is declared synchronized.
bool IsSynchronized() const {
uint32_t synchonized = kAccSynchronized | kAccDeclaredSynchronized;
return (GetAccessFlags() & synchonized) != 0;
}
bool IsFinal() const {
return (GetAccessFlags() & kAccFinal) != 0;
}
bool IsMiranda() const {
return (GetAccessFlags() & kAccMiranda) != 0;
}
bool IsNative() const {
return (GetAccessFlags() & kAccNative) != 0;
}
bool IsAbstract() const {
return (GetAccessFlags() & kAccAbstract) != 0;
}
bool IsSynthetic() const {
return (GetAccessFlags() & kAccSynthetic) != 0;
}
bool IsProxyMethod() const;
bool IsPreverified() const {
return (GetAccessFlags() & kAccPreverified) != 0;
}
void SetPreverified() {
SetAccessFlags(GetAccessFlags() | kAccPreverified);
}
bool CheckIncompatibleClassChange(InvokeType type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uint16_t GetMethodIndex() const;
size_t GetVtableIndex() const {
return GetMethodIndex();
}
void SetMethodIndex(uint16_t new_method_index) {
SetField32(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, method_index_), new_method_index, false);
}
static MemberOffset MethodIndexOffset() {
return OFFSET_OF_OBJECT_MEMBER(AbstractMethod, method_index_);
}
uint32_t GetCodeItemOffset() const {
return GetField32(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, code_item_offset_), false);
}
void SetCodeItemOffset(uint32_t new_code_off) {
SetField32(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, code_item_offset_), new_code_off, false);
}
// Number of 32bit registers that would be required to hold all the arguments
static size_t NumArgRegisters(const StringPiece& shorty);
uint32_t GetDexMethodIndex() const;
void SetDexMethodIndex(uint32_t new_idx) {
SetField32(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, method_dex_index_), new_idx, false);
}
ObjectArray<String>* GetDexCacheStrings() const;
void SetDexCacheStrings(ObjectArray<String>* new_dex_cache_strings)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset DexCacheStringsOffset() {
return OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_strings_);
}
static MemberOffset DexCacheResolvedMethodsOffset() {
return OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_methods_);
}
static MemberOffset DexCacheResolvedTypesOffset() {
return OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_types_);
}
static MemberOffset DexCacheInitializedStaticStorageOffset() {
return OFFSET_OF_OBJECT_MEMBER(AbstractMethod,
dex_cache_initialized_static_storage_);
}
ObjectArray<AbstractMethod>* GetDexCacheResolvedMethods() const;
void SetDexCacheResolvedMethods(ObjectArray<AbstractMethod>* new_dex_cache_methods)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ObjectArray<Class>* GetDexCacheResolvedTypes() const;
void SetDexCacheResolvedTypes(ObjectArray<Class>* new_dex_cache_types)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ObjectArray<StaticStorageBase>* GetDexCacheInitializedStaticStorage() const;
void SetDexCacheInitializedStaticStorage(ObjectArray<StaticStorageBase>* new_value)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Find the method that this method overrides
AbstractMethod* FindOverriddenMethod() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void Invoke(Thread* self, uint32_t* args, uint32_t args_size, JValue* result, char result_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
EntryPointFromInterpreter* GetEntryPointFromInterpreter() const {
return GetFieldPtr<EntryPointFromInterpreter*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, entry_point_from_interpreter_), false);
}
void SetEntryPointFromInterpreter(EntryPointFromInterpreter* entry_point_from_interpreter) {
SetFieldPtr<EntryPointFromInterpreter*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, entry_point_from_interpreter_), entry_point_from_interpreter, false);
}
const void* GetEntryPointFromCompiledCode() const {
return GetFieldPtr<const void*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, entry_point_from_compiled_code_), false);
}
void SetEntryPointFromCompiledCode(const void* entry_point_from_compiled_code) {
SetFieldPtr<const void*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, entry_point_from_compiled_code_), entry_point_from_compiled_code, false);
}
uint32_t GetCodeSize() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsWithinCode(uintptr_t pc) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
uintptr_t code = reinterpret_cast<uintptr_t>(GetEntryPointFromCompiledCode());
if (code == 0) {
return pc == 0;
}
/*
* During a stack walk, a return PC may point to the end of the code + 1
* (in the case that the last instruction is a call that isn't expected to
* return. Thus, we check <= code + GetCodeSize().
*/
return (code <= pc && pc <= code + GetCodeSize());
}
void AssertPcIsWithinCode(uintptr_t pc) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uint32_t GetOatCodeOffset() const;
void SetOatCodeOffset(uint32_t code_offset);
static MemberOffset GetEntryPointFromCompiledCodeOffset() {
return OFFSET_OF_OBJECT_MEMBER(AbstractMethod, entry_point_from_compiled_code_);
}
const uint32_t* GetMappingTable() const {
const uint32_t* map = GetMappingTableRaw();
if (map == NULL) {
return map;
}
return map + 1;
}
uint32_t GetPcToDexMappingTableLength() const {
const uint32_t* map = GetMappingTableRaw();
if (map == NULL) {
return 0;
}
return map[2];
}
const uint32_t* GetPcToDexMappingTable() const {
const uint32_t* map = GetMappingTableRaw();
if (map == NULL) {
return map;
}
return map + 3;
}
uint32_t GetDexToPcMappingTableLength() const {
const uint32_t* map = GetMappingTableRaw();
if (map == NULL) {
return 0;
}
return map[1] - map[2];
}
const uint32_t* GetDexToPcMappingTable() const {
const uint32_t* map = GetMappingTableRaw();
if (map == NULL) {
return map;
}
return map + 3 + map[2];
}
const uint32_t* GetMappingTableRaw() const {
return GetFieldPtr<const uint32_t*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, mapping_table_), false);
}
void SetMappingTable(const uint32_t* mapping_table) {
SetFieldPtr<const uint32_t*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, mapping_table_),
mapping_table, false);
}
uint32_t GetOatMappingTableOffset() const;
void SetOatMappingTableOffset(uint32_t mapping_table_offset);
// Callers should wrap the uint16_t* in a VmapTable instance for convenient access.
const uint16_t* GetVmapTableRaw() const {
return GetFieldPtr<const uint16_t*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, vmap_table_), false);
}
void SetVmapTable(const uint16_t* vmap_table) {
SetFieldPtr<const uint16_t*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, vmap_table_), vmap_table, false);
}
uint32_t GetOatVmapTableOffset() const;
void SetOatVmapTableOffset(uint32_t vmap_table_offset);
const uint8_t* GetNativeGcMap() const {
return GetFieldPtr<uint8_t*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, gc_map_), false);
}
void SetNativeGcMap(const uint8_t* data) {
SetFieldPtr<const uint8_t*>(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, gc_map_), data, false);
}
// When building the oat need a convenient place to stuff the offset of the native GC map.
void SetOatNativeGcMapOffset(uint32_t gc_map_offset);
uint32_t GetOatNativeGcMapOffset() const;
size_t GetFrameSizeInBytes() const {
DCHECK_EQ(sizeof(size_t), sizeof(uint32_t));
size_t result = GetField32(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, frame_size_in_bytes_), false);
DCHECK_LE(static_cast<size_t>(kStackAlignment), result);
return result;
}
void SetFrameSizeInBytes(size_t new_frame_size_in_bytes) {
DCHECK_EQ(sizeof(size_t), sizeof(uint32_t));
SetField32(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, frame_size_in_bytes_),
new_frame_size_in_bytes, false);
}
size_t GetReturnPcOffsetInBytes() const {
return GetFrameSizeInBytes() - kPointerSize;
}
size_t GetSirtOffsetInBytes() const {
CHECK(IsNative());
return kPointerSize;
}
bool IsRegistered() const;
void RegisterNative(Thread* self, const void* native_method)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void UnregisterNative(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset NativeMethodOffset() {
return OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_);
}
const void* GetNativeMethod() const {
return reinterpret_cast<const void*>(GetField32(NativeMethodOffset(), false));
}
void SetNativeMethod(const void*);
static MemberOffset GetMethodIndexOffset() {
return OFFSET_OF_OBJECT_MEMBER(AbstractMethod, method_index_);
}
uint32_t GetCoreSpillMask() const {
return GetField32(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, core_spill_mask_), false);
}
void SetCoreSpillMask(uint32_t core_spill_mask) {
// Computed during compilation
SetField32(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, core_spill_mask_), core_spill_mask, false);
}
uint32_t GetFpSpillMask() const {
return GetField32(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, fp_spill_mask_), false);
}
void SetFpSpillMask(uint32_t fp_spill_mask) {
// Computed during compilation
SetField32(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, fp_spill_mask_), fp_spill_mask, false);
}
// Is this a CalleSaveMethod or ResolutionMethod and therefore doesn't adhere to normal
// conventions for a method of managed code. Returns false for Proxy methods.
bool IsRuntimeMethod() const;
// Is this a hand crafted method used for something like describing callee saves?
bool IsCalleeSaveMethod() const;
bool IsResolutionMethod() const;
uintptr_t NativePcOffset(const uintptr_t pc) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Converts a native PC to a dex PC.
uint32_t ToDexPc(const uintptr_t pc) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Converts a dex PC to a native PC.
uintptr_t ToNativePc(const uint32_t dex_pc) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Converts a dex PC to the first corresponding safepoint PC.
uintptr_t ToFirstNativeSafepointPc(const uint32_t dex_pc)
const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Find the catch block for the given exception type and dex_pc. When a catch block is found,
// indicates whether the found catch block is responsible for clearing the exception or whether
// a move-exception instruction is present.
uint32_t FindCatchBlock(Class* exception_type, uint32_t dex_pc, bool* has_no_move_exception) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static void SetClasses(Class* java_lang_reflect_Constructor, Class* java_lang_reflect_Method);
static Class* GetConstructorClass() {
return java_lang_reflect_Constructor_;
}
static Class* GetMethodClass() {
return java_lang_reflect_Method_;
}
static void ResetClasses();
protected:
// Field order required by test "ValidateFieldOrderOfJavaCppUnionClasses".
// The class we are a part of
Class* declaring_class_;
// short cuts to declaring_class_->dex_cache_ member for fast compiled code access
ObjectArray<StaticStorageBase>* dex_cache_initialized_static_storage_;
// short cuts to declaring_class_->dex_cache_ member for fast compiled code access
ObjectArray<AbstractMethod>* dex_cache_resolved_methods_;
// short cuts to declaring_class_->dex_cache_ member for fast compiled code access
ObjectArray<Class>* dex_cache_resolved_types_;
// short cuts to declaring_class_->dex_cache_ member for fast compiled code access
ObjectArray<String>* dex_cache_strings_;
// Access flags; low 16 bits are defined by spec.
uint32_t access_flags_;
// Offset to the CodeItem.
uint32_t code_item_offset_;
// Architecture-dependent register spill mask
uint32_t core_spill_mask_;
// Compiled code associated with this method for callers from managed code.
// May be compiled managed code or a bridge for invoking a native method.
// TODO: Break apart this into portable and quick.
const void* entry_point_from_compiled_code_;
// Called by the interpreter to execute this method.
EntryPointFromInterpreter* entry_point_from_interpreter_;
// Architecture-dependent register spill mask
uint32_t fp_spill_mask_;
// Total size in bytes of the frame
size_t frame_size_in_bytes_;
// Garbage collection map of native PC offsets (quick) or dex PCs (portable) to reference bitmaps.
const uint8_t* gc_map_;
// Mapping from native pc to dex pc
const uint32_t* mapping_table_;
// Index into method_ids of the dex file associated with this method
uint32_t method_dex_index_;
// For concrete virtual methods, this is the offset of the method in Class::vtable_.
//
// For abstract methods in an interface class, this is the offset of the method in
// "iftable_->Get(n)->GetMethodArray()".
//
// For static and direct methods this is the index in the direct methods table.
uint32_t method_index_;
// The target native method registered with this method
const void* native_method_;
// When a register is promoted into a register, the spill mask holds which registers hold dex
// registers. The first promoted register's corresponding dex register is vmap_table_[1], the Nth
// is vmap_table_[N]. vmap_table_[0] holds the length of the table.
const uint16_t* vmap_table_;
static Class* java_lang_reflect_Constructor_;
static Class* java_lang_reflect_Method_;
friend struct art::AbstractMethodOffsets; // for verifying offset information
friend struct art::ConstructorMethodOffsets; // for verifying offset information
friend struct art::MethodOffsets; // for verifying offset information
DISALLOW_IMPLICIT_CONSTRUCTORS(AbstractMethod);
};
class MANAGED Method : public AbstractMethod {};
class MANAGED Constructor : public AbstractMethod {};
class MANAGED AbstractMethodClass : public Class {
private:
Object* ORDER_BY_SIGNATURE_;
friend struct art::MethodClassOffsets; // for verifying offset information
DISALLOW_IMPLICIT_CONSTRUCTORS(AbstractMethodClass);
};
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_ABSTRACT_METHOD_H_