blob: 569ec09ab26a64be6abef501e5cd8641abcd4a4d [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "assembler_x86.h"
#include "casts.h"
#include "memory_region.h"
#include "oat/runtime/oat_support_entrypoints.h"
#include "thread.h"
namespace art {
namespace x86 {
class DirectCallRelocation : public AssemblerFixup {
public:
void Process(const MemoryRegion& region, int position) {
// Direct calls are relative to the following instruction on x86.
int32_t pointer = region.Load<int32_t>(position);
int32_t start = reinterpret_cast<int32_t>(region.start());
int32_t delta = start + position + sizeof(int32_t);
region.Store<int32_t>(position, pointer - delta);
}
};
static const char* kRegisterNames[] = {
"eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi",
};
std::ostream& operator<<(std::ostream& os, const Register& rhs) {
if (rhs >= EAX && rhs <= EDI) {
os << kRegisterNames[rhs];
} else {
os << "Register[" << static_cast<int>(rhs) << "]";
}
return os;
}
std::ostream& operator<<(std::ostream& os, const XmmRegister& reg) {
return os << "XMM" << static_cast<int>(reg);
}
std::ostream& operator<<(std::ostream& os, const X87Register& reg) {
return os << "ST" << static_cast<int>(reg);
}
void X86Assembler::call(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xFF);
EmitRegisterOperand(2, reg);
}
void X86Assembler::call(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xFF);
EmitOperand(2, address);
}
void X86Assembler::call(Label* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xE8);
static const int kSize = 5;
EmitLabel(label, kSize);
}
void X86Assembler::pushl(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x50 + reg);
}
void X86Assembler::pushl(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xFF);
EmitOperand(6, address);
}
void X86Assembler::pushl(const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (imm.is_int8()) {
EmitUint8(0x6A);
EmitUint8(imm.value() & 0xFF);
} else {
EmitUint8(0x68);
EmitImmediate(imm);
}
}
void X86Assembler::popl(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x58 + reg);
}
void X86Assembler::popl(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x8F);
EmitOperand(0, address);
}
void X86Assembler::movl(Register dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xB8 + dst);
EmitImmediate(imm);
}
void X86Assembler::movl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x89);
EmitRegisterOperand(src, dst);
}
void X86Assembler::movl(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x8B);
EmitOperand(dst, src);
}
void X86Assembler::movl(const Address& dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x89);
EmitOperand(src, dst);
}
void X86Assembler::movl(const Address& dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC7);
EmitOperand(0, dst);
EmitImmediate(imm);
}
void X86Assembler::movl(const Address& dst, Label* lbl) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC7);
EmitOperand(0, dst);
EmitLabel(lbl, dst.length_ + 5);
}
void X86Assembler::movzxb(Register dst, ByteRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xB6);
EmitRegisterOperand(dst, src);
}
void X86Assembler::movzxb(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xB6);
EmitOperand(dst, src);
}
void X86Assembler::movsxb(Register dst, ByteRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xBE);
EmitRegisterOperand(dst, src);
}
void X86Assembler::movsxb(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xBE);
EmitOperand(dst, src);
}
void X86Assembler::movb(Register /*dst*/, const Address& /*src*/) {
LOG(FATAL) << "Use movzxb or movsxb instead.";
}
void X86Assembler::movb(const Address& dst, ByteRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x88);
EmitOperand(src, dst);
}
void X86Assembler::movb(const Address& dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC6);
EmitOperand(EAX, dst);
CHECK(imm.is_int8());
EmitUint8(imm.value() & 0xFF);
}
void X86Assembler::movzxw(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xB7);
EmitRegisterOperand(dst, src);
}
void X86Assembler::movzxw(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xB7);
EmitOperand(dst, src);
}
void X86Assembler::movsxw(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xBF);
EmitRegisterOperand(dst, src);
}
void X86Assembler::movsxw(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xBF);
EmitOperand(dst, src);
}
void X86Assembler::movw(Register /*dst*/, const Address& /*src*/) {
LOG(FATAL) << "Use movzxw or movsxw instead.";
}
void X86Assembler::movw(const Address& dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandSizeOverride();
EmitUint8(0x89);
EmitOperand(src, dst);
}
void X86Assembler::leal(Register dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x8D);
EmitOperand(dst, src);
}
void X86Assembler::cmovl(Condition condition, Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0x40 + condition);
EmitRegisterOperand(dst, src);
}
void X86Assembler::setb(Condition condition, Register dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0x90 + condition);
EmitOperand(0, Operand(dst));
}
void X86Assembler::movss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x10);
EmitOperand(dst, src);
}
void X86Assembler::movss(const Address& dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitOperand(src, dst);
}
void X86Assembler::movss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitXmmRegisterOperand(src, dst);
}
void X86Assembler::movd(XmmRegister dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitUint8(0x0F);
EmitUint8(0x6E);
EmitOperand(dst, Operand(src));
}
void X86Assembler::movd(Register dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitUint8(0x0F);
EmitUint8(0x7E);
EmitOperand(src, Operand(dst));
}
void X86Assembler::addss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::addss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitOperand(dst, src);
}
void X86Assembler::subss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::subss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitOperand(dst, src);
}
void X86Assembler::mulss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::mulss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitOperand(dst, src);
}
void X86Assembler::divss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::divss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitOperand(dst, src);
}
void X86Assembler::flds(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitOperand(0, src);
}
void X86Assembler::fstps(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitOperand(3, dst);
}
void X86Assembler::movsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x10);
EmitOperand(dst, src);
}
void X86Assembler::movsd(const Address& dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitOperand(src, dst);
}
void X86Assembler::movsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitXmmRegisterOperand(src, dst);
}
void X86Assembler::addsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::addsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitOperand(dst, src);
}
void X86Assembler::subsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::subsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitOperand(dst, src);
}
void X86Assembler::mulsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::mulsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitOperand(dst, src);
}
void X86Assembler::divsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::divsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitOperand(dst, src);
}
void X86Assembler::cvtsi2ss(XmmRegister dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x2A);
EmitOperand(dst, Operand(src));
}
void X86Assembler::cvtsi2sd(XmmRegister dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x2A);
EmitOperand(dst, Operand(src));
}
void X86Assembler::cvtss2si(Register dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x2D);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::cvtss2sd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x5A);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::cvtsd2si(Register dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x2D);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::cvttss2si(Register dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x2C);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::cvttsd2si(Register dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x2C);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::cvtsd2ss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x5A);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::cvtdq2pd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0xE6);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::comiss(XmmRegister a, XmmRegister b) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0x2F);
EmitXmmRegisterOperand(a, b);
}
void X86Assembler::comisd(XmmRegister a, XmmRegister b) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitUint8(0x0F);
EmitUint8(0x2F);
EmitXmmRegisterOperand(a, b);
}
void X86Assembler::sqrtsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0x0F);
EmitUint8(0x51);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::sqrtss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0x0F);
EmitUint8(0x51);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::xorpd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitOperand(dst, src);
}
void X86Assembler::xorpd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::xorps(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitOperand(dst, src);
}
void X86Assembler::xorps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitXmmRegisterOperand(dst, src);
}
void X86Assembler::andpd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitUint8(0x0F);
EmitUint8(0x54);
EmitOperand(dst, src);
}
void X86Assembler::fldl(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDD);
EmitOperand(0, src);
}
void X86Assembler::fstpl(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDD);
EmitOperand(3, dst);
}
void X86Assembler::fnstcw(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitOperand(7, dst);
}
void X86Assembler::fldcw(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitOperand(5, src);
}
void X86Assembler::fistpl(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDF);
EmitOperand(7, dst);
}
void X86Assembler::fistps(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDB);
EmitOperand(3, dst);
}
void X86Assembler::fildl(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDF);
EmitOperand(5, src);
}
void X86Assembler::fincstp() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xF7);
}
void X86Assembler::ffree(const Immediate& index) {
CHECK_LT(index.value(), 7);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDD);
EmitUint8(0xC0 + index.value());
}
void X86Assembler::fsin() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xFE);
}
void X86Assembler::fcos() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xFF);
}
void X86Assembler::fptan() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xF2);
}
void X86Assembler::xchgl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x87);
EmitRegisterOperand(dst, src);
}
void X86Assembler::xchgl(Register reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x87);
EmitOperand(reg, address);
}
void X86Assembler::cmpl(Register reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitComplex(7, Operand(reg), imm);
}
void X86Assembler::cmpl(Register reg0, Register reg1) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x3B);
EmitOperand(reg0, Operand(reg1));
}
void X86Assembler::cmpl(Register reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x3B);
EmitOperand(reg, address);
}
void X86Assembler::addl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x03);
EmitRegisterOperand(dst, src);
}
void X86Assembler::addl(Register reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x03);
EmitOperand(reg, address);
}
void X86Assembler::cmpl(const Address& address, Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x39);
EmitOperand(reg, address);
}
void X86Assembler::cmpl(const Address& address, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitComplex(7, address, imm);
}
void X86Assembler::testl(Register reg1, Register reg2) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x85);
EmitRegisterOperand(reg1, reg2);
}
void X86Assembler::testl(Register reg, const Immediate& immediate) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// For registers that have a byte variant (EAX, EBX, ECX, and EDX)
// we only test the byte register to keep the encoding short.
if (immediate.is_uint8() && reg < 4) {
// Use zero-extended 8-bit immediate.
if (reg == EAX) {
EmitUint8(0xA8);
} else {
EmitUint8(0xF6);
EmitUint8(0xC0 + reg);
}
EmitUint8(immediate.value() & 0xFF);
} else if (reg == EAX) {
// Use short form if the destination is EAX.
EmitUint8(0xA9);
EmitImmediate(immediate);
} else {
EmitUint8(0xF7);
EmitOperand(0, Operand(reg));
EmitImmediate(immediate);
}
}
void X86Assembler::andl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x23);
EmitOperand(dst, Operand(src));
}
void X86Assembler::andl(Register dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitComplex(4, Operand(dst), imm);
}
void X86Assembler::orl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0B);
EmitOperand(dst, Operand(src));
}
void X86Assembler::orl(Register dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitComplex(1, Operand(dst), imm);
}
void X86Assembler::xorl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x33);
EmitOperand(dst, Operand(src));
}
void X86Assembler::addl(Register reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitComplex(0, Operand(reg), imm);
}
void X86Assembler::addl(const Address& address, Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x01);
EmitOperand(reg, address);
}
void X86Assembler::addl(const Address& address, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitComplex(0, address, imm);
}
void X86Assembler::adcl(Register reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitComplex(2, Operand(reg), imm);
}
void X86Assembler::adcl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x13);
EmitOperand(dst, Operand(src));
}
void X86Assembler::adcl(Register dst, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x13);
EmitOperand(dst, address);
}
void X86Assembler::subl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x2B);
EmitOperand(dst, Operand(src));
}
void X86Assembler::subl(Register reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitComplex(5, Operand(reg), imm);
}
void X86Assembler::subl(Register reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x2B);
EmitOperand(reg, address);
}
void X86Assembler::cdq() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x99);
}
void X86Assembler::idivl(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF7);
EmitUint8(0xF8 | reg);
}
void X86Assembler::imull(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xAF);
EmitOperand(dst, Operand(src));
}
void X86Assembler::imull(Register reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x69);
EmitOperand(reg, Operand(reg));
EmitImmediate(imm);
}
void X86Assembler::imull(Register reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xAF);
EmitOperand(reg, address);
}
void X86Assembler::imull(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF7);
EmitOperand(5, Operand(reg));
}
void X86Assembler::imull(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF7);
EmitOperand(5, address);
}
void X86Assembler::mull(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF7);
EmitOperand(4, Operand(reg));
}
void X86Assembler::mull(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF7);
EmitOperand(4, address);
}
void X86Assembler::sbbl(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x1B);
EmitOperand(dst, Operand(src));
}
void X86Assembler::sbbl(Register reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitComplex(3, Operand(reg), imm);
}
void X86Assembler::sbbl(Register dst, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x1B);
EmitOperand(dst, address);
}
void X86Assembler::incl(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x40 + reg);
}
void X86Assembler::incl(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xFF);
EmitOperand(0, address);
}
void X86Assembler::decl(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x48 + reg);
}
void X86Assembler::decl(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xFF);
EmitOperand(1, address);
}
void X86Assembler::shll(Register reg, const Immediate& imm) {
EmitGenericShift(4, reg, imm);
}
void X86Assembler::shll(Register operand, Register shifter) {
EmitGenericShift(4, operand, shifter);
}
void X86Assembler::shrl(Register reg, const Immediate& imm) {
EmitGenericShift(5, reg, imm);
}
void X86Assembler::shrl(Register operand, Register shifter) {
EmitGenericShift(5, operand, shifter);
}
void X86Assembler::sarl(Register reg, const Immediate& imm) {
EmitGenericShift(7, reg, imm);
}
void X86Assembler::sarl(Register operand, Register shifter) {
EmitGenericShift(7, operand, shifter);
}
void X86Assembler::shld(Register dst, Register src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xA5);
EmitRegisterOperand(src, dst);
}
void X86Assembler::negl(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF7);
EmitOperand(3, Operand(reg));
}
void X86Assembler::notl(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF7);
EmitUint8(0xD0 | reg);
}
void X86Assembler::enter(const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC8);
CHECK(imm.is_uint16());
EmitUint8(imm.value() & 0xFF);
EmitUint8((imm.value() >> 8) & 0xFF);
EmitUint8(0x00);
}
void X86Assembler::leave() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC9);
}
void X86Assembler::ret() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC3);
}
void X86Assembler::ret(const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC2);
CHECK(imm.is_uint16());
EmitUint8(imm.value() & 0xFF);
EmitUint8((imm.value() >> 8) & 0xFF);
}
void X86Assembler::nop() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x90);
}
void X86Assembler::int3() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xCC);
}
void X86Assembler::hlt() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF4);
}
void X86Assembler::j(Condition condition, Label* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (label->IsBound()) {
static const int kShortSize = 2;
static const int kLongSize = 6;
int offset = label->Position() - buffer_.Size();
CHECK_LE(offset, 0);
if (IsInt(8, offset - kShortSize)) {
EmitUint8(0x70 + condition);
EmitUint8((offset - kShortSize) & 0xFF);
} else {
EmitUint8(0x0F);
EmitUint8(0x80 + condition);
EmitInt32(offset - kLongSize);
}
} else {
EmitUint8(0x0F);
EmitUint8(0x80 + condition);
EmitLabelLink(label);
}
}
void X86Assembler::jmp(Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xFF);
EmitRegisterOperand(4, reg);
}
void X86Assembler::jmp(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xFF);
EmitOperand(4, address);
}
void X86Assembler::jmp(Label* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (label->IsBound()) {
static const int kShortSize = 2;
static const int kLongSize = 5;
int offset = label->Position() - buffer_.Size();
CHECK_LE(offset, 0);
if (IsInt(8, offset - kShortSize)) {
EmitUint8(0xEB);
EmitUint8((offset - kShortSize) & 0xFF);
} else {
EmitUint8(0xE9);
EmitInt32(offset - kLongSize);
}
} else {
EmitUint8(0xE9);
EmitLabelLink(label);
}
}
X86Assembler* X86Assembler::lock() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF0);
return this;
}
void X86Assembler::cmpxchgl(const Address& address, Register reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xB1);
EmitOperand(reg, address);
}
void X86Assembler::mfence() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xAE);
EmitUint8(0xF0);
}
X86Assembler* X86Assembler::fs() {
// TODO: fs is a prefix and not an instruction
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x64);
return this;
}
void X86Assembler::AddImmediate(Register reg, const Immediate& imm) {
int value = imm.value();
if (value > 0) {
if (value == 1) {
incl(reg);
} else if (value != 0) {
addl(reg, imm);
}
} else if (value < 0) {
value = -value;
if (value == 1) {
decl(reg);
} else if (value != 0) {
subl(reg, Immediate(value));
}
}
}
void X86Assembler::LoadDoubleConstant(XmmRegister dst, double value) {
// TODO: Need to have a code constants table.
int64_t constant = bit_cast<int64_t, double>(value);
pushl(Immediate(High32Bits(constant)));
pushl(Immediate(Low32Bits(constant)));
movsd(dst, Address(ESP, 0));
addl(ESP, Immediate(2 * kWordSize));
}
void X86Assembler::FloatNegate(XmmRegister f) {
static const struct {
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
} float_negate_constant __attribute__((aligned(16))) =
{ 0x80000000, 0x00000000, 0x80000000, 0x00000000 };
xorps(f, Address::Absolute(reinterpret_cast<uword>(&float_negate_constant)));
}
void X86Assembler::DoubleNegate(XmmRegister d) {
static const struct {
uint64_t a;
uint64_t b;
} double_negate_constant __attribute__((aligned(16))) =
{0x8000000000000000LL, 0x8000000000000000LL};
xorpd(d, Address::Absolute(reinterpret_cast<uword>(&double_negate_constant)));
}
void X86Assembler::DoubleAbs(XmmRegister reg) {
static const struct {
uint64_t a;
uint64_t b;
} double_abs_constant __attribute__((aligned(16))) =
{0x7FFFFFFFFFFFFFFFLL, 0x7FFFFFFFFFFFFFFFLL};
andpd(reg, Address::Absolute(reinterpret_cast<uword>(&double_abs_constant)));
}
void X86Assembler::Align(int alignment, int offset) {
CHECK(IsPowerOfTwo(alignment));
// Emit nop instruction until the real position is aligned.
while (((offset + buffer_.GetPosition()) & (alignment-1)) != 0) {
nop();
}
}
void X86Assembler::Bind(Label* label) {
int bound = buffer_.Size();
CHECK(!label->IsBound()); // Labels can only be bound once.
while (label->IsLinked()) {
int position = label->LinkPosition();
int next = buffer_.Load<int32_t>(position);
buffer_.Store<int32_t>(position, bound - (position + 4));
label->position_ = next;
}
label->BindTo(bound);
}
void X86Assembler::Stop(const char* message) {
// Emit the message address as immediate operand in the test rax instruction,
// followed by the int3 instruction.
// Execution can be resumed with the 'cont' command in gdb.
testl(EAX, Immediate(reinterpret_cast<int32_t>(message)));
int3();
}
void X86Assembler::EmitOperand(int reg_or_opcode, const Operand& operand) {
CHECK_GE(reg_or_opcode, 0);
CHECK_LT(reg_or_opcode, 8);
const int length = operand.length_;
CHECK_GT(length, 0);
// Emit the ModRM byte updated with the given reg value.
CHECK_EQ(operand.encoding_[0] & 0x38, 0);
EmitUint8(operand.encoding_[0] + (reg_or_opcode << 3));
// Emit the rest of the encoded operand.
for (int i = 1; i < length; i++) {
EmitUint8(operand.encoding_[i]);
}
}
void X86Assembler::EmitImmediate(const Immediate& imm) {
EmitInt32(imm.value());
}
void X86Assembler::EmitComplex(int reg_or_opcode,
const Operand& operand,
const Immediate& immediate) {
CHECK_GE(reg_or_opcode, 0);
CHECK_LT(reg_or_opcode, 8);
if (immediate.is_int8()) {
// Use sign-extended 8-bit immediate.
EmitUint8(0x83);
EmitOperand(reg_or_opcode, operand);
EmitUint8(immediate.value() & 0xFF);
} else if (operand.IsRegister(EAX)) {
// Use short form if the destination is eax.
EmitUint8(0x05 + (reg_or_opcode << 3));
EmitImmediate(immediate);
} else {
EmitUint8(0x81);
EmitOperand(reg_or_opcode, operand);
EmitImmediate(immediate);
}
}
void X86Assembler::EmitLabel(Label* label, int instruction_size) {
if (label->IsBound()) {
int offset = label->Position() - buffer_.Size();
CHECK_LE(offset, 0);
EmitInt32(offset - instruction_size);
} else {
EmitLabelLink(label);
}
}
void X86Assembler::EmitLabelLink(Label* label) {
CHECK(!label->IsBound());
int position = buffer_.Size();
EmitInt32(label->position_);
label->LinkTo(position);
}
void X86Assembler::EmitGenericShift(int reg_or_opcode,
Register reg,
const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int8());
if (imm.value() == 1) {
EmitUint8(0xD1);
EmitOperand(reg_or_opcode, Operand(reg));
} else {
EmitUint8(0xC1);
EmitOperand(reg_or_opcode, Operand(reg));
EmitUint8(imm.value() & 0xFF);
}
}
void X86Assembler::EmitGenericShift(int reg_or_opcode,
Register operand,
Register shifter) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK_EQ(shifter, ECX);
EmitUint8(0xD3);
EmitOperand(reg_or_opcode, Operand(operand));
}
void X86Assembler::BuildFrame(size_t frame_size, ManagedRegister method_reg,
const std::vector<ManagedRegister>& spill_regs,
const std::vector<ManagedRegister>& entry_spills) {
CHECK_ALIGNED(frame_size, kStackAlignment);
CHECK_EQ(0u, spill_regs.size()); // no spilled regs on x86
// return address then method on stack
addl(ESP, Immediate(-frame_size + kPointerSize /*method*/ +
kPointerSize /*return address*/));
pushl(method_reg.AsX86().AsCpuRegister());
for (size_t i = 0; i < entry_spills.size(); ++i) {
movl(Address(ESP, frame_size + kPointerSize + (i * kPointerSize)),
entry_spills.at(i).AsX86().AsCpuRegister());
}
}
void X86Assembler::RemoveFrame(size_t frame_size,
const std::vector<ManagedRegister>& spill_regs) {
CHECK_ALIGNED(frame_size, kStackAlignment);
CHECK_EQ(0u, spill_regs.size()); // no spilled regs on x86
addl(ESP, Immediate(frame_size - kPointerSize));
ret();
}
void X86Assembler::IncreaseFrameSize(size_t adjust) {
CHECK_ALIGNED(adjust, kStackAlignment);
addl(ESP, Immediate(-adjust));
}
void X86Assembler::DecreaseFrameSize(size_t adjust) {
CHECK_ALIGNED(adjust, kStackAlignment);
addl(ESP, Immediate(adjust));
}
void X86Assembler::Store(FrameOffset offs, ManagedRegister msrc, size_t size) {
X86ManagedRegister src = msrc.AsX86();
if (src.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (src.IsCpuRegister()) {
CHECK_EQ(4u, size);
movl(Address(ESP, offs), src.AsCpuRegister());
} else if (src.IsRegisterPair()) {
CHECK_EQ(8u, size);
movl(Address(ESP, offs), src.AsRegisterPairLow());
movl(Address(ESP, FrameOffset(offs.Int32Value()+4)),
src.AsRegisterPairHigh());
} else if (src.IsX87Register()) {
if (size == 4) {
fstps(Address(ESP, offs));
} else {
fstpl(Address(ESP, offs));
}
} else {
CHECK(src.IsXmmRegister());
if (size == 4) {
movss(Address(ESP, offs), src.AsXmmRegister());
} else {
movsd(Address(ESP, offs), src.AsXmmRegister());
}
}
}
void X86Assembler::StoreRef(FrameOffset dest, ManagedRegister msrc) {
X86ManagedRegister src = msrc.AsX86();
CHECK(src.IsCpuRegister());
movl(Address(ESP, dest), src.AsCpuRegister());
}
void X86Assembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) {
X86ManagedRegister src = msrc.AsX86();
CHECK(src.IsCpuRegister());
movl(Address(ESP, dest), src.AsCpuRegister());
}
void X86Assembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm,
ManagedRegister) {
movl(Address(ESP, dest), Immediate(imm));
}
void X86Assembler::StoreImmediateToThread(ThreadOffset dest, uint32_t imm,
ManagedRegister) {
fs()->movl(Address::Absolute(dest), Immediate(imm));
}
void X86Assembler::StoreStackOffsetToThread(ThreadOffset thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
X86ManagedRegister scratch = mscratch.AsX86();
CHECK(scratch.IsCpuRegister());
leal(scratch.AsCpuRegister(), Address(ESP, fr_offs));
fs()->movl(Address::Absolute(thr_offs), scratch.AsCpuRegister());
}
void X86Assembler::StoreStackPointerToThread(ThreadOffset thr_offs) {
fs()->movl(Address::Absolute(thr_offs), ESP);
}
void X86Assembler::StoreLabelToThread(ThreadOffset thr_offs, Label* lbl) {
fs()->movl(Address::Absolute(thr_offs), lbl);
}
void X86Assembler::StoreSpanning(FrameOffset /*dst*/, ManagedRegister /*src*/,
FrameOffset /*in_off*/, ManagedRegister /*scratch*/) {
UNIMPLEMENTED(FATAL); // this case only currently exists for ARM
}
void X86Assembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) {
X86ManagedRegister dest = mdest.AsX86();
if (dest.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (dest.IsCpuRegister()) {
CHECK_EQ(4u, size);
movl(dest.AsCpuRegister(), Address(ESP, src));
} else if (dest.IsRegisterPair()) {
CHECK_EQ(8u, size);
movl(dest.AsRegisterPairLow(), Address(ESP, src));
movl(dest.AsRegisterPairHigh(), Address(ESP, FrameOffset(src.Int32Value()+4)));
} else if (dest.IsX87Register()) {
if (size == 4) {
flds(Address(ESP, src));
} else {
fldl(Address(ESP, src));
}
} else {
CHECK(dest.IsXmmRegister());
if (size == 4) {
movss(dest.AsXmmRegister(), Address(ESP, src));
} else {
movsd(dest.AsXmmRegister(), Address(ESP, src));
}
}
}
void X86Assembler::Load(ManagedRegister mdest, ThreadOffset src, size_t size) {
X86ManagedRegister dest = mdest.AsX86();
if (dest.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (dest.IsCpuRegister()) {
CHECK_EQ(4u, size);
fs()->movl(dest.AsCpuRegister(), Address::Absolute(src));
} else if (dest.IsRegisterPair()) {
CHECK_EQ(8u, size);
fs()->movl(dest.AsRegisterPairLow(), Address::Absolute(src));
fs()->movl(dest.AsRegisterPairHigh(), Address::Absolute(ThreadOffset(src.Int32Value()+4)));
} else if (dest.IsX87Register()) {
if (size == 4) {
fs()->flds(Address::Absolute(src));
} else {
fs()->fldl(Address::Absolute(src));
}
} else {
CHECK(dest.IsXmmRegister());
if (size == 4) {
fs()->movss(dest.AsXmmRegister(), Address::Absolute(src));
} else {
fs()->movsd(dest.AsXmmRegister(), Address::Absolute(src));
}
}
}
void X86Assembler::LoadRef(ManagedRegister mdest, FrameOffset src) {
X86ManagedRegister dest = mdest.AsX86();
CHECK(dest.IsCpuRegister());
movl(dest.AsCpuRegister(), Address(ESP, src));
}
void X86Assembler::LoadRef(ManagedRegister mdest, ManagedRegister base,
MemberOffset offs) {
X86ManagedRegister dest = mdest.AsX86();
CHECK(dest.IsCpuRegister() && dest.IsCpuRegister());
movl(dest.AsCpuRegister(), Address(base.AsX86().AsCpuRegister(), offs));
}
void X86Assembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base,
Offset offs) {
X86ManagedRegister dest = mdest.AsX86();
CHECK(dest.IsCpuRegister() && dest.IsCpuRegister());
movl(dest.AsCpuRegister(), Address(base.AsX86().AsCpuRegister(), offs));
}
void X86Assembler::LoadRawPtrFromThread(ManagedRegister mdest,
ThreadOffset offs) {
X86ManagedRegister dest = mdest.AsX86();
CHECK(dest.IsCpuRegister());
fs()->movl(dest.AsCpuRegister(), Address::Absolute(offs));
}
void X86Assembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) {
X86ManagedRegister dest = mdest.AsX86();
X86ManagedRegister src = msrc.AsX86();
if (!dest.Equals(src)) {
if (dest.IsCpuRegister() && src.IsCpuRegister()) {
movl(dest.AsCpuRegister(), src.AsCpuRegister());
} else if (src.IsX87Register() && dest.IsXmmRegister()) {
// Pass via stack and pop X87 register
subl(ESP, Immediate(16));
if (size == 4) {
CHECK_EQ(src.AsX87Register(), ST0);
fstps(Address(ESP, 0));
movss(dest.AsXmmRegister(), Address(ESP, 0));
} else {
CHECK_EQ(src.AsX87Register(), ST0);
fstpl(Address(ESP, 0));
movsd(dest.AsXmmRegister(), Address(ESP, 0));
}
addl(ESP, Immediate(16));
} else {
// TODO: x87, SSE
UNIMPLEMENTED(FATAL) << ": Move " << dest << ", " << src;
}
}
}
void X86Assembler::CopyRef(FrameOffset dest, FrameOffset src,
ManagedRegister mscratch) {
X86ManagedRegister scratch = mscratch.AsX86();
CHECK(scratch.IsCpuRegister());
movl(scratch.AsCpuRegister(), Address(ESP, src));
movl(Address(ESP, dest), scratch.AsCpuRegister());
}
void X86Assembler::CopyRawPtrFromThread(FrameOffset fr_offs,
ThreadOffset thr_offs,
ManagedRegister mscratch) {
X86ManagedRegister scratch = mscratch.AsX86();
CHECK(scratch.IsCpuRegister());
fs()->movl(scratch.AsCpuRegister(), Address::Absolute(thr_offs));
Store(fr_offs, scratch, 4);
}
void X86Assembler::CopyRawPtrToThread(ThreadOffset thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
X86ManagedRegister scratch = mscratch.AsX86();
CHECK(scratch.IsCpuRegister());
Load(scratch, fr_offs, 4);
fs()->movl(Address::Absolute(thr_offs), scratch.AsCpuRegister());
}
void X86Assembler::Copy(FrameOffset dest, FrameOffset src,
ManagedRegister mscratch,
size_t size) {
X86ManagedRegister scratch = mscratch.AsX86();
if (scratch.IsCpuRegister() && size == 8) {
Load(scratch, src, 4);
Store(dest, scratch, 4);
Load(scratch, FrameOffset(src.Int32Value() + 4), 4);
Store(FrameOffset(dest.Int32Value() + 4), scratch, 4);
} else {
Load(scratch, src, size);
Store(dest, scratch, size);
}
}
void X86Assembler::Copy(FrameOffset /*dst*/, ManagedRegister /*src_base*/, Offset /*src_offset*/,
ManagedRegister /*scratch*/, size_t /*size*/) {
UNIMPLEMENTED(FATAL);
}
void X86Assembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
ManagedRegister scratch, size_t size) {
CHECK(scratch.IsNoRegister());
CHECK_EQ(size, 4u);
pushl(Address(ESP, src));
popl(Address(dest_base.AsX86().AsCpuRegister(), dest_offset));
}
void X86Assembler::Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset,
ManagedRegister mscratch, size_t size) {
Register scratch = mscratch.AsX86().AsCpuRegister();
CHECK_EQ(size, 4u);
movl(scratch, Address(ESP, src_base));
movl(scratch, Address(scratch, src_offset));
movl(Address(ESP, dest), scratch);
}
void X86Assembler::Copy(ManagedRegister dest, Offset dest_offset,
ManagedRegister src, Offset src_offset,
ManagedRegister scratch, size_t size) {
CHECK_EQ(size, 4u);
CHECK(scratch.IsNoRegister());
pushl(Address(src.AsX86().AsCpuRegister(), src_offset));
popl(Address(dest.AsX86().AsCpuRegister(), dest_offset));
}
void X86Assembler::Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset,
ManagedRegister mscratch, size_t size) {
Register scratch = mscratch.AsX86().AsCpuRegister();
CHECK_EQ(size, 4u);
CHECK_EQ(dest.Int32Value(), src.Int32Value());
movl(scratch, Address(ESP, src));
pushl(Address(scratch, src_offset));
popl(Address(scratch, dest_offset));
}
void X86Assembler::MemoryBarrier(ManagedRegister) {
#if ANDROID_SMP != 0
mfence();
#endif
}
void X86Assembler::CreateSirtEntry(ManagedRegister mout_reg,
FrameOffset sirt_offset,
ManagedRegister min_reg, bool null_allowed) {
X86ManagedRegister out_reg = mout_reg.AsX86();
X86ManagedRegister in_reg = min_reg.AsX86();
CHECK(in_reg.IsCpuRegister());
CHECK(out_reg.IsCpuRegister());
VerifyObject(in_reg, null_allowed);
if (null_allowed) {
Label null_arg;
if (!out_reg.Equals(in_reg)) {
xorl(out_reg.AsCpuRegister(), out_reg.AsCpuRegister());
}
testl(in_reg.AsCpuRegister(), in_reg.AsCpuRegister());
j(kZero, &null_arg);
leal(out_reg.AsCpuRegister(), Address(ESP, sirt_offset));
Bind(&null_arg);
} else {
leal(out_reg.AsCpuRegister(), Address(ESP, sirt_offset));
}
}
void X86Assembler::CreateSirtEntry(FrameOffset out_off,
FrameOffset sirt_offset,
ManagedRegister mscratch,
bool null_allowed) {
X86ManagedRegister scratch = mscratch.AsX86();
CHECK(scratch.IsCpuRegister());
if (null_allowed) {
Label null_arg;
movl(scratch.AsCpuRegister(), Address(ESP, sirt_offset));
testl(scratch.AsCpuRegister(), scratch.AsCpuRegister());
j(kZero, &null_arg);
leal(scratch.AsCpuRegister(), Address(ESP, sirt_offset));
Bind(&null_arg);
} else {
leal(scratch.AsCpuRegister(), Address(ESP, sirt_offset));
}
Store(out_off, scratch, 4);
}
// Given a SIRT entry, load the associated reference.
void X86Assembler::LoadReferenceFromSirt(ManagedRegister mout_reg,
ManagedRegister min_reg) {
X86ManagedRegister out_reg = mout_reg.AsX86();
X86ManagedRegister in_reg = min_reg.AsX86();
CHECK(out_reg.IsCpuRegister());
CHECK(in_reg.IsCpuRegister());
Label null_arg;
if (!out_reg.Equals(in_reg)) {
xorl(out_reg.AsCpuRegister(), out_reg.AsCpuRegister());
}
testl(in_reg.AsCpuRegister(), in_reg.AsCpuRegister());
j(kZero, &null_arg);
movl(out_reg.AsCpuRegister(), Address(in_reg.AsCpuRegister(), 0));
Bind(&null_arg);
}
void X86Assembler::VerifyObject(ManagedRegister /*src*/, bool /*could_be_null*/) {
// TODO: not validating references
}
void X86Assembler::VerifyObject(FrameOffset /*src*/, bool /*could_be_null*/) {
// TODO: not validating references
}
void X86Assembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister) {
X86ManagedRegister base = mbase.AsX86();
CHECK(base.IsCpuRegister());
call(Address(base.AsCpuRegister(), offset.Int32Value()));
// TODO: place reference map on call
}
void X86Assembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) {
Register scratch = mscratch.AsX86().AsCpuRegister();
movl(scratch, Address(ESP, base));
call(Address(scratch, offset));
}
void X86Assembler::Call(ThreadOffset offset, ManagedRegister /*mscratch*/) {
fs()->call(Address::Absolute(offset));
}
void X86Assembler::GetCurrentThread(ManagedRegister tr) {
fs()->movl(tr.AsX86().AsCpuRegister(),
Address::Absolute(Thread::SelfOffset()));
}
void X86Assembler::GetCurrentThread(FrameOffset offset,
ManagedRegister mscratch) {
X86ManagedRegister scratch = mscratch.AsX86();
fs()->movl(scratch.AsCpuRegister(), Address::Absolute(Thread::SelfOffset()));
movl(Address(ESP, offset), scratch.AsCpuRegister());
}
void X86Assembler::SuspendPoll(ManagedRegister /*scratch*/,
ManagedRegister return_reg,
FrameOffset return_save_location,
size_t return_size) {
X86SuspendCountSlowPath* slow =
new X86SuspendCountSlowPath(return_reg.AsX86(), return_save_location,
return_size);
buffer_.EnqueueSlowPath(slow);
fs()->cmpl(Address::Absolute(Thread::SuspendCountOffset()), Immediate(0));
j(kNotEqual, slow->Entry());
Bind(slow->Continuation());
}
void X86SuspendCountSlowPath::Emit(Assembler *sasm) {
X86Assembler* sp_asm = down_cast<X86Assembler*>(sasm);
#define __ sp_asm->
__ Bind(&entry_);
// Save return value
__ Store(return_save_location_, return_register_, return_size_);
// Pass Thread::Current as argument
__ fs()->pushl(Address::Absolute(Thread::SelfOffset()));
__ fs()->call(Address::Absolute(ENTRYPOINT_OFFSET(pCheckSuspendFromCode)));
// Release argument
__ addl(ESP, Immediate(kPointerSize));
// Reload return value
__ Load(return_register_, return_save_location_, return_size_);
__ jmp(&continuation_);
#undef __
}
void X86Assembler::ExceptionPoll(ManagedRegister /*scratch*/) {
X86ExceptionSlowPath* slow = new X86ExceptionSlowPath();
buffer_.EnqueueSlowPath(slow);
fs()->cmpl(Address::Absolute(Thread::ExceptionOffset()), Immediate(0));
j(kNotEqual, slow->Entry());
}
void X86ExceptionSlowPath::Emit(Assembler *sasm) {
X86Assembler* sp_asm = down_cast<X86Assembler*>(sasm);
#define __ sp_asm->
__ Bind(&entry_);
// Note: the return value is dead
// Pass exception as argument in EAX
__ fs()->movl(EAX, Address::Absolute(Thread::ExceptionOffset()));
__ fs()->call(Address::Absolute(ENTRYPOINT_OFFSET(pDeliverException)));
// this call should never return
__ int3();
#undef __
}
} // namespace x86
} // namespace art