blob: f85bc65e915ec09501c3616a2aa8dbbfc72f2291 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "compiler_driver.h"
#define ATRACE_TAG ATRACE_TAG_DALVIK
#include <utils/Trace.h>
#include <vector>
#include <unistd.h>
#include "base/stl_util.h"
#include "base/timing_logger.h"
#include "class_linker.h"
#include "compiled_class.h"
#include "compiler.h"
#include "compiler_driver-inl.h"
#include "dex_compilation_unit.h"
#include "dex_file-inl.h"
#include "dex/verification_results.h"
#include "dex/verified_method.h"
#include "dex/quick/dex_file_method_inliner.h"
#include "driver/compiler_options.h"
#include "jni_internal.h"
#include "object_lock.h"
#include "profiler.h"
#include "runtime.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/accounting/heap_bitmap.h"
#include "gc/space/space.h"
#include "mirror/art_field-inl.h"
#include "mirror/art_method-inl.h"
#include "mirror/class_loader.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/throwable.h"
#include "scoped_thread_state_change.h"
#include "ScopedLocalRef.h"
#include "handle_scope-inl.h"
#include "thread.h"
#include "thread_pool.h"
#include "trampolines/trampoline_compiler.h"
#include "transaction.h"
#include "verifier/method_verifier.h"
#include "verifier/method_verifier-inl.h"
namespace art {
static double Percentage(size_t x, size_t y) {
return 100.0 * (static_cast<double>(x)) / (static_cast<double>(x + y));
}
static void DumpStat(size_t x, size_t y, const char* str) {
if (x == 0 && y == 0) {
return;
}
LOG(INFO) << Percentage(x, y) << "% of " << str << " for " << (x + y) << " cases";
}
class CompilerDriver::AOTCompilationStats {
public:
AOTCompilationStats()
: stats_lock_("AOT compilation statistics lock"),
types_in_dex_cache_(0), types_not_in_dex_cache_(0),
strings_in_dex_cache_(0), strings_not_in_dex_cache_(0),
resolved_types_(0), unresolved_types_(0),
resolved_instance_fields_(0), unresolved_instance_fields_(0),
resolved_local_static_fields_(0), resolved_static_fields_(0), unresolved_static_fields_(0),
type_based_devirtualization_(0),
safe_casts_(0), not_safe_casts_(0) {
for (size_t i = 0; i <= kMaxInvokeType; i++) {
resolved_methods_[i] = 0;
unresolved_methods_[i] = 0;
virtual_made_direct_[i] = 0;
direct_calls_to_boot_[i] = 0;
direct_methods_to_boot_[i] = 0;
}
}
void Dump() {
DumpStat(types_in_dex_cache_, types_not_in_dex_cache_, "types known to be in dex cache");
DumpStat(strings_in_dex_cache_, strings_not_in_dex_cache_, "strings known to be in dex cache");
DumpStat(resolved_types_, unresolved_types_, "types resolved");
DumpStat(resolved_instance_fields_, unresolved_instance_fields_, "instance fields resolved");
DumpStat(resolved_local_static_fields_ + resolved_static_fields_, unresolved_static_fields_,
"static fields resolved");
DumpStat(resolved_local_static_fields_, resolved_static_fields_ + unresolved_static_fields_,
"static fields local to a class");
DumpStat(safe_casts_, not_safe_casts_, "check-casts removed based on type information");
// Note, the code below subtracts the stat value so that when added to the stat value we have
// 100% of samples. TODO: clean this up.
DumpStat(type_based_devirtualization_,
resolved_methods_[kVirtual] + unresolved_methods_[kVirtual] +
resolved_methods_[kInterface] + unresolved_methods_[kInterface] -
type_based_devirtualization_,
"virtual/interface calls made direct based on type information");
for (size_t i = 0; i <= kMaxInvokeType; i++) {
std::ostringstream oss;
oss << static_cast<InvokeType>(i) << " methods were AOT resolved";
DumpStat(resolved_methods_[i], unresolved_methods_[i], oss.str().c_str());
if (virtual_made_direct_[i] > 0) {
std::ostringstream oss2;
oss2 << static_cast<InvokeType>(i) << " methods made direct";
DumpStat(virtual_made_direct_[i],
resolved_methods_[i] + unresolved_methods_[i] - virtual_made_direct_[i],
oss2.str().c_str());
}
if (direct_calls_to_boot_[i] > 0) {
std::ostringstream oss2;
oss2 << static_cast<InvokeType>(i) << " method calls are direct into boot";
DumpStat(direct_calls_to_boot_[i],
resolved_methods_[i] + unresolved_methods_[i] - direct_calls_to_boot_[i],
oss2.str().c_str());
}
if (direct_methods_to_boot_[i] > 0) {
std::ostringstream oss2;
oss2 << static_cast<InvokeType>(i) << " method calls have methods in boot";
DumpStat(direct_methods_to_boot_[i],
resolved_methods_[i] + unresolved_methods_[i] - direct_methods_to_boot_[i],
oss2.str().c_str());
}
}
}
// Allow lossy statistics in non-debug builds.
#ifndef NDEBUG
#define STATS_LOCK() MutexLock mu(Thread::Current(), stats_lock_)
#else
#define STATS_LOCK()
#endif
void TypeInDexCache() {
STATS_LOCK();
types_in_dex_cache_++;
}
void TypeNotInDexCache() {
STATS_LOCK();
types_not_in_dex_cache_++;
}
void StringInDexCache() {
STATS_LOCK();
strings_in_dex_cache_++;
}
void StringNotInDexCache() {
STATS_LOCK();
strings_not_in_dex_cache_++;
}
void TypeDoesntNeedAccessCheck() {
STATS_LOCK();
resolved_types_++;
}
void TypeNeedsAccessCheck() {
STATS_LOCK();
unresolved_types_++;
}
void ResolvedInstanceField() {
STATS_LOCK();
resolved_instance_fields_++;
}
void UnresolvedInstanceField() {
STATS_LOCK();
unresolved_instance_fields_++;
}
void ResolvedLocalStaticField() {
STATS_LOCK();
resolved_local_static_fields_++;
}
void ResolvedStaticField() {
STATS_LOCK();
resolved_static_fields_++;
}
void UnresolvedStaticField() {
STATS_LOCK();
unresolved_static_fields_++;
}
// Indicate that type information from the verifier led to devirtualization.
void PreciseTypeDevirtualization() {
STATS_LOCK();
type_based_devirtualization_++;
}
// Indicate that a method of the given type was resolved at compile time.
void ResolvedMethod(InvokeType type) {
DCHECK_LE(type, kMaxInvokeType);
STATS_LOCK();
resolved_methods_[type]++;
}
// Indicate that a method of the given type was unresolved at compile time as it was in an
// unknown dex file.
void UnresolvedMethod(InvokeType type) {
DCHECK_LE(type, kMaxInvokeType);
STATS_LOCK();
unresolved_methods_[type]++;
}
// Indicate that a type of virtual method dispatch has been converted into a direct method
// dispatch.
void VirtualMadeDirect(InvokeType type) {
DCHECK(type == kVirtual || type == kInterface || type == kSuper);
STATS_LOCK();
virtual_made_direct_[type]++;
}
// Indicate that a method of the given type was able to call directly into boot.
void DirectCallsToBoot(InvokeType type) {
DCHECK_LE(type, kMaxInvokeType);
STATS_LOCK();
direct_calls_to_boot_[type]++;
}
// Indicate that a method of the given type was able to be resolved directly from boot.
void DirectMethodsToBoot(InvokeType type) {
DCHECK_LE(type, kMaxInvokeType);
STATS_LOCK();
direct_methods_to_boot_[type]++;
}
void ProcessedInvoke(InvokeType type, int flags) {
STATS_LOCK();
if (flags == 0) {
unresolved_methods_[type]++;
} else {
DCHECK_NE((flags & kFlagMethodResolved), 0);
resolved_methods_[type]++;
if ((flags & kFlagVirtualMadeDirect) != 0) {
virtual_made_direct_[type]++;
if ((flags & kFlagPreciseTypeDevirtualization) != 0) {
type_based_devirtualization_++;
}
} else {
DCHECK_EQ((flags & kFlagPreciseTypeDevirtualization), 0);
}
if ((flags & kFlagDirectCallToBoot) != 0) {
direct_calls_to_boot_[type]++;
}
if ((flags & kFlagDirectMethodToBoot) != 0) {
direct_methods_to_boot_[type]++;
}
}
}
// A check-cast could be eliminated due to verifier type analysis.
void SafeCast() {
STATS_LOCK();
safe_casts_++;
}
// A check-cast couldn't be eliminated due to verifier type analysis.
void NotASafeCast() {
STATS_LOCK();
not_safe_casts_++;
}
private:
Mutex stats_lock_;
size_t types_in_dex_cache_;
size_t types_not_in_dex_cache_;
size_t strings_in_dex_cache_;
size_t strings_not_in_dex_cache_;
size_t resolved_types_;
size_t unresolved_types_;
size_t resolved_instance_fields_;
size_t unresolved_instance_fields_;
size_t resolved_local_static_fields_;
size_t resolved_static_fields_;
size_t unresolved_static_fields_;
// Type based devirtualization for invoke interface and virtual.
size_t type_based_devirtualization_;
size_t resolved_methods_[kMaxInvokeType + 1];
size_t unresolved_methods_[kMaxInvokeType + 1];
size_t virtual_made_direct_[kMaxInvokeType + 1];
size_t direct_calls_to_boot_[kMaxInvokeType + 1];
size_t direct_methods_to_boot_[kMaxInvokeType + 1];
size_t safe_casts_;
size_t not_safe_casts_;
DISALLOW_COPY_AND_ASSIGN(AOTCompilationStats);
};
extern "C" art::CompiledMethod* ArtCompileDEX(art::CompilerDriver& compiler,
const art::DexFile::CodeItem* code_item,
uint32_t access_flags,
art::InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
jobject class_loader,
const art::DexFile& dex_file);
CompilerDriver::CompilerDriver(const CompilerOptions* compiler_options,
VerificationResults* verification_results,
DexFileToMethodInlinerMap* method_inliner_map,
Compiler::Kind compiler_kind,
InstructionSet instruction_set,
InstructionSetFeatures instruction_set_features,
bool image, DescriptorSet* image_classes, size_t thread_count,
bool dump_stats, bool dump_passes, CumulativeLogger* timer,
std::string profile_file)
: profile_present_(false), compiler_options_(compiler_options),
verification_results_(verification_results),
method_inliner_map_(method_inliner_map),
compiler_(Compiler::Create(this, compiler_kind)),
instruction_set_(instruction_set),
instruction_set_features_(instruction_set_features),
freezing_constructor_lock_("freezing constructor lock"),
compiled_classes_lock_("compiled classes lock"),
compiled_methods_lock_("compiled method lock"),
image_(image),
image_classes_(image_classes),
thread_count_(thread_count),
start_ns_(0),
stats_(new AOTCompilationStats),
dump_stats_(dump_stats),
dump_passes_(dump_passes),
timings_logger_(timer),
compiler_library_(NULL),
compiler_context_(NULL),
compiler_enable_auto_elf_loading_(NULL),
compiler_get_method_code_addr_(NULL),
support_boot_image_fixup_(instruction_set != kMips),
cfi_info_(nullptr),
dedupe_code_("dedupe code"),
dedupe_mapping_table_("dedupe mapping table"),
dedupe_vmap_table_("dedupe vmap table"),
dedupe_gc_map_("dedupe gc map"),
dedupe_cfi_info_("dedupe cfi info") {
DCHECK(compiler_options_ != nullptr);
DCHECK(verification_results_ != nullptr);
DCHECK(method_inliner_map_ != nullptr);
CHECK_PTHREAD_CALL(pthread_key_create, (&tls_key_, NULL), "compiler tls key");
dex_to_dex_compiler_ = reinterpret_cast<DexToDexCompilerFn>(ArtCompileDEX);
compiler_->Init();
CHECK(!Runtime::Current()->IsStarted());
if (image_) {
CHECK(image_classes_.get() != nullptr);
} else {
CHECK(image_classes_.get() == nullptr);
}
// Are we generating CFI information?
if (compiler_options->GetGenerateGDBInformation()) {
cfi_info_.reset(compiler_->GetCallFrameInformationInitialization(*this));
}
// Read the profile file if one is provided.
if (!profile_file.empty()) {
profile_present_ = profile_file_.LoadFile(profile_file);
if (profile_present_) {
LOG(INFO) << "Using profile data form file " << profile_file;
} else {
LOG(INFO) << "Failed to load profile file " << profile_file;
}
}
}
std::vector<uint8_t>* CompilerDriver::DeduplicateCode(const std::vector<uint8_t>& code) {
return dedupe_code_.Add(Thread::Current(), code);
}
std::vector<uint8_t>* CompilerDriver::DeduplicateMappingTable(const std::vector<uint8_t>& code) {
return dedupe_mapping_table_.Add(Thread::Current(), code);
}
std::vector<uint8_t>* CompilerDriver::DeduplicateVMapTable(const std::vector<uint8_t>& code) {
return dedupe_vmap_table_.Add(Thread::Current(), code);
}
std::vector<uint8_t>* CompilerDriver::DeduplicateGCMap(const std::vector<uint8_t>& code) {
return dedupe_gc_map_.Add(Thread::Current(), code);
}
std::vector<uint8_t>* CompilerDriver::DeduplicateCFIInfo(const std::vector<uint8_t>* cfi_info) {
if (cfi_info == nullptr) {
return nullptr;
}
return dedupe_cfi_info_.Add(Thread::Current(), *cfi_info);
}
CompilerDriver::~CompilerDriver() {
Thread* self = Thread::Current();
{
MutexLock mu(self, compiled_classes_lock_);
STLDeleteValues(&compiled_classes_);
}
{
MutexLock mu(self, compiled_methods_lock_);
STLDeleteValues(&compiled_methods_);
}
{
MutexLock mu(self, compiled_methods_lock_);
STLDeleteElements(&code_to_patch_);
}
{
MutexLock mu(self, compiled_methods_lock_);
STLDeleteElements(&methods_to_patch_);
}
{
MutexLock mu(self, compiled_methods_lock_);
STLDeleteElements(&classes_to_patch_);
}
CHECK_PTHREAD_CALL(pthread_key_delete, (tls_key_), "delete tls key");
compiler_->UnInit();
}
CompilerTls* CompilerDriver::GetTls() {
// Lazily create thread-local storage
CompilerTls* res = static_cast<CompilerTls*>(pthread_getspecific(tls_key_));
if (res == NULL) {
res = new CompilerTls();
CHECK_PTHREAD_CALL(pthread_setspecific, (tls_key_, res), "compiler tls");
}
return res;
}
#define CREATE_TRAMPOLINE(type, abi, offset) \
if (Is64BitInstructionSet(instruction_set_)) { \
return CreateTrampoline64(instruction_set_, abi, \
type ## _ENTRYPOINT_OFFSET(8, offset)); \
} else { \
return CreateTrampoline32(instruction_set_, abi, \
type ## _ENTRYPOINT_OFFSET(4, offset)); \
}
const std::vector<uint8_t>* CompilerDriver::CreateInterpreterToInterpreterBridge() const {
CREATE_TRAMPOLINE(INTERPRETER, kInterpreterAbi, pInterpreterToInterpreterBridge)
}
const std::vector<uint8_t>* CompilerDriver::CreateInterpreterToCompiledCodeBridge() const {
CREATE_TRAMPOLINE(INTERPRETER, kInterpreterAbi, pInterpreterToCompiledCodeBridge)
}
const std::vector<uint8_t>* CompilerDriver::CreateJniDlsymLookup() const {
CREATE_TRAMPOLINE(JNI, kJniAbi, pDlsymLookup)
}
const std::vector<uint8_t>* CompilerDriver::CreatePortableImtConflictTrampoline() const {
CREATE_TRAMPOLINE(PORTABLE, kPortableAbi, pPortableImtConflictTrampoline)
}
const std::vector<uint8_t>* CompilerDriver::CreatePortableResolutionTrampoline() const {
CREATE_TRAMPOLINE(PORTABLE, kPortableAbi, pPortableResolutionTrampoline)
}
const std::vector<uint8_t>* CompilerDriver::CreatePortableToInterpreterBridge() const {
CREATE_TRAMPOLINE(PORTABLE, kPortableAbi, pPortableToInterpreterBridge)
}
const std::vector<uint8_t>* CompilerDriver::CreateQuickGenericJniTrampoline() const {
CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickGenericJniTrampoline)
}
const std::vector<uint8_t>* CompilerDriver::CreateQuickImtConflictTrampoline() const {
CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickImtConflictTrampoline)
}
const std::vector<uint8_t>* CompilerDriver::CreateQuickResolutionTrampoline() const {
CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickResolutionTrampoline)
}
const std::vector<uint8_t>* CompilerDriver::CreateQuickToInterpreterBridge() const {
CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickToInterpreterBridge)
}
#undef CREATE_TRAMPOLINE
void CompilerDriver::CompileAll(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
DCHECK(!Runtime::Current()->IsStarted());
std::unique_ptr<ThreadPool> thread_pool(new ThreadPool("Compiler driver thread pool", thread_count_ - 1));
PreCompile(class_loader, dex_files, thread_pool.get(), timings);
Compile(class_loader, dex_files, thread_pool.get(), timings);
if (dump_stats_) {
stats_->Dump();
}
}
static DexToDexCompilationLevel GetDexToDexCompilationlevel(
Thread* self, Handle<mirror::ClassLoader> class_loader, const DexFile& dex_file,
const DexFile::ClassDef& class_def) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
const char* descriptor = dex_file.GetClassDescriptor(class_def);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
mirror::Class* klass = class_linker->FindClass(self, descriptor, class_loader);
if (klass == NULL) {
CHECK(self->IsExceptionPending());
self->ClearException();
return kDontDexToDexCompile;
}
// The verifier can only run on "quick" instructions at runtime (see usage of
// FindAccessedFieldAtDexPc and FindInvokedMethodAtDexPc in ThrowNullPointerExceptionFromDexPC
// function). Since image classes can be verified again while compiling an application,
// we must prevent the DEX-to-DEX compiler from introducing them.
// TODO: find a way to enable "quick" instructions for image classes and remove this check.
bool compiling_image_classes = class_loader.Get() == nullptr;
if (compiling_image_classes) {
return kRequired;
} else if (klass->IsVerified()) {
// Class is verified so we can enable DEX-to-DEX compilation for performance.
return kOptimize;
} else if (klass->IsCompileTimeVerified()) {
// Class verification has soft-failed. Anyway, ensure at least correctness.
DCHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime);
return kRequired;
} else {
// Class verification has failed: do not run DEX-to-DEX compilation.
return kDontDexToDexCompile;
}
}
void CompilerDriver::CompileOne(mirror::ArtMethod* method, TimingLogger* timings) {
DCHECK(!Runtime::Current()->IsStarted());
Thread* self = Thread::Current();
jobject jclass_loader;
const DexFile* dex_file;
uint16_t class_def_idx;
uint32_t method_idx = method->GetDexMethodIndex();
uint32_t access_flags = method->GetAccessFlags();
InvokeType invoke_type = method->GetInvokeType();
{
ScopedObjectAccessUnchecked soa(self);
ScopedLocalRef<jobject>
local_class_loader(soa.Env(),
soa.AddLocalReference<jobject>(method->GetDeclaringClass()->GetClassLoader()));
jclass_loader = soa.Env()->NewGlobalRef(local_class_loader.get());
// Find the dex_file
dex_file = method->GetDexFile();
class_def_idx = method->GetClassDefIndex();
}
const DexFile::CodeItem* code_item = dex_file->GetCodeItem(method->GetCodeItemOffset());
self->TransitionFromRunnableToSuspended(kNative);
std::vector<const DexFile*> dex_files;
dex_files.push_back(dex_file);
std::unique_ptr<ThreadPool> thread_pool(new ThreadPool("Compiler driver thread pool", 0U));
PreCompile(jclass_loader, dex_files, thread_pool.get(), timings);
// Can we run DEX-to-DEX compiler on this class ?
DexToDexCompilationLevel dex_to_dex_compilation_level = kDontDexToDexCompile;
{
ScopedObjectAccess soa(Thread::Current());
const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
StackHandleScope<1> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
dex_to_dex_compilation_level = GetDexToDexCompilationlevel(self, class_loader, *dex_file,
class_def);
}
CompileMethod(code_item, access_flags, invoke_type, class_def_idx, method_idx, jclass_loader,
*dex_file, dex_to_dex_compilation_level);
self->GetJniEnv()->DeleteGlobalRef(jclass_loader);
self->TransitionFromSuspendedToRunnable();
}
void CompilerDriver::Resolve(jobject class_loader, const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool, TimingLogger* timings) {
for (size_t i = 0; i != dex_files.size(); ++i) {
const DexFile* dex_file = dex_files[i];
CHECK(dex_file != nullptr);
ResolveDexFile(class_loader, *dex_file, thread_pool, timings);
}
}
void CompilerDriver::PreCompile(jobject class_loader, const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool, TimingLogger* timings) {
LoadImageClasses(timings);
if (!compiler_options_->IsVerificationEnabled()) {
VLOG(compiler) << "Verify none mode specified, skipping pre-compilation";
return;
}
Resolve(class_loader, dex_files, thread_pool, timings);
Verify(class_loader, dex_files, thread_pool, timings);
InitializeClasses(class_loader, dex_files, thread_pool, timings);
UpdateImageClasses(timings);
}
bool CompilerDriver::IsImageClass(const char* descriptor) const {
if (!IsImage()) {
return true;
} else {
return image_classes_->find(descriptor) != image_classes_->end();
}
}
static void ResolveExceptionsForMethod(MethodHelper* mh,
std::set<std::pair<uint16_t, const DexFile*>>& exceptions_to_resolve)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
const DexFile::CodeItem* code_item = mh->GetMethod()->GetCodeItem();
if (code_item == NULL) {
return; // native or abstract method
}
if (code_item->tries_size_ == 0) {
return; // nothing to process
}
const byte* encoded_catch_handler_list = DexFile::GetCatchHandlerData(*code_item, 0);
size_t num_encoded_catch_handlers = DecodeUnsignedLeb128(&encoded_catch_handler_list);
for (size_t i = 0; i < num_encoded_catch_handlers; i++) {
int32_t encoded_catch_handler_size = DecodeSignedLeb128(&encoded_catch_handler_list);
bool has_catch_all = false;
if (encoded_catch_handler_size <= 0) {
encoded_catch_handler_size = -encoded_catch_handler_size;
has_catch_all = true;
}
for (int32_t j = 0; j < encoded_catch_handler_size; j++) {
uint16_t encoded_catch_handler_handlers_type_idx =
DecodeUnsignedLeb128(&encoded_catch_handler_list);
// Add to set of types to resolve if not already in the dex cache resolved types
if (!mh->GetMethod()->IsResolvedTypeIdx(encoded_catch_handler_handlers_type_idx)) {
exceptions_to_resolve.insert(
std::pair<uint16_t, const DexFile*>(encoded_catch_handler_handlers_type_idx,
mh->GetMethod()->GetDexFile()));
}
// ignore address associated with catch handler
DecodeUnsignedLeb128(&encoded_catch_handler_list);
}
if (has_catch_all) {
// ignore catch all address
DecodeUnsignedLeb128(&encoded_catch_handler_list);
}
}
}
static bool ResolveCatchBlockExceptionsClassVisitor(mirror::Class* c, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
std::set<std::pair<uint16_t, const DexFile*>>* exceptions_to_resolve =
reinterpret_cast<std::set<std::pair<uint16_t, const DexFile*>>*>(arg);
StackHandleScope<1> hs(Thread::Current());
MethodHelper mh(hs.NewHandle<mirror::ArtMethod>(nullptr));
for (size_t i = 0; i < c->NumVirtualMethods(); ++i) {
mh.ChangeMethod(c->GetVirtualMethod(i));
ResolveExceptionsForMethod(&mh, *exceptions_to_resolve);
}
for (size_t i = 0; i < c->NumDirectMethods(); ++i) {
mh.ChangeMethod(c->GetDirectMethod(i));
ResolveExceptionsForMethod(&mh, *exceptions_to_resolve);
}
return true;
}
static bool RecordImageClassesVisitor(mirror::Class* klass, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CompilerDriver::DescriptorSet* image_classes =
reinterpret_cast<CompilerDriver::DescriptorSet*>(arg);
image_classes->insert(klass->GetDescriptor());
return true;
}
// Make a list of descriptors for classes to include in the image
void CompilerDriver::LoadImageClasses(TimingLogger* timings)
LOCKS_EXCLUDED(Locks::mutator_lock_) {
CHECK(timings != nullptr);
if (!IsImage()) {
return;
}
TimingLogger::ScopedTiming t("LoadImageClasses", timings);
// Make a first class to load all classes explicitly listed in the file
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
CHECK(image_classes_.get() != nullptr);
for (auto it = image_classes_->begin(), end = image_classes_->end(); it != end;) {
const std::string& descriptor(*it);
StackHandleScope<1> hs(self);
Handle<mirror::Class> klass(
hs.NewHandle(class_linker->FindSystemClass(self, descriptor.c_str())));
if (klass.Get() == NULL) {
VLOG(compiler) << "Failed to find class " << descriptor;
image_classes_->erase(it++);
self->ClearException();
} else {
++it;
}
}
// Resolve exception classes referenced by the loaded classes. The catch logic assumes
// exceptions are resolved by the verifier when there is a catch block in an interested method.
// Do this here so that exception classes appear to have been specified image classes.
std::set<std::pair<uint16_t, const DexFile*>> unresolved_exception_types;
StackHandleScope<1> hs(self);
Handle<mirror::Class> java_lang_Throwable(
hs.NewHandle(class_linker->FindSystemClass(self, "Ljava/lang/Throwable;")));
do {
unresolved_exception_types.clear();
class_linker->VisitClasses(ResolveCatchBlockExceptionsClassVisitor,
&unresolved_exception_types);
for (const std::pair<uint16_t, const DexFile*>& exception_type : unresolved_exception_types) {
uint16_t exception_type_idx = exception_type.first;
const DexFile* dex_file = exception_type.second;
StackHandleScope<2> hs(self);
Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(*dex_file)));
Handle<mirror::Class> klass(hs.NewHandle(
class_linker->ResolveType(*dex_file, exception_type_idx, dex_cache,
NullHandle<mirror::ClassLoader>())));
if (klass.Get() == NULL) {
const DexFile::TypeId& type_id = dex_file->GetTypeId(exception_type_idx);
const char* descriptor = dex_file->GetTypeDescriptor(type_id);
LOG(FATAL) << "Failed to resolve class " << descriptor;
}
DCHECK(java_lang_Throwable->IsAssignableFrom(klass.Get()));
}
// Resolving exceptions may load classes that reference more exceptions, iterate until no
// more are found
} while (!unresolved_exception_types.empty());
// We walk the roots looking for classes so that we'll pick up the
// above classes plus any classes them depend on such super
// classes, interfaces, and the required ClassLinker roots.
class_linker->VisitClasses(RecordImageClassesVisitor, image_classes_.get());
CHECK_NE(image_classes_->size(), 0U);
}
static void MaybeAddToImageClasses(Handle<mirror::Class> c,
CompilerDriver::DescriptorSet* image_classes)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
Thread* self = Thread::Current();
StackHandleScope<1> hs(self);
// Make a copy of the handle so that we don't clobber it doing Assign.
Handle<mirror::Class> klass(hs.NewHandle(c.Get()));
while (!klass->IsObjectClass()) {
std::string descriptor(klass->GetDescriptor());
std::pair<CompilerDriver::DescriptorSet::iterator, bool> result =
image_classes->insert(descriptor);
if (result.second) {
VLOG(compiler) << "Adding " << descriptor << " to image classes";
} else {
return;
}
for (size_t i = 0; i < klass->NumDirectInterfaces(); ++i) {
StackHandleScope<1> hs(self);
MaybeAddToImageClasses(hs.NewHandle(mirror::Class::GetDirectInterface(self, klass, i)),
image_classes);
}
if (klass->IsArrayClass()) {
StackHandleScope<1> hs(self);
MaybeAddToImageClasses(hs.NewHandle(klass->GetComponentType()), image_classes);
}
klass.Assign(klass->GetSuperClass());
}
}
void CompilerDriver::FindClinitImageClassesCallback(mirror::Object* object, void* arg) {
DCHECK(object != NULL);
DCHECK(arg != NULL);
CompilerDriver* compiler_driver = reinterpret_cast<CompilerDriver*>(arg);
StackHandleScope<1> hs(Thread::Current());
MaybeAddToImageClasses(hs.NewHandle(object->GetClass()), compiler_driver->image_classes_.get());
}
void CompilerDriver::UpdateImageClasses(TimingLogger* timings) {
if (IsImage()) {
TimingLogger::ScopedTiming t("UpdateImageClasses", timings);
// Update image_classes_ with classes for objects created by <clinit> methods.
Thread* self = Thread::Current();
const char* old_cause = self->StartAssertNoThreadSuspension("ImageWriter");
gc::Heap* heap = Runtime::Current()->GetHeap();
// TODO: Image spaces only?
ScopedObjectAccess soa(Thread::Current());
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
heap->VisitObjects(FindClinitImageClassesCallback, this);
self->EndAssertNoThreadSuspension(old_cause);
}
}
bool CompilerDriver::CanAssumeTypeIsPresentInDexCache(const DexFile& dex_file, uint32_t type_idx) {
if (IsImage() &&
IsImageClass(dex_file.StringDataByIdx(dex_file.GetTypeId(type_idx).descriptor_idx_))) {
if (kIsDebugBuild) {
ScopedObjectAccess soa(Thread::Current());
mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file);
mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx);
CHECK(resolved_class != NULL);
}
stats_->TypeInDexCache();
return true;
} else {
stats_->TypeNotInDexCache();
return false;
}
}
bool CompilerDriver::CanAssumeStringIsPresentInDexCache(const DexFile& dex_file,
uint32_t string_idx) {
// See also Compiler::ResolveDexFile
bool result = false;
if (IsImage()) {
// We resolve all const-string strings when building for the image.
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<1> hs(soa.Self());
Handle<mirror::DexCache> dex_cache(
hs.NewHandle(Runtime::Current()->GetClassLinker()->FindDexCache(dex_file)));
Runtime::Current()->GetClassLinker()->ResolveString(dex_file, string_idx, dex_cache);
result = true;
}
if (result) {
stats_->StringInDexCache();
} else {
stats_->StringNotInDexCache();
}
return result;
}
bool CompilerDriver::CanAccessTypeWithoutChecks(uint32_t referrer_idx, const DexFile& dex_file,
uint32_t type_idx,
bool* type_known_final, bool* type_known_abstract,
bool* equals_referrers_class) {
if (type_known_final != NULL) {
*type_known_final = false;
}
if (type_known_abstract != NULL) {
*type_known_abstract = false;
}
if (equals_referrers_class != NULL) {
*equals_referrers_class = false;
}
ScopedObjectAccess soa(Thread::Current());
mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file);
// Get type from dex cache assuming it was populated by the verifier
mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx);
if (resolved_class == NULL) {
stats_->TypeNeedsAccessCheck();
return false; // Unknown class needs access checks.
}
const DexFile::MethodId& method_id = dex_file.GetMethodId(referrer_idx);
if (equals_referrers_class != NULL) {
*equals_referrers_class = (method_id.class_idx_ == type_idx);
}
mirror::Class* referrer_class = dex_cache->GetResolvedType(method_id.class_idx_);
if (referrer_class == NULL) {
stats_->TypeNeedsAccessCheck();
return false; // Incomplete referrer knowledge needs access check.
}
// Perform access check, will return true if access is ok or false if we're going to have to
// check this at runtime (for example for class loaders).
bool result = referrer_class->CanAccess(resolved_class);
if (result) {
stats_->TypeDoesntNeedAccessCheck();
if (type_known_final != NULL) {
*type_known_final = resolved_class->IsFinal() && !resolved_class->IsArrayClass();
}
if (type_known_abstract != NULL) {
*type_known_abstract = resolved_class->IsAbstract() && !resolved_class->IsArrayClass();
}
} else {
stats_->TypeNeedsAccessCheck();
}
return result;
}
bool CompilerDriver::CanAccessInstantiableTypeWithoutChecks(uint32_t referrer_idx,
const DexFile& dex_file,
uint32_t type_idx) {
ScopedObjectAccess soa(Thread::Current());
mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file);
// Get type from dex cache assuming it was populated by the verifier.
mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx);
if (resolved_class == NULL) {
stats_->TypeNeedsAccessCheck();
return false; // Unknown class needs access checks.
}
const DexFile::MethodId& method_id = dex_file.GetMethodId(referrer_idx);
mirror::Class* referrer_class = dex_cache->GetResolvedType(method_id.class_idx_);
if (referrer_class == NULL) {
stats_->TypeNeedsAccessCheck();
return false; // Incomplete referrer knowledge needs access check.
}
// Perform access and instantiable checks, will return true if access is ok or false if we're
// going to have to check this at runtime (for example for class loaders).
bool result = referrer_class->CanAccess(resolved_class) && resolved_class->IsInstantiable();
if (result) {
stats_->TypeDoesntNeedAccessCheck();
} else {
stats_->TypeNeedsAccessCheck();
}
return result;
}
bool CompilerDriver::CanEmbedTypeInCode(const DexFile& dex_file, uint32_t type_idx,
bool* is_type_initialized, bool* use_direct_type_ptr,
uintptr_t* direct_type_ptr, bool* out_is_finalizable) {
ScopedObjectAccess soa(Thread::Current());
mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file);
mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx);
if (resolved_class == nullptr) {
return false;
}
*out_is_finalizable = resolved_class->IsFinalizable();
const bool compiling_boot = Runtime::Current()->GetHeap()->IsCompilingBoot();
if (compiling_boot) {
// boot -> boot class pointers.
// True if the class is in the image at boot compiling time.
const bool is_image_class = IsImage() && IsImageClass(
dex_file.StringDataByIdx(dex_file.GetTypeId(type_idx).descriptor_idx_));
// True if pc relative load works.
const bool support_boot_image_fixup = GetSupportBootImageFixup();
if (is_image_class && support_boot_image_fixup) {
*is_type_initialized = resolved_class->IsInitialized();
*use_direct_type_ptr = false;
*direct_type_ptr = 0;
return true;
} else {
return false;
}
} else {
// True if the class is in the image at app compiling time.
const bool class_in_image =
Runtime::Current()->GetHeap()->FindSpaceFromObject(resolved_class, false)->IsImageSpace();
if (class_in_image) {
// boot -> app class pointers.
*is_type_initialized = resolved_class->IsInitialized();
// TODO This is somewhat hacky. We should refactor all of this invoke codepath.
*use_direct_type_ptr = !GetCompilerOptions().GetIncludePatchInformation();
*direct_type_ptr = reinterpret_cast<uintptr_t>(resolved_class);
return true;
} else {
// app -> app class pointers.
// Give up because app does not have an image and class
// isn't created at compile time. TODO: implement this
// if/when each app gets an image.
return false;
}
}
}
void CompilerDriver::ProcessedInstanceField(bool resolved) {
if (!resolved) {
stats_->UnresolvedInstanceField();
} else {
stats_->ResolvedInstanceField();
}
}
void CompilerDriver::ProcessedStaticField(bool resolved, bool local) {
if (!resolved) {
stats_->UnresolvedStaticField();
} else if (local) {
stats_->ResolvedLocalStaticField();
} else {
stats_->ResolvedStaticField();
}
}
void CompilerDriver::ProcessedInvoke(InvokeType invoke_type, int flags) {
stats_->ProcessedInvoke(invoke_type, flags);
}
mirror::ArtField* CompilerDriver::ComputeInstanceFieldInfo(uint32_t field_idx,
const DexCompilationUnit* mUnit,
bool is_put,
const ScopedObjectAccess& soa) {
// Try to resolve the field and compiling method's class.
mirror::ArtField* resolved_field;
mirror::Class* referrer_class;
mirror::DexCache* dex_cache;
{
StackHandleScope<3> hs(soa.Self());
Handle<mirror::DexCache> dex_cache_handle(
hs.NewHandle(mUnit->GetClassLinker()->FindDexCache(*mUnit->GetDexFile())));
Handle<mirror::ClassLoader> class_loader_handle(
hs.NewHandle(soa.Decode<mirror::ClassLoader*>(mUnit->GetClassLoader())));
Handle<mirror::ArtField> resolved_field_handle(hs.NewHandle(
ResolveField(soa, dex_cache_handle, class_loader_handle, mUnit, field_idx, false)));
referrer_class = (resolved_field_handle.Get() != nullptr)
? ResolveCompilingMethodsClass(soa, dex_cache_handle, class_loader_handle, mUnit) : nullptr;
resolved_field = resolved_field_handle.Get();
dex_cache = dex_cache_handle.Get();
}
bool can_link = false;
if (resolved_field != nullptr && referrer_class != nullptr) {
std::pair<bool, bool> fast_path = IsFastInstanceField(
dex_cache, referrer_class, resolved_field, field_idx);
can_link = is_put ? fast_path.second : fast_path.first;
}
ProcessedInstanceField(can_link);
return can_link ? resolved_field : nullptr;
}
bool CompilerDriver::ComputeInstanceFieldInfo(uint32_t field_idx, const DexCompilationUnit* mUnit,
bool is_put, MemberOffset* field_offset,
bool* is_volatile) {
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<1> hs(soa.Self());
Handle<mirror::ArtField> resolved_field =
hs.NewHandle(ComputeInstanceFieldInfo(field_idx, mUnit, is_put, soa));
if (resolved_field.Get() == nullptr) {
// Conservative defaults.
*is_volatile = true;
*field_offset = MemberOffset(static_cast<size_t>(-1));
return false;
} else {
*is_volatile = resolved_field->IsVolatile();
*field_offset = resolved_field->GetOffset();
return true;
}
}
bool CompilerDriver::ComputeStaticFieldInfo(uint32_t field_idx, const DexCompilationUnit* mUnit,
bool is_put, MemberOffset* field_offset,
uint32_t* storage_index, bool* is_referrers_class,
bool* is_volatile, bool* is_initialized) {
ScopedObjectAccess soa(Thread::Current());
// Try to resolve the field and compiling method's class.
mirror::ArtField* resolved_field;
mirror::Class* referrer_class;
mirror::DexCache* dex_cache;
{
StackHandleScope<3> hs(soa.Self());
Handle<mirror::DexCache> dex_cache_handle(
hs.NewHandle(mUnit->GetClassLinker()->FindDexCache(*mUnit->GetDexFile())));
Handle<mirror::ClassLoader> class_loader_handle(
hs.NewHandle(soa.Decode<mirror::ClassLoader*>(mUnit->GetClassLoader())));
Handle<mirror::ArtField> resolved_field_handle(hs.NewHandle(
ResolveField(soa, dex_cache_handle, class_loader_handle, mUnit, field_idx, true)));
referrer_class = (resolved_field_handle.Get() != nullptr)
? ResolveCompilingMethodsClass(soa, dex_cache_handle, class_loader_handle, mUnit) : nullptr;
resolved_field = resolved_field_handle.Get();
dex_cache = dex_cache_handle.Get();
}
bool result = false;
if (resolved_field != nullptr && referrer_class != nullptr) {
*is_volatile = IsFieldVolatile(resolved_field);
std::pair<bool, bool> fast_path = IsFastStaticField(
dex_cache, referrer_class, resolved_field, field_idx, field_offset,
storage_index, is_referrers_class, is_initialized);
result = is_put ? fast_path.second : fast_path.first;
}
if (!result) {
// Conservative defaults.
*is_volatile = true;
*field_offset = MemberOffset(static_cast<size_t>(-1));
*storage_index = -1;
*is_referrers_class = false;
*is_initialized = false;
}
ProcessedStaticField(result, *is_referrers_class);
return result;
}
void CompilerDriver::GetCodeAndMethodForDirectCall(InvokeType* type, InvokeType sharp_type,
bool no_guarantee_of_dex_cache_entry,
mirror::Class* referrer_class,
mirror::ArtMethod* method,
int* stats_flags,
MethodReference* target_method,
uintptr_t* direct_code,
uintptr_t* direct_method) {
// For direct and static methods compute possible direct_code and direct_method values, ie
// an address for the Method* being invoked and an address of the code for that Method*.
// For interface calls compute a value for direct_method that is the interface method being
// invoked, so this can be passed to the out-of-line runtime support code.
*direct_code = 0;
*direct_method = 0;
bool use_dex_cache = false;
const bool compiling_boot = Runtime::Current()->GetHeap()->IsCompilingBoot();
// TODO This is somewhat hacky. We should refactor all of this invoke codepath.
const bool force_relocations = (compiling_boot ||
GetCompilerOptions().GetIncludePatchInformation());
if (compiler_->IsPortable()) {
if (sharp_type != kStatic && sharp_type != kDirect) {
return;
}
use_dex_cache = true;
} else {
if (sharp_type != kStatic && sharp_type != kDirect) {
return;
}
// TODO: support patching on all architectures.
use_dex_cache = force_relocations && !support_boot_image_fixup_;
}
bool method_code_in_boot = (method->GetDeclaringClass()->GetClassLoader() == nullptr);
if (!use_dex_cache) {
if (!method_code_in_boot) {
use_dex_cache = true;
} else {
bool has_clinit_trampoline =
method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
if (has_clinit_trampoline && (method->GetDeclaringClass() != referrer_class)) {
// Ensure we run the clinit trampoline unless we are invoking a static method in the same
// class.
use_dex_cache = true;
}
}
}
if (method_code_in_boot) {
*stats_flags |= kFlagDirectCallToBoot | kFlagDirectMethodToBoot;
}
if (!use_dex_cache && force_relocations) {
if (!IsImage() || !IsImageClass(method->GetDeclaringClassDescriptor())) {
// We can only branch directly to Methods that are resolved in the DexCache.
// Otherwise we won't invoke the resolution trampoline.
use_dex_cache = true;
}
}
// The method is defined not within this dex file. We need a dex cache slot within the current
// dex file or direct pointers.
bool must_use_direct_pointers = false;
if (target_method->dex_file == method->GetDeclaringClass()->GetDexCache()->GetDexFile()) {
target_method->dex_method_index = method->GetDexMethodIndex();
} else {
if (no_guarantee_of_dex_cache_entry) {
StackHandleScope<1> hs(Thread::Current());
MethodHelper mh(hs.NewHandle(method));
// See if the method is also declared in this dex cache.
uint32_t dex_method_idx = mh.FindDexMethodIndexInOtherDexFile(
*target_method->dex_file, target_method->dex_method_index);
if (dex_method_idx != DexFile::kDexNoIndex) {
target_method->dex_method_index = dex_method_idx;
} else {
if (force_relocations && !use_dex_cache) {
target_method->dex_method_index = method->GetDexMethodIndex();
target_method->dex_file = method->GetDeclaringClass()->GetDexCache()->GetDexFile();
}
must_use_direct_pointers = true;
}
}
}
if (use_dex_cache) {
if (must_use_direct_pointers) {
// Fail. Test above showed the only safe dispatch was via the dex cache, however, the direct
// pointers are required as the dex cache lacks an appropriate entry.
VLOG(compiler) << "Dex cache devirtualization failed for: " << PrettyMethod(method);
} else {
*type = sharp_type;
}
} else {
bool method_in_image =
Runtime::Current()->GetHeap()->FindSpaceFromObject(method, false)->IsImageSpace();
if (method_in_image || compiling_boot) {
// We know we must be able to get to the method in the image, so use that pointer.
CHECK(!method->IsAbstract());
*type = sharp_type;
*direct_method = force_relocations ? -1 : reinterpret_cast<uintptr_t>(method);
*direct_code = force_relocations ? -1 : compiler_->GetEntryPointOf(method);
target_method->dex_file = method->GetDeclaringClass()->GetDexCache()->GetDexFile();
target_method->dex_method_index = method->GetDexMethodIndex();
} else if (!must_use_direct_pointers) {
// Set the code and rely on the dex cache for the method.
*type = sharp_type;
if (force_relocations) {
*direct_code = -1;
target_method->dex_file = method->GetDeclaringClass()->GetDexCache()->GetDexFile();
target_method->dex_method_index = method->GetDexMethodIndex();
} else {
*direct_code = compiler_->GetEntryPointOf(method);
}
} else {
// Direct pointers were required but none were available.
VLOG(compiler) << "Dex cache devirtualization failed for: " << PrettyMethod(method);
}
}
}
bool CompilerDriver::ComputeInvokeInfo(const DexCompilationUnit* mUnit, const uint32_t dex_pc,
bool update_stats, bool enable_devirtualization,
InvokeType* invoke_type, MethodReference* target_method,
int* vtable_idx, uintptr_t* direct_code,
uintptr_t* direct_method) {
InvokeType orig_invoke_type = *invoke_type;
int stats_flags = 0;
ScopedObjectAccess soa(Thread::Current());
// Try to resolve the method and compiling method's class.
mirror::ArtMethod* resolved_method;
mirror::Class* referrer_class;
StackHandleScope<3> hs(soa.Self());
Handle<mirror::DexCache> dex_cache(
hs.NewHandle(mUnit->GetClassLinker()->FindDexCache(*mUnit->GetDexFile())));
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
soa.Decode<mirror::ClassLoader*>(mUnit->GetClassLoader())));
{
uint32_t method_idx = target_method->dex_method_index;
Handle<mirror::ArtMethod> resolved_method_handle(hs.NewHandle(
ResolveMethod(soa, dex_cache, class_loader, mUnit, method_idx, orig_invoke_type)));
referrer_class = (resolved_method_handle.Get() != nullptr)
? ResolveCompilingMethodsClass(soa, dex_cache, class_loader, mUnit) : nullptr;
resolved_method = resolved_method_handle.Get();
}
bool result = false;
if (resolved_method != nullptr) {
*vtable_idx = GetResolvedMethodVTableIndex(resolved_method, orig_invoke_type);
if (enable_devirtualization) {
DCHECK(mUnit->GetVerifiedMethod() != nullptr);
const MethodReference* devirt_target = mUnit->GetVerifiedMethod()->GetDevirtTarget(dex_pc);
stats_flags = IsFastInvoke(
soa, dex_cache, class_loader, mUnit, referrer_class, resolved_method,
invoke_type, target_method, devirt_target, direct_code, direct_method);
result = stats_flags != 0;
} else {
// Devirtualization not enabled. Inline IsFastInvoke(), dropping the devirtualization parts.
if (UNLIKELY(referrer_class == nullptr) ||
UNLIKELY(!referrer_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(),
resolved_method, dex_cache.Get(),
target_method->dex_method_index)) ||
*invoke_type == kSuper) {
// Slow path. (Without devirtualization, all super calls go slow path as well.)
} else {
// Sharpening failed so generate a regular resolved method dispatch.
stats_flags = kFlagMethodResolved;
GetCodeAndMethodForDirectCall(invoke_type, *invoke_type, false, referrer_class, resolved_method,
&stats_flags, target_method, direct_code, direct_method);
result = true;
}
}
}
if (!result) {
// Conservative defaults.
*vtable_idx = -1;
*direct_code = 0u;
*direct_method = 0u;
}
if (update_stats) {
ProcessedInvoke(orig_invoke_type, stats_flags);
}
return result;
}
const VerifiedMethod* CompilerDriver::GetVerifiedMethod(const DexFile* dex_file,
uint32_t method_idx) const {
MethodReference ref(dex_file, method_idx);
return verification_results_->GetVerifiedMethod(ref);
}
bool CompilerDriver::IsSafeCast(const DexCompilationUnit* mUnit, uint32_t dex_pc) {
DCHECK(mUnit->GetVerifiedMethod() != nullptr);
bool result = mUnit->GetVerifiedMethod()->IsSafeCast(dex_pc);
if (result) {
stats_->SafeCast();
} else {
stats_->NotASafeCast();
}
return result;
}
void CompilerDriver::AddCodePatch(const DexFile* dex_file,
uint16_t referrer_class_def_idx,
uint32_t referrer_method_idx,
InvokeType referrer_invoke_type,
uint32_t target_method_idx,
const DexFile* target_dex_file,
InvokeType target_invoke_type,
size_t literal_offset) {
MutexLock mu(Thread::Current(), compiled_methods_lock_);
code_to_patch_.push_back(new CallPatchInformation(dex_file,
referrer_class_def_idx,
referrer_method_idx,
referrer_invoke_type,
target_method_idx,
target_dex_file,
target_invoke_type,
literal_offset));
}
void CompilerDriver::AddRelativeCodePatch(const DexFile* dex_file,
uint16_t referrer_class_def_idx,
uint32_t referrer_method_idx,
InvokeType referrer_invoke_type,
uint32_t target_method_idx,
const DexFile* target_dex_file,
InvokeType target_invoke_type,
size_t literal_offset,
int32_t pc_relative_offset) {
MutexLock mu(Thread::Current(), compiled_methods_lock_);
code_to_patch_.push_back(new RelativeCallPatchInformation(dex_file,
referrer_class_def_idx,
referrer_method_idx,
referrer_invoke_type,
target_method_idx,
target_dex_file,
target_invoke_type,
literal_offset,
pc_relative_offset));
}
void CompilerDriver::AddMethodPatch(const DexFile* dex_file,
uint16_t referrer_class_def_idx,
uint32_t referrer_method_idx,
InvokeType referrer_invoke_type,
uint32_t target_method_idx,
const DexFile* target_dex_file,
InvokeType target_invoke_type,
size_t literal_offset) {
MutexLock mu(Thread::Current(), compiled_methods_lock_);
methods_to_patch_.push_back(new CallPatchInformation(dex_file,
referrer_class_def_idx,
referrer_method_idx,
referrer_invoke_type,
target_method_idx,
target_dex_file,
target_invoke_type,
literal_offset));
}
void CompilerDriver::AddClassPatch(const DexFile* dex_file,
uint16_t referrer_class_def_idx,
uint32_t referrer_method_idx,
uint32_t target_type_idx,
size_t literal_offset) {
MutexLock mu(Thread::Current(), compiled_methods_lock_);
classes_to_patch_.push_back(new TypePatchInformation(dex_file,
referrer_class_def_idx,
referrer_method_idx,
target_type_idx,
literal_offset));
}
class ParallelCompilationManager {
public:
typedef void Callback(const ParallelCompilationManager* manager, size_t index);
ParallelCompilationManager(ClassLinker* class_linker,
jobject class_loader,
CompilerDriver* compiler,
const DexFile* dex_file,
ThreadPool* thread_pool)
: index_(0),
class_linker_(class_linker),
class_loader_(class_loader),
compiler_(compiler),
dex_file_(dex_file),
thread_pool_(thread_pool) {}
ClassLinker* GetClassLinker() const {
CHECK(class_linker_ != NULL);
return class_linker_;
}
jobject GetClassLoader() const {
return class_loader_;
}
CompilerDriver* GetCompiler() const {
CHECK(compiler_ != NULL);
return compiler_;
}
const DexFile* GetDexFile() const {
CHECK(dex_file_ != NULL);
return dex_file_;
}
void ForAll(size_t begin, size_t end, Callback callback, size_t work_units) {
Thread* self = Thread::Current();
self->AssertNoPendingException();
CHECK_GT(work_units, 0U);
index_.StoreRelaxed(begin);
for (size_t i = 0; i < work_units; ++i) {
thread_pool_->AddTask(self, new ForAllClosure(this, end, callback));
}
thread_pool_->StartWorkers(self);
// Ensure we're suspended while we're blocked waiting for the other threads to finish (worker
// thread destructor's called below perform join).
CHECK_NE(self->GetState(), kRunnable);
// Wait for all the worker threads to finish.
thread_pool_->Wait(self, true, false);
}
size_t NextIndex() {
return index_.FetchAndAddSequentiallyConsistent(1);
}
private:
class ForAllClosure : public Task {
public:
ForAllClosure(ParallelCompilationManager* manager, size_t end, Callback* callback)
: manager_(manager),
end_(end),
callback_(callback) {}
virtual void Run(Thread* self) {
while (true) {
const size_t index = manager_->NextIndex();
if (UNLIKELY(index >= end_)) {
break;
}
callback_(manager_, index);
self->AssertNoPendingException();
}
}
virtual void Finalize() {
delete this;
}
private:
ParallelCompilationManager* const manager_;
const size_t end_;
Callback* const callback_;
};
AtomicInteger index_;
ClassLinker* const class_linker_;
const jobject class_loader_;
CompilerDriver* const compiler_;
const DexFile* const dex_file_;
ThreadPool* const thread_pool_;
DISALLOW_COPY_AND_ASSIGN(ParallelCompilationManager);
};
// Return true if the class should be skipped during compilation.
//
// The first case where we skip is for redundant class definitions in
// the boot classpath. We skip all but the first definition in that case.
//
// The second case where we skip is when an app bundles classes found
// in the boot classpath. Since at runtime we will select the class from
// the boot classpath, we ignore the one from the app.
static bool SkipClass(ClassLinker* class_linker, jobject class_loader, const DexFile& dex_file,
const DexFile::ClassDef& class_def) {
const char* descriptor = dex_file.GetClassDescriptor(class_def);
if (class_loader == NULL) {
DexFile::ClassPathEntry pair = DexFile::FindInClassPath(descriptor, class_linker->GetBootClassPath());
CHECK(pair.second != NULL);
if (pair.first != &dex_file) {
LOG(WARNING) << "Skipping class " << descriptor << " from " << dex_file.GetLocation()
<< " previously found in " << pair.first->GetLocation();
return true;
}
return false;
}
return class_linker->IsInBootClassPath(descriptor);
}
// A fast version of SkipClass above if the class pointer is available
// that avoids the expensive FindInClassPath search.
static bool SkipClass(jobject class_loader, const DexFile& dex_file, mirror::Class* klass)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(klass != NULL);
const DexFile& original_dex_file = *klass->GetDexCache()->GetDexFile();
if (&dex_file != &original_dex_file) {
if (class_loader == NULL) {
LOG(WARNING) << "Skipping class " << PrettyDescriptor(klass) << " from "
<< dex_file.GetLocation() << " previously found in "
<< original_dex_file.GetLocation();
}
return true;
}
return false;
}
static void CheckAndClearResolveException(Thread* self)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(self->IsExceptionPending());
mirror::Throwable* exception = self->GetException(nullptr);
std::string descriptor = exception->GetClass()->GetDescriptor();
if (descriptor != "Ljava/lang/IllegalAccessError;" &&
descriptor != "Ljava/lang/IncompatibleClassChangeError;" &&
descriptor != "Ljava/lang/InstantiationError;" &&
descriptor != "Ljava/lang/NoClassDefFoundError;" &&
descriptor != "Ljava/lang/NoSuchFieldError;" &&
descriptor != "Ljava/lang/NoSuchMethodError;") {
LOG(FATAL) << "Unexpected exeption " << exception->Dump();
}
self->ClearException();
}
static void ResolveClassFieldsAndMethods(const ParallelCompilationManager* manager,
size_t class_def_index)
LOCKS_EXCLUDED(Locks::mutator_lock_) {
ATRACE_CALL();
Thread* self = Thread::Current();
jobject jclass_loader = manager->GetClassLoader();
const DexFile& dex_file = *manager->GetDexFile();
ClassLinker* class_linker = manager->GetClassLinker();
// If an instance field is final then we need to have a barrier on the return, static final
// fields are assigned within the lock held for class initialization. Conservatively assume
// constructor barriers are always required.
bool requires_constructor_barrier = true;
// Method and Field are the worst. We can't resolve without either
// context from the code use (to disambiguate virtual vs direct
// method and instance vs static field) or from class
// definitions. While the compiler will resolve what it can as it
// needs it, here we try to resolve fields and methods used in class
// definitions, since many of them many never be referenced by
// generated code.
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
if (!SkipClass(class_linker, jclass_loader, dex_file, class_def)) {
ScopedObjectAccess soa(self);
StackHandleScope<2> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(dex_file)));
// Resolve the class.
mirror::Class* klass = class_linker->ResolveType(dex_file, class_def.class_idx_, dex_cache,
class_loader);
bool resolve_fields_and_methods;
if (klass == NULL) {
// Class couldn't be resolved, for example, super-class is in a different dex file. Don't
// attempt to resolve methods and fields when there is no declaring class.
CheckAndClearResolveException(soa.Self());
resolve_fields_and_methods = false;
} else {
resolve_fields_and_methods = manager->GetCompiler()->IsImage();
}
// Note the class_data pointer advances through the headers,
// static fields, instance fields, direct methods, and virtual
// methods.
const byte* class_data = dex_file.GetClassData(class_def);
if (class_data == NULL) {
// Empty class such as a marker interface.
requires_constructor_barrier = false;
} else {
ClassDataItemIterator it(dex_file, class_data);
while (it.HasNextStaticField()) {
if (resolve_fields_and_methods) {
mirror::ArtField* field = class_linker->ResolveField(dex_file, it.GetMemberIndex(),
dex_cache, class_loader, true);
if (field == NULL) {
CheckAndClearResolveException(soa.Self());
}
}
it.Next();
}
// We require a constructor barrier if there are final instance fields.
requires_constructor_barrier = false;
while (it.HasNextInstanceField()) {
if ((it.GetMemberAccessFlags() & kAccFinal) != 0) {
requires_constructor_barrier = true;
}
if (resolve_fields_and_methods) {
mirror::ArtField* field = class_linker->ResolveField(dex_file, it.GetMemberIndex(),
dex_cache, class_loader, false);
if (field == NULL) {
CheckAndClearResolveException(soa.Self());
}
}
it.Next();
}
if (resolve_fields_and_methods) {
while (it.HasNextDirectMethod()) {
mirror::ArtMethod* method = class_linker->ResolveMethod(dex_file, it.GetMemberIndex(),
dex_cache, class_loader,
NullHandle<mirror::ArtMethod>(),
it.GetMethodInvokeType(class_def));
if (method == NULL) {
CheckAndClearResolveException(soa.Self());
}
it.Next();
}
while (it.HasNextVirtualMethod()) {
mirror::ArtMethod* method = class_linker->ResolveMethod(dex_file, it.GetMemberIndex(),
dex_cache, class_loader,
NullHandle<mirror::ArtMethod>(),
it.GetMethodInvokeType(class_def));
if (method == NULL) {
CheckAndClearResolveException(soa.Self());
}
it.Next();
}
DCHECK(!it.HasNext());
}
}
}
if (requires_constructor_barrier) {
manager->GetCompiler()->AddRequiresConstructorBarrier(self, &dex_file, class_def_index);
}
}
static void ResolveType(const ParallelCompilationManager* manager, size_t type_idx)
LOCKS_EXCLUDED(Locks::mutator_lock_) {
// Class derived values are more complicated, they require the linker and loader.
ScopedObjectAccess soa(Thread::Current());
ClassLinker* class_linker = manager->GetClassLinker();
const DexFile& dex_file = *manager->GetDexFile();
StackHandleScope<2> hs(soa.Self());
Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(dex_file)));
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader*>(manager->GetClassLoader())));
mirror::Class* klass = class_linker->ResolveType(dex_file, type_idx, dex_cache, class_loader);
if (klass == NULL) {
CHECK(soa.Self()->IsExceptionPending());
mirror::Throwable* exception = soa.Self()->GetException(NULL);
VLOG(compiler) << "Exception during type resolution: " << exception->Dump();
if (exception->GetClass()->DescriptorEquals("Ljava/lang/OutOfMemoryError;")) {
// There's little point continuing compilation if the heap is exhausted.
LOG(FATAL) << "Out of memory during type resolution for compilation";
}
soa.Self()->ClearException();
}
}
void CompilerDriver::ResolveDexFile(jobject class_loader, const DexFile& dex_file,
ThreadPool* thread_pool, TimingLogger* timings) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
// TODO: we could resolve strings here, although the string table is largely filled with class
// and method names.
ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, thread_pool);
if (IsImage()) {
// For images we resolve all types, such as array, whereas for applications just those with
// classdefs are resolved by ResolveClassFieldsAndMethods.
TimingLogger::ScopedTiming t("Resolve Types", timings);
context.ForAll(0, dex_file.NumTypeIds(), ResolveType, thread_count_);
}
TimingLogger::ScopedTiming t("Resolve MethodsAndFields", timings);
context.ForAll(0, dex_file.NumClassDefs(), ResolveClassFieldsAndMethods, thread_count_);
}
void CompilerDriver::Verify(jobject class_loader, const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool, TimingLogger* timings) {
for (size_t i = 0; i != dex_files.size(); ++i) {
const DexFile* dex_file = dex_files[i];
CHECK(dex_file != NULL);
VerifyDexFile(class_loader, *dex_file, thread_pool, timings);
}
}
static void VerifyClass(const ParallelCompilationManager* manager, size_t class_def_index)
LOCKS_EXCLUDED(Locks::mutator_lock_) {
ATRACE_CALL();
ScopedObjectAccess soa(Thread::Current());
const DexFile& dex_file = *manager->GetDexFile();
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
const char* descriptor = dex_file.GetClassDescriptor(class_def);
ClassLinker* class_linker = manager->GetClassLinker();
jobject jclass_loader = manager->GetClassLoader();
StackHandleScope<3> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
Handle<mirror::Class> klass(
hs.NewHandle(class_linker->FindClass(soa.Self(), descriptor, class_loader)));
if (klass.Get() == nullptr) {
CHECK(soa.Self()->IsExceptionPending());
soa.Self()->ClearException();
/*
* At compile time, we can still structurally verify the class even if FindClass fails.
* This is to ensure the class is structurally sound for compilation. An unsound class
* will be rejected by the verifier and later skipped during compilation in the compiler.
*/
Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(dex_file)));
std::string error_msg;
if (verifier::MethodVerifier::VerifyClass(&dex_file, dex_cache, class_loader, &class_def, true,
&error_msg) ==
verifier::MethodVerifier::kHardFailure) {
LOG(ERROR) << "Verification failed on class " << PrettyDescriptor(descriptor)
<< " because: " << error_msg;
}
} else if (!SkipClass(jclass_loader, dex_file, klass.Get())) {
CHECK(klass->IsResolved()) << PrettyClass(klass.Get());
class_linker->VerifyClass(klass);
if (klass->IsErroneous()) {
// ClassLinker::VerifyClass throws, which isn't useful in the compiler.
CHECK(soa.Self()->IsExceptionPending());
soa.Self()->ClearException();
}
CHECK(klass->IsCompileTimeVerified() || klass->IsErroneous())
<< PrettyDescriptor(klass.Get()) << ": state=" << klass->GetStatus();
}
soa.Self()->AssertNoPendingException();
}
void CompilerDriver::VerifyDexFile(jobject class_loader, const DexFile& dex_file,
ThreadPool* thread_pool, TimingLogger* timings) {
TimingLogger::ScopedTiming t("Verify Dex File", timings);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, thread_pool);
context.ForAll(0, dex_file.NumClassDefs(), VerifyClass, thread_count_);
}
static void InitializeClass(const ParallelCompilationManager* manager, size_t class_def_index)
LOCKS_EXCLUDED(Locks::mutator_lock_) {
ATRACE_CALL();
jobject jclass_loader = manager->GetClassLoader();
const DexFile& dex_file = *manager->GetDexFile();
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
const DexFile::TypeId& class_type_id = dex_file.GetTypeId(class_def.class_idx_);
const char* descriptor = dex_file.StringDataByIdx(class_type_id.descriptor_idx_);
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<3> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
Handle<mirror::Class> klass(
hs.NewHandle(manager->GetClassLinker()->FindClass(soa.Self(), descriptor, class_loader)));
if (klass.Get() != nullptr && !SkipClass(jclass_loader, dex_file, klass.Get())) {
// Only try to initialize classes that were successfully verified.
if (klass->IsVerified()) {
// Attempt to initialize the class but bail if we either need to initialize the super-class
// or static fields.
manager->GetClassLinker()->EnsureInitialized(klass, false, false);
if (!klass->IsInitialized()) {
// We don't want non-trivial class initialization occurring on multiple threads due to
// deadlock problems. For example, a parent class is initialized (holding its lock) that
// refers to a sub-class in its static/class initializer causing it to try to acquire the
// sub-class' lock. While on a second thread the sub-class is initialized (holding its lock)
// after first initializing its parents, whose locks are acquired. This leads to a
// parent-to-child and a child-to-parent lock ordering and consequent potential deadlock.
// We need to use an ObjectLock due to potential suspension in the interpreting code. Rather
// than use a special Object for the purpose we use the Class of java.lang.Class.
Handle<mirror::Class> h_klass(hs.NewHandle(klass->GetClass()));
ObjectLock<mirror::Class> lock(soa.Self(), h_klass);
// Attempt to initialize allowing initialization of parent classes but still not static
// fields.
manager->GetClassLinker()->EnsureInitialized(klass, false, true);
if (!klass->IsInitialized()) {
// We need to initialize static fields, we only do this for image classes that aren't
// marked with the $NoPreloadHolder (which implies this should not be initialized early).
bool can_init_static_fields = manager->GetCompiler()->IsImage() &&
manager->GetCompiler()->IsImageClass(descriptor) &&
!StringPiece(descriptor).ends_with("$NoPreloadHolder;");
if (can_init_static_fields) {
VLOG(compiler) << "Initializing: " << descriptor;
// TODO multithreading support. We should ensure the current compilation thread has
// exclusive access to the runtime and the transaction. To achieve this, we could use
// a ReaderWriterMutex but we're holding the mutator lock so we fail mutex sanity
// checks in Thread::AssertThreadSuspensionIsAllowable.
Runtime* const runtime = Runtime::Current();
Transaction transaction;
// Run the class initializer in transaction mode.
runtime->EnterTransactionMode(&transaction);
const mirror::Class::Status old_status = klass->GetStatus();
bool success = manager->GetClassLinker()->EnsureInitialized(klass, true, true);
// TODO we detach transaction from runtime to indicate we quit the transactional
// mode which prevents the GC from visiting objects modified during the transaction.
// Ensure GC is not run so don't access freed objects when aborting transaction.
const char* old_casue = soa.Self()->StartAssertNoThreadSuspension("Transaction end");
runtime->ExitTransactionMode();
if (!success) {
CHECK(soa.Self()->IsExceptionPending());
ThrowLocation throw_location;
mirror::Throwable* exception = soa.Self()->GetException(&throw_location);
VLOG(compiler) << "Initialization of " << descriptor << " aborted because of "
<< exception->Dump();
soa.Self()->ClearException();
transaction.Abort();
CHECK_EQ(old_status, klass->GetStatus()) << "Previous class status not restored";
}
soa.Self()->EndAssertNoThreadSuspension(old_casue);
}
}
soa.Self()->AssertNoPendingException();
}
}
// Record the final class status if necessary.
ClassReference ref(manager->GetDexFile(), class_def_index);
manager->GetCompiler()->RecordClassStatus(ref, klass->GetStatus());
}
// Clear any class not found or verification exceptions.
soa.Self()->ClearException();
}
void CompilerDriver::InitializeClasses(jobject jni_class_loader, const DexFile& dex_file,
ThreadPool* thread_pool, TimingLogger* timings) {
TimingLogger::ScopedTiming t("InitializeNoClinit", timings);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ParallelCompilationManager context(class_linker, jni_class_loader, this, &dex_file, thread_pool);
size_t thread_count;
if (IsImage()) {
// TODO: remove this when transactional mode supports multithreading.
thread_count = 1U;
} else {
thread_count = thread_count_;
}
context.ForAll(0, dex_file.NumClassDefs(), InitializeClass, thread_count);
if (IsImage()) {
// Prune garbage objects created during aborted transactions.
Runtime::Current()->GetHeap()->CollectGarbage(true);
}
}
void CompilerDriver::InitializeClasses(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool, TimingLogger* timings) {
for (size_t i = 0; i != dex_files.size(); ++i) {
const DexFile* dex_file = dex_files[i];
CHECK(dex_file != NULL);
InitializeClasses(class_loader, *dex_file, thread_pool, timings);
}
}
void CompilerDriver::Compile(jobject class_loader, const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool, TimingLogger* timings) {
for (size_t i = 0; i != dex_files.size(); ++i) {
const DexFile* dex_file = dex_files[i];
CHECK(dex_file != NULL);
CompileDexFile(class_loader, *dex_file, thread_pool, timings);
}
}
void CompilerDriver::CompileClass(const ParallelCompilationManager* manager, size_t class_def_index) {
ATRACE_CALL();
jobject jclass_loader = manager->GetClassLoader();
const DexFile& dex_file = *manager->GetDexFile();
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
ClassLinker* class_linker = manager->GetClassLinker();
if (SkipClass(class_linker, jclass_loader, dex_file, class_def)) {
return;
}
ClassReference ref(&dex_file, class_def_index);
// Skip compiling classes with generic verifier failures since they will still fail at runtime
if (manager->GetCompiler()->verification_results_->IsClassRejected(ref)) {
return;
}
const byte* class_data = dex_file.GetClassData(class_def);
if (class_data == NULL) {
// empty class, probably a marker interface
return;
}
// Can we run DEX-to-DEX compiler on this class ?
DexToDexCompilationLevel dex_to_dex_compilation_level = kDontDexToDexCompile;
{
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<1> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
dex_to_dex_compilation_level = GetDexToDexCompilationlevel(soa.Self(), class_loader, dex_file,
class_def);
}
ClassDataItemIterator it(dex_file, class_data);
// Skip fields
while (it.HasNextStaticField()) {
it.Next();
}
while (it.HasNextInstanceField()) {
it.Next();
}
CompilerDriver* driver = manager->GetCompiler();
// Compile direct methods
int64_t previous_direct_method_idx = -1;
while (it.HasNextDirectMethod()) {
uint32_t method_idx = it.GetMemberIndex();
if (method_idx == previous_direct_method_idx) {
// smali can create dex files with two encoded_methods sharing the same method_idx
// http://code.google.com/p/smali/issues/detail?id=119
it.Next();
continue;
}
previous_direct_method_idx = method_idx;
driver->CompileMethod(it.GetMethodCodeItem(), it.GetMemberAccessFlags(),
it.GetMethodInvokeType(class_def), class_def_index,
method_idx, jclass_loader, dex_file, dex_to_dex_compilation_level);
it.Next();
}
// Compile virtual methods
int64_t previous_virtual_method_idx = -1;
while (it.HasNextVirtualMethod()) {
uint32_t method_idx = it.GetMemberIndex();
if (method_idx == previous_virtual_method_idx) {
// smali can create dex files with two encoded_methods sharing the same method_idx
// http://code.google.com/p/smali/issues/detail?id=119
it.Next();
continue;
}
previous_virtual_method_idx = method_idx;
driver->CompileMethod(it.GetMethodCodeItem(), it.GetMemberAccessFlags(),
it.GetMethodInvokeType(class_def), class_def_index,
method_idx, jclass_loader, dex_file, dex_to_dex_compilation_level);
it.Next();
}
DCHECK(!it.HasNext());
}
void CompilerDriver::CompileDexFile(jobject class_loader, const DexFile& dex_file,
ThreadPool* thread_pool, TimingLogger* timings) {
TimingLogger::ScopedTiming t("Compile Dex File", timings);
ParallelCompilationManager context(Runtime::Current()->GetClassLinker(), class_loader, this,
&dex_file, thread_pool);
context.ForAll(0, dex_file.NumClassDefs(), CompilerDriver::CompileClass, thread_count_);
}
void CompilerDriver::CompileMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
InvokeType invoke_type, uint16_t class_def_idx,
uint32_t method_idx, jobject class_loader,
const DexFile& dex_file,
DexToDexCompilationLevel dex_to_dex_compilation_level) {
CompiledMethod* compiled_method = NULL;
uint64_t start_ns = NanoTime();
if ((access_flags & kAccNative) != 0) {
// Are we interpreting only and have support for generic JNI down calls?
if (!compiler_options_->IsCompilationEnabled() &&
(instruction_set_ == kX86_64 || instruction_set_ == kArm64)) {
// Leaving this empty will trigger the generic JNI version
} else {
compiled_method = compiler_->JniCompile(access_flags, method_idx, dex_file);
CHECK(compiled_method != NULL);
}
} else if ((access_flags & kAccAbstract) != 0) {
} else {
MethodReference method_ref(&dex_file, method_idx);
bool compile = verification_results_->IsCandidateForCompilation(method_ref, access_flags);
if (compile) {
// NOTE: if compiler declines to compile this method, it will return NULL.
compiled_method = compiler_->Compile(code_item, access_flags, invoke_type, class_def_idx,
method_idx, class_loader, dex_file);
}
if (compiled_method == nullptr && dex_to_dex_compilation_level != kDontDexToDexCompile) {
// TODO: add a command-line option to disable DEX-to-DEX compilation ?
(*dex_to_dex_compiler_)(*this, code_item, access_flags,
invoke_type, class_def_idx,
method_idx, class_loader, dex_file,
dex_to_dex_compilation_level);
}
}
uint64_t duration_ns = NanoTime() - start_ns;
if (duration_ns > MsToNs(compiler_->GetMaximumCompilationTimeBeforeWarning()) && !kIsDebugBuild) {
LOG(WARNING) << "Compilation of " << PrettyMethod(method_idx, dex_file)
<< " took " << PrettyDuration(duration_ns);
}
Thread* self = Thread::Current();
if (compiled_method != NULL) {
MethodReference ref(&dex_file, method_idx);
DCHECK(GetCompiledMethod(ref) == NULL) << PrettyMethod(method_idx, dex_file);
{
MutexLock mu(self, compiled_methods_lock_);
compiled_methods_.Put(ref, compiled_method);
}
DCHECK(GetCompiledMethod(ref) != NULL) << PrettyMethod(method_idx, dex_file);
}
if (self->IsExceptionPending()) {
ScopedObjectAccess soa(self);
LOG(FATAL) << "Unexpected exception compiling: " << PrettyMethod(method_idx, dex_file) << "\n"
<< self->GetException(NULL)->Dump();
}
}
CompiledClass* CompilerDriver::GetCompiledClass(ClassReference ref) const {
MutexLock mu(Thread::Current(), compiled_classes_lock_);
ClassTable::const_iterator it = compiled_classes_.find(ref);
if (it == compiled_classes_.end()) {
return NULL;
}
CHECK(it->second != NULL);
return it->second;
}
void CompilerDriver::RecordClassStatus(ClassReference ref, mirror::Class::Status status) {
MutexLock mu(Thread::Current(), compiled_classes_lock_);
auto it = compiled_classes_.find(ref);
if (it == compiled_classes_.end() || it->second->GetStatus() != status) {
// An entry doesn't exist or the status is lower than the new status.
if (it != compiled_classes_.end()) {
CHECK_GT(status, it->second->GetStatus());
delete it->second;
}
switch (status) {
case mirror::Class::kStatusNotReady:
case mirror::Class::kStatusError:
case mirror::Class::kStatusRetryVerificationAtRuntime:
case mirror::Class::kStatusVerified:
case mirror::Class::kStatusInitialized:
break; // Expected states.
default:
LOG(FATAL) << "Unexpected class status for class "
<< PrettyDescriptor(ref.first->GetClassDescriptor(ref.first->GetClassDef(ref.second)))
<< " of " << status;
}
CompiledClass* compiled_class = new CompiledClass(status);
compiled_classes_.Overwrite(ref, compiled_class);
}
}
CompiledMethod* CompilerDriver::GetCompiledMethod(MethodReference ref) const {
MutexLock mu(Thread::Current(), compiled_methods_lock_);
MethodTable::const_iterator it = compiled_methods_.find(ref);
if (it == compiled_methods_.end()) {
return NULL;
}
CHECK(it->second != NULL);
return it->second;
}
void CompilerDriver::AddRequiresConstructorBarrier(Thread* self, const DexFile* dex_file,
uint16_t class_def_index) {
WriterMutexLock mu(self, freezing_constructor_lock_);
freezing_constructor_classes_.insert(ClassReference(dex_file, class_def_index));
}
bool CompilerDriver::RequiresConstructorBarrier(Thread* self, const DexFile* dex_file,
uint16_t class_def_index) {
ReaderMutexLock mu(self, freezing_constructor_lock_);
return freezing_constructor_classes_.count(ClassReference(dex_file, class_def_index)) != 0;
}
bool CompilerDriver::WriteElf(const std::string& android_root,
bool is_host,
const std::vector<const art::DexFile*>& dex_files,
OatWriter* oat_writer,
art::File* file)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return compiler_->WriteElf(file, oat_writer, dex_files, android_root, is_host);
}
void CompilerDriver::InstructionSetToLLVMTarget(InstructionSet instruction_set,
std::string* target_triple,
std::string* target_cpu,
std::string* target_attr) {
switch (instruction_set) {
case kThumb2:
*target_triple = "thumb-none-linux-gnueabi";
*target_cpu = "cortex-a9";
*target_attr = "+thumb2,+neon,+neonfp,+vfp3,+db";
break;
case kArm:
*target_triple = "armv7-none-linux-gnueabi";
// TODO: Fix for Nexus S.
*target_cpu = "cortex-a9";
// TODO: Fix for Xoom.
*target_attr = "+v7,+neon,+neonfp,+vfp3,+db";
break;
case kX86:
*target_triple = "i386-pc-linux-gnu";
*target_attr = "";
break;
case kX86_64:
*target_triple = "x86_64-pc-linux-gnu";
*target_attr = "";
break;
case kMips:
*target_triple = "mipsel-unknown-linux";
*target_attr = "mips32r2";
break;
default:
LOG(FATAL) << "Unknown instruction set: " << instruction_set;
}
}
bool CompilerDriver::SkipCompilation(const std::string& method_name) {
if (!profile_present_) {
return false;
}
// First find the method in the profile file.
ProfileFile::ProfileData data;
if (!profile_file_.GetProfileData(&data, method_name)) {
// Not in profile, no information can be determined.
if (kIsDebugBuild) {
VLOG(compiler) << "not compiling " << method_name << " because it's not in the profile";
}
return true;
}
// Methods that comprise top_k_threshold % of the total samples will be compiled.
// Compare against the start of the topK percentage bucket just in case the threshold
// falls inside a bucket.
bool compile = data.GetTopKUsedPercentage() - data.GetUsedPercent()
<= compiler_options_->GetTopKProfileThreshold();
if (kIsDebugBuild) {
if (compile) {
LOG(INFO) << "compiling method " << method_name << " because its usage is part of top "
<< data.GetTopKUsedPercentage() << "% with a percent of " << data.GetUsedPercent() << "%"
<< " (topKThreshold=" << compiler_options_->GetTopKProfileThreshold() << ")";
} else {
VLOG(compiler) << "not compiling method " << method_name
<< " because it's not part of leading " << compiler_options_->GetTopKProfileThreshold()
<< "% samples)";
}
}
return !compile;
}
} // namespace art