| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_ |
| #define ART_RUNTIME_MIRROR_ARRAY_INL_H_ |
| |
| #include "array.h" |
| |
| #include "class.h" |
| #include "gc/heap-inl.h" |
| #include "thread.h" |
| #include "utils.h" |
| |
| namespace art { |
| namespace mirror { |
| |
| inline size_t Array::SizeOf() { |
| // This is safe from overflow because the array was already allocated, so we know it's sane. |
| size_t component_size = GetClass()->GetComponentSize(); |
| int32_t component_count = GetLength(); |
| size_t header_size = sizeof(Object) + (component_size == sizeof(int64_t) ? 8 : 4); |
| size_t data_size = component_count * component_size; |
| return header_size + data_size; |
| } |
| |
| static inline size_t ComputeArraySize(Thread* self, Class* array_class, int32_t component_count, |
| size_t component_size) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| DCHECK(array_class != NULL); |
| DCHECK_GE(component_count, 0); |
| DCHECK(array_class->IsArrayClass()); |
| |
| size_t header_size = sizeof(Object) + (component_size == sizeof(int64_t) ? 8 : 4); |
| size_t data_size = component_count * component_size; |
| size_t size = header_size + data_size; |
| |
| // Check for overflow and throw OutOfMemoryError if this was an unreasonable request. |
| size_t component_shift = sizeof(size_t) * 8 - 1 - CLZ(component_size); |
| if (UNLIKELY(data_size >> component_shift != size_t(component_count) || size < data_size)) { |
| self->ThrowOutOfMemoryError(StringPrintf("%s of length %d would overflow", |
| PrettyDescriptor(array_class).c_str(), |
| component_count).c_str()); |
| return 0; // failure |
| } |
| return size; |
| } |
| |
| // Used for setting the array length in the allocation code path to ensure it is guarded by a CAS. |
| class SetLengthVisitor { |
| public: |
| explicit SetLengthVisitor(int32_t length) : length_(length) { |
| } |
| |
| void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| // Avoid AsArray as object is not yet in live bitmap or allocation stack. |
| Array* array = down_cast<Array*>(obj); |
| // DCHECK(array->IsArrayInstance()); |
| array->SetLength(length_); |
| } |
| |
| private: |
| const int32_t length_; |
| }; |
| |
| template <bool kIsInstrumented> |
| inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count, |
| size_t component_size, gc::AllocatorType allocator_type) { |
| size_t size = ComputeArraySize(self, array_class, component_count, component_size); |
| if (UNLIKELY(size == 0)) { |
| return nullptr; |
| } |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| SetLengthVisitor visitor(component_count); |
| DCHECK(allocator_type != gc::kAllocatorTypeLOS); |
| return down_cast<Array*>( |
| heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size, |
| allocator_type, visitor)); |
| } |
| |
| template <bool kIsInstrumented> |
| inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count, |
| gc::AllocatorType allocator_type) { |
| DCHECK(array_class->IsArrayClass()); |
| return Alloc<kIsInstrumented>(self, array_class, component_count, array_class->GetComponentSize(), |
| allocator_type); |
| } |
| template <bool kIsInstrumented> |
| inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count) { |
| return Alloc<kIsInstrumented>(self, array_class, component_count, |
| Runtime::Current()->GetHeap()->GetCurrentAllocator()); |
| } |
| |
| template <bool kIsInstrumented> |
| inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count, |
| size_t component_size) { |
| return Alloc<kIsInstrumented>(self, array_class, component_count, component_size, |
| Runtime::Current()->GetHeap()->GetCurrentAllocator()); |
| } |
| |
| template<class T> |
| inline void PrimitiveArray<T>::VisitRoots(RootCallback* callback, void* arg) { |
| if (array_class_ != nullptr) { |
| callback(reinterpret_cast<mirror::Object**>(&array_class_), arg, 0, kRootStickyClass); |
| } |
| } |
| |
| // Similar to memmove except elements are of aligned appropriately for T, count is in T sized units |
| // copies are guaranteed not to tear when T is less-than 64bit. |
| template<typename T> |
| static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) { |
| d += count; |
| s += count; |
| for (int32_t i = 0; i < count; ++i) { |
| d--; |
| s--; |
| *d = *s; |
| } |
| } |
| |
| template<class T> |
| void PrimitiveArray<T>::Memmove(int32_t dst_pos, PrimitiveArray<T>* src, int32_t src_pos, |
| int32_t count) { |
| if (UNLIKELY(count == 0)) { |
| return; |
| } |
| DCHECK_GE(dst_pos, 0); |
| DCHECK_GE(src_pos, 0); |
| DCHECK_GT(count, 0); |
| DCHECK(src != nullptr); |
| DCHECK_LT(dst_pos, GetLength()); |
| DCHECK_LE(dst_pos, GetLength() - count); |
| DCHECK_LT(src_pos, src->GetLength()); |
| DCHECK_LE(src_pos, src->GetLength() - count); |
| |
| // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3) |
| // in our implementation, because they may copy byte-by-byte. |
| if (LIKELY(src != this) || (dst_pos < src_pos) || (dst_pos - src_pos >= count)) { |
| // Forward copy ok. |
| Memcpy(dst_pos, src, src_pos, count); |
| } else { |
| // Backward copy necessary. |
| void* dst_raw = GetRawData(sizeof(T), dst_pos); |
| const void* src_raw = src->GetRawData(sizeof(T), src_pos); |
| if (sizeof(T) == sizeof(uint8_t)) { |
| // TUNING: use memmove here? |
| uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw); |
| const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw); |
| ArrayBackwardCopy<uint8_t>(d, s, count); |
| } else if (sizeof(T) == sizeof(uint16_t)) { |
| uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw); |
| const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw); |
| ArrayBackwardCopy<uint16_t>(d, s, count); |
| } else if (sizeof(T) == sizeof(uint32_t)) { |
| uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw); |
| const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw); |
| ArrayBackwardCopy<uint32_t>(d, s, count); |
| } else { |
| DCHECK_EQ(sizeof(T), sizeof(uint64_t)); |
| uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw); |
| const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw); |
| ArrayBackwardCopy<uint64_t>(d, s, count); |
| } |
| } |
| } |
| |
| // Similar to memcpy except elements are of aligned appropriately for T, count is in T sized units |
| // copies are guaranteed not to tear when T is less-than 64bit. |
| template<typename T> |
| static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) { |
| for (int32_t i = 0; i < count; ++i) { |
| *d = *s; |
| d++; |
| s++; |
| } |
| } |
| |
| |
| template<class T> |
| void PrimitiveArray<T>::Memcpy(int32_t dst_pos, PrimitiveArray<T>* src, int32_t src_pos, |
| int32_t count) { |
| if (UNLIKELY(count == 0)) { |
| return; |
| } |
| DCHECK_GE(dst_pos, 0); |
| DCHECK_GE(src_pos, 0); |
| DCHECK_GT(count, 0); |
| DCHECK(src != nullptr); |
| DCHECK_LT(dst_pos, GetLength()); |
| DCHECK_LE(dst_pos, GetLength() - count); |
| DCHECK_LT(src_pos, src->GetLength()); |
| DCHECK_LE(src_pos, src->GetLength() - count); |
| |
| // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3) |
| // in our implementation, because they may copy byte-by-byte. |
| void* dst_raw = GetRawData(sizeof(T), dst_pos); |
| const void* src_raw = src->GetRawData(sizeof(T), src_pos); |
| if (sizeof(T) == sizeof(uint8_t)) { |
| memcpy(dst_raw, src_raw, count); |
| } else if (sizeof(T) == sizeof(uint16_t)) { |
| uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw); |
| const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw); |
| ArrayForwardCopy<uint16_t>(d, s, count); |
| } else if (sizeof(T) == sizeof(uint32_t)) { |
| uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw); |
| const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw); |
| ArrayForwardCopy<uint32_t>(d, s, count); |
| } else { |
| DCHECK_EQ(sizeof(T), sizeof(uint64_t)); |
| uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw); |
| const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw); |
| ArrayForwardCopy<uint64_t>(d, s, count); |
| } |
| } |
| |
| } // namespace mirror |
| } // namespace art |
| |
| #endif // ART_RUNTIME_MIRROR_ARRAY_INL_H_ |