blob: ca1eba5b02f39f3b9222f83dcb7749bbd377577f [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "method_compiler.h"
#include "backend_types.h"
#include "compiler.h"
#include "ir_builder.h"
#include "logging.h"
#include "object.h"
#include "object_utils.h"
#include "runtime_support_func.h"
#include "stl_util.h"
#include "stringprintf.h"
#include "utils_llvm.h"
#include <iomanip>
#include <llvm/Analysis/Verifier.h>
#include <llvm/BasicBlock.h>
#include <llvm/Function.h>
namespace art {
namespace compiler_llvm {
using namespace runtime_support;
MethodCompiler::MethodCompiler(InstructionSet insn_set,
Compiler* compiler,
ClassLinker* class_linker,
ClassLoader const* class_loader,
DexFile const* dex_file,
DexCache* dex_cache,
DexFile::CodeItem const* code_item,
uint32_t method_idx,
uint32_t access_flags)
: insn_set_(insn_set),
compiler_(compiler), compiler_llvm_(compiler->GetCompilerLLVM()),
class_linker_(class_linker), class_loader_(class_loader),
dex_file_(dex_file), dex_cache_(dex_cache), code_item_(code_item),
method_(dex_cache->GetResolvedMethod(method_idx)),
method_helper_(method_), method_idx_(method_idx),
access_flags_(access_flags), module_(compiler_llvm_->GetModule()),
context_(compiler_llvm_->GetLLVMContext()),
irb_(*compiler_llvm_->GetIRBuilder()), func_(NULL), retval_reg_(NULL),
basic_block_reg_alloca_(NULL),
basic_block_reg_zero_init_(NULL), basic_block_reg_arg_init_(NULL),
basic_blocks_(code_item->insns_size_in_code_units_),
basic_block_landing_pads_(code_item->tries_size_, NULL),
basic_block_unwind_(NULL), basic_block_unreachable_(NULL) {
}
MethodCompiler::~MethodCompiler() {
STLDeleteElements(&regs_);
}
void MethodCompiler::CreateFunction() {
// LLVM function name
std::string func_name(LLVMLongName(method_));
// Get function type
llvm::FunctionType* func_type =
GetFunctionType(method_idx_, method_->IsStatic());
// Create function
func_ = llvm::Function::Create(func_type, llvm::Function::ExternalLinkage,
func_name, module_);
// Set argument name
llvm::Function::arg_iterator arg_iter(func_->arg_begin());
llvm::Function::arg_iterator arg_end(func_->arg_end());
DCHECK_NE(arg_iter, arg_end);
arg_iter->setName("method");
++arg_iter;
if (!method_->IsStatic()) {
DCHECK_NE(arg_iter, arg_end);
arg_iter->setName("this");
++arg_iter;
}
for (unsigned i = 0; arg_iter != arg_end; ++i, ++arg_iter) {
arg_iter->setName(StringPrintf("a%u", i));
}
}
llvm::FunctionType* MethodCompiler::GetFunctionType(uint32_t method_idx,
bool is_static) {
// Get method signature
DexFile::MethodId const& method_id = dex_file_->GetMethodId(method_idx);
int32_t shorty_size;
char const* shorty = dex_file_->GetMethodShorty(method_id, &shorty_size);
CHECK_GE(shorty_size, 1);
// Get return type
llvm::Type* ret_type = irb_.getJType(shorty[0], kAccurate);
// Get argument type
std::vector<llvm::Type*> args_type;
args_type.push_back(irb_.getJObjectTy()); // method object pointer
if (!is_static) {
args_type.push_back(irb_.getJType('L', kAccurate)); // "this" object pointer
}
for (int32_t i = 1; i < shorty_size; ++i) {
args_type.push_back(irb_.getJType(shorty[i], kAccurate));
}
return llvm::FunctionType::get(ret_type, args_type, false);
}
void MethodCompiler::EmitPrologue() {
// Create basic blocks for prologue
basic_block_reg_alloca_ =
llvm::BasicBlock::Create(*context_, "prologue.alloca", func_);
basic_block_reg_zero_init_ =
llvm::BasicBlock::Create(*context_, "prologue.zeroinit", func_);
basic_block_reg_arg_init_ =
llvm::BasicBlock::Create(*context_, "prologue.arginit", func_);
// Create register array
for (uint16_t r = 0; r < code_item_->registers_size_; ++r) {
regs_.push_back(DalvikReg::CreateLocalVarReg(*this, r));
}
retval_reg_.reset(DalvikReg::CreateRetValReg(*this));
// Store argument to dalvik register
irb_.SetInsertPoint(basic_block_reg_arg_init_);
EmitPrologueAssignArgRegister();
// Branch to start address
irb_.CreateBr(GetBasicBlock(0));
}
void MethodCompiler::EmitPrologueLastBranch() {
irb_.SetInsertPoint(basic_block_reg_alloca_);
irb_.CreateBr(basic_block_reg_zero_init_);
irb_.SetInsertPoint(basic_block_reg_zero_init_);
irb_.CreateBr(basic_block_reg_arg_init_);
}
void MethodCompiler::EmitPrologueAssignArgRegister() {
uint16_t arg_reg = code_item_->registers_size_ - code_item_->ins_size_;
llvm::Function::arg_iterator arg_iter(func_->arg_begin());
llvm::Function::arg_iterator arg_end(func_->arg_end());
char const* shorty = method_helper_.GetShorty();
int32_t shorty_size = method_helper_.GetShortyLength();
CHECK_LE(1, shorty_size);
++arg_iter; // skip method object
if (!method_->IsStatic()) {
EmitStoreDalvikReg(arg_reg, kObject, kAccurate, arg_iter);
++arg_iter;
++arg_reg;
}
for (int32_t i = 1; i < shorty_size; ++i, ++arg_iter) {
EmitStoreDalvikReg(arg_reg, shorty[i], kAccurate, arg_iter);
++arg_reg;
if (shorty[i] == 'J' || shorty[i] == 'D') {
// Wide types, such as long and double, are using a pair of registers
// to store the value, so we have to increase arg_reg again.
++arg_reg;
}
}
DCHECK_EQ(arg_end, arg_iter);
}
void MethodCompiler::EmitInstructions() {
uint32_t dex_pc = 0;
while (dex_pc < code_item_->insns_size_in_code_units_) {
Instruction const* insn = Instruction::At(code_item_->insns_ + dex_pc);
EmitInstruction(dex_pc, insn);
dex_pc += insn->SizeInCodeUnits();
}
}
void MethodCompiler::EmitInstruction(uint32_t dex_pc,
Instruction const* insn) {
// Set the IRBuilder insertion point
irb_.SetInsertPoint(GetBasicBlock(dex_pc));
// UNIMPLEMENTED(WARNING);
irb_.CreateUnreachable();
}
CompiledMethod *MethodCompiler::Compile() {
// Code generation
CreateFunction();
EmitPrologue();
EmitInstructions();
EmitPrologueLastBranch();
// Verify the generated bitcode
llvm::verifyFunction(*func_, llvm::PrintMessageAction);
// Delete the inferred register category map (won't be used anymore)
method_->ResetInferredRegCategoryMap();
return new CompiledMethod(insn_set_, func_);
}
llvm::Value* MethodCompiler::EmitLoadMethodObjectAddr() {
return func_->arg_begin();
}
void MethodCompiler::EmitBranchExceptionLandingPad(uint32_t dex_pc) {
if (llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc)) {
irb_.CreateBr(lpad);
} else {
irb_.CreateBr(GetUnwindBasicBlock());
}
}
void MethodCompiler::EmitGuard_ExceptionLandingPad(uint32_t dex_pc) {
llvm::Value* exception_pending =
irb_.CreateCall(irb_.GetRuntime(IsExceptionPending));
llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont");
if (llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc)) {
irb_.CreateCondBr(exception_pending, lpad, block_cont);
} else {
irb_.CreateCondBr(exception_pending, GetUnwindBasicBlock(), block_cont);
}
irb_.SetInsertPoint(block_cont);
}
llvm::BasicBlock* MethodCompiler::
CreateBasicBlockWithDexPC(uint32_t dex_pc, char const* postfix) {
std::string name;
if (postfix) {
StringAppendF(&name, "B%u.%s", dex_pc, postfix);
} else {
StringAppendF(&name, "B%u", dex_pc);
}
return llvm::BasicBlock::Create(*context_, name, func_);
}
llvm::BasicBlock* MethodCompiler::GetBasicBlock(uint32_t dex_pc) {
DCHECK(dex_pc < code_item_->insns_size_in_code_units_);
llvm::BasicBlock* basic_block = basic_blocks_[dex_pc];
if (!basic_block) {
basic_block = CreateBasicBlockWithDexPC(dex_pc);
basic_blocks_[dex_pc] = basic_block;
}
return basic_block;
}
llvm::BasicBlock*
MethodCompiler::GetNextBasicBlock(uint32_t dex_pc) {
Instruction const* insn = Instruction::At(code_item_->insns_ + dex_pc);
return GetBasicBlock(dex_pc + insn->SizeInCodeUnits());
}
int32_t MethodCompiler::GetTryItemOffset(uint32_t dex_pc) {
// TODO: Since we are emitting the dex instructions in ascending order
// w.r.t. address, we can cache the lastest try item offset so that we
// don't have to do binary search for every query.
int32_t min = 0;
int32_t max = code_item_->tries_size_ - 1;
while (min <= max) {
int32_t mid = min + (max - min) / 2;
DexFile::TryItem const* ti = DexFile::GetTryItems(*code_item_, mid);
uint32_t start = ti->start_addr_;
uint32_t end = start + ti->insn_count_;
if (dex_pc < start) {
max = mid - 1;
} else if (dex_pc >= end) {
min = mid + 1;
} else {
return mid; // found
}
}
return -1; // not found
}
llvm::BasicBlock* MethodCompiler::GetLandingPadBasicBlock(uint32_t dex_pc) {
// Find the try item for this address in this method
int32_t ti_offset = GetTryItemOffset(dex_pc);
if (ti_offset == -1) {
return NULL; // No landing pad is available for this address.
}
// Check for the existing landing pad basic block
DCHECK_GT(basic_block_landing_pads_.size(), static_cast<size_t>(ti_offset));
llvm::BasicBlock* block_lpad = basic_block_landing_pads_[ti_offset];
if (block_lpad) {
// We have generated landing pad for this try item already. Return the
// same basic block.
return block_lpad;
}
// Get try item from code item
DexFile::TryItem const* ti = DexFile::GetTryItems(*code_item_, ti_offset);
// Create landing pad basic block
block_lpad = llvm::BasicBlock::Create(*context_,
StringPrintf("lpad%d", ti_offset),
func_);
// Change IRBuilder insert point
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
irb_.SetInsertPoint(block_lpad);
// Find catch block with matching type
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
// TODO: Maybe passing try item offset will be a better idea? For now,
// we are passing dex_pc, so that we can use existing runtime support
// function directly. However, in the runtime supporting function we
// have to search for try item with binary search which can be
// eliminated.
llvm::Value* dex_pc_value = irb_.getInt32(ti->start_addr_);
llvm::Value* catch_handler_index_value =
irb_.CreateCall2(irb_.GetRuntime(FindCatchBlock),
method_object_addr, dex_pc_value);
// Switch instruction (Go to unwind basic block by default)
llvm::SwitchInst* sw =
irb_.CreateSwitch(catch_handler_index_value, GetUnwindBasicBlock());
// Cases with matched catch block
CatchHandlerIterator iter(*code_item_, ti->start_addr_);
for (uint32_t c = 0; iter.HasNext(); iter.Next(), ++c) {
sw->addCase(irb_.getInt32(c), GetBasicBlock(iter.GetHandlerAddress()));
}
// Restore the orignal insert point for IRBuilder
irb_.restoreIP(irb_ip_original);
// Cache this landing pad
DCHECK_GT(basic_block_landing_pads_.size(), static_cast<size_t>(ti_offset));
basic_block_landing_pads_[ti_offset] = block_lpad;
return block_lpad;
}
llvm::BasicBlock* MethodCompiler::GetUnwindBasicBlock() {
// Check the existing unwinding baisc block block
if (basic_block_unwind_ != NULL) {
return basic_block_unwind_;
}
// Create new basic block for unwinding
basic_block_unwind_ =
llvm::BasicBlock::Create(*context_, "exception_unwind", func_);
// Change IRBuilder insert point
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
irb_.SetInsertPoint(basic_block_unwind_);
// Emit the code to return default value (zero) for the given return type.
char ret_shorty = method_helper_.GetShorty()[0];
if (ret_shorty == 'V') {
irb_.CreateRetVoid();
} else {
irb_.CreateRet(irb_.getJZero(ret_shorty));
}
// Restore the orignal insert point for IRBuilder
irb_.restoreIP(irb_ip_original);
return basic_block_unwind_;
}
llvm::Value* MethodCompiler::AllocDalvikLocalVarReg(RegCategory cat,
uint32_t reg_idx) {
// Save current IR builder insert point
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
// Alloca
llvm::Value* reg_addr = NULL;
switch (cat) {
case kRegCat1nr:
irb_.SetInsertPoint(basic_block_reg_alloca_);
reg_addr = irb_.CreateAlloca(irb_.getJIntTy(), 0,
StringPrintf("r%u", reg_idx));
irb_.SetInsertPoint(basic_block_reg_zero_init_);
irb_.CreateStore(irb_.getJInt(0), reg_addr);
break;
case kRegCat2:
irb_.SetInsertPoint(basic_block_reg_alloca_);
reg_addr = irb_.CreateAlloca(irb_.getJLongTy(), 0,
StringPrintf("w%u", reg_idx));
irb_.SetInsertPoint(basic_block_reg_zero_init_);
irb_.CreateStore(irb_.getJLong(0), reg_addr);
break;
case kRegObject:
irb_.SetInsertPoint(basic_block_reg_alloca_);
reg_addr = irb_.CreateAlloca(irb_.getJObjectTy(), 0,
StringPrintf("p%u", reg_idx));
irb_.SetInsertPoint(basic_block_reg_zero_init_);
irb_.CreateStore(irb_.getJNull(), reg_addr);
break;
default:
LOG(FATAL) << "Unknown register category for allocation: " << cat;
}
// Restore IRBuilder insert point
irb_.restoreIP(irb_ip_original);
DCHECK_NE(reg_addr, static_cast<llvm::Value*>(NULL));
return reg_addr;
}
llvm::Value* MethodCompiler::AllocDalvikRetValReg(RegCategory cat) {
// Save current IR builder insert point
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
// Alloca
llvm::Value* reg_addr = NULL;
switch (cat) {
case kRegCat1nr:
irb_.SetInsertPoint(basic_block_reg_alloca_);
reg_addr = irb_.CreateAlloca(irb_.getJIntTy(), 0, "r_res");
break;
case kRegCat2:
irb_.SetInsertPoint(basic_block_reg_alloca_);
reg_addr = irb_.CreateAlloca(irb_.getJLongTy(), 0, "w_res");
break;
case kRegObject:
irb_.SetInsertPoint(basic_block_reg_alloca_);
reg_addr = irb_.CreateAlloca(irb_.getJObjectTy(), 0, "p_res");
break;
default:
LOG(FATAL) << "Unknown register category for allocation: " << cat;
}
// Restore IRBuilder insert point
irb_.restoreIP(irb_ip_original);
DCHECK_NE(reg_addr, static_cast<llvm::Value*>(NULL));
return reg_addr;
}
} // namespace compiler_llvm
} // namespace art