blob: 3cf69148b3e7c2fc8f0566b89f45bacc6ff6db35 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "utils.h"
#include <dynamic_annotations.h>
#include <pthread.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#include "UniquePtr.h"
#include "class_loader.h"
#include "file.h"
#include "object.h"
#include "object_utils.h"
#include "os.h"
#if !defined(HAVE_POSIX_CLOCKS)
#include <sys/time.h>
#endif
#if defined(HAVE_PRCTL)
#include <sys/prctl.h>
#endif
#if defined(__APPLE__)
#include "AvailabilityMacros.h" // For MAC_OS_X_VERSION_MAX_ALLOWED
#include <sys/syscall.h>
#endif
#include <corkscrew/backtrace.h> // For DumpNativeStack.
#include <corkscrew/demangle.h> // For DumpNativeStack.
#if defined(__linux__)
#include <linux/unistd.h>
#endif
namespace art {
pid_t GetTid() {
#if defined(__APPLE__)
uint64_t owner;
CHECK_PTHREAD_CALL(pthread_threadid_np, (NULL, &owner), __FUNCTION__); // Requires Mac OS 10.6
return owner;
#else
// Neither bionic nor glibc exposes gettid(2).
return syscall(__NR_gettid);
#endif
}
std::string GetThreadName(pid_t tid) {
std::string result;
if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) {
result.resize(result.size() - 1); // Lose the trailing '\n'.
} else {
result = "<unknown>";
}
return result;
}
void GetThreadStack(pthread_t thread, void*& stack_base, size_t& stack_size) {
#if defined(__APPLE__)
stack_size = pthread_get_stacksize_np(thread);
void* stack_addr = pthread_get_stackaddr_np(thread);
// Check whether stack_addr is the base or end of the stack.
// (On Mac OS 10.7, it's the end.)
int stack_variable;
if (stack_addr > &stack_variable) {
stack_base = reinterpret_cast<byte*>(stack_addr) - stack_size;
} else {
stack_base = stack_addr;
}
#else
pthread_attr_t attributes;
CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, &stack_base, &stack_size), __FUNCTION__);
CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
#endif
}
bool ReadFileToString(const std::string& file_name, std::string* result) {
UniquePtr<File> file(OS::OpenFile(file_name.c_str(), false));
if (file.get() == NULL) {
return false;
}
std::vector<char> buf(8 * KB);
while (true) {
int64_t n = file->Read(&buf[0], buf.size());
if (n == -1) {
return false;
}
if (n == 0) {
return true;
}
result->append(&buf[0], n);
}
}
std::string GetIsoDate() {
time_t now = time(NULL);
tm tmbuf;
tm* ptm = localtime_r(&now, &tmbuf);
return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d",
ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday,
ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
}
uint64_t MilliTime() {
#if defined(HAVE_POSIX_CLOCKS)
timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
return static_cast<uint64_t>(now.tv_sec) * 1000LL + now.tv_nsec / 1000000LL;
#else
timeval now;
gettimeofday(&now, NULL);
return static_cast<uint64_t>(now.tv_sec) * 1000LL + now.tv_usec / 1000LL;
#endif
}
uint64_t MicroTime() {
#if defined(HAVE_POSIX_CLOCKS)
timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL;
#else
timeval now;
gettimeofday(&now, NULL);
return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_usec;
#endif
}
uint64_t NanoTime() {
#if defined(HAVE_POSIX_CLOCKS)
timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
return static_cast<uint64_t>(now.tv_sec) * 1000000000LL + now.tv_nsec;
#else
timeval now;
gettimeofday(&now, NULL);
return static_cast<uint64_t>(now.tv_sec) * 1000000000LL + now.tv_usec * 1000LL;
#endif
}
uint64_t ThreadCpuMicroTime() {
#if defined(HAVE_POSIX_CLOCKS)
timespec now;
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL;
#else
UNIMPLEMENTED(WARNING);
return -1;
#endif
}
uint64_t ThreadCpuNanoTime() {
#if defined(HAVE_POSIX_CLOCKS)
timespec now;
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
return static_cast<uint64_t>(now.tv_sec) * 1000000000LL + now.tv_nsec;
#else
UNIMPLEMENTED(WARNING);
return -1;
#endif
}
void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) {
int64_t endSec;
if (absolute) {
#if !defined(__APPLE__)
clock_gettime(clock, ts);
#else
UNUSED(clock);
timeval tv;
gettimeofday(&tv, NULL);
ts->tv_sec = tv.tv_sec;
ts->tv_nsec = tv.tv_usec * 1000;
#endif
} else {
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
endSec = ts->tv_sec + ms / 1000;
if (UNLIKELY(endSec >= 0x7fffffff)) {
std::ostringstream ss;
LOG(INFO) << "Note: end time exceeds epoch: " << ss.str();
endSec = 0x7ffffffe;
}
ts->tv_sec = endSec;
ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns;
// Catch rollover.
if (ts->tv_nsec >= 1000000000L) {
ts->tv_sec++;
ts->tv_nsec -= 1000000000L;
}
}
std::string PrettyDescriptor(const String* java_descriptor) {
if (java_descriptor == NULL) {
return "null";
}
return PrettyDescriptor(java_descriptor->ToModifiedUtf8());
}
std::string PrettyDescriptor(const Class* klass) {
if (klass == NULL) {
return "null";
}
return PrettyDescriptor(ClassHelper(klass).GetDescriptor());
}
std::string PrettyDescriptor(const std::string& descriptor) {
// Count the number of '['s to get the dimensionality.
const char* c = descriptor.c_str();
size_t dim = 0;
while (*c == '[') {
dim++;
c++;
}
// Reference or primitive?
if (*c == 'L') {
// "[[La/b/C;" -> "a.b.C[][]".
c++; // Skip the 'L'.
} else {
// "[[B" -> "byte[][]".
// To make life easier, we make primitives look like unqualified
// reference types.
switch (*c) {
case 'B': c = "byte;"; break;
case 'C': c = "char;"; break;
case 'D': c = "double;"; break;
case 'F': c = "float;"; break;
case 'I': c = "int;"; break;
case 'J': c = "long;"; break;
case 'S': c = "short;"; break;
case 'Z': c = "boolean;"; break;
case 'V': c = "void;"; break; // Used when decoding return types.
default: return descriptor;
}
}
// At this point, 'c' is a string of the form "fully/qualified/Type;"
// or "primitive;". Rewrite the type with '.' instead of '/':
std::string result;
const char* p = c;
while (*p != ';') {
char ch = *p++;
if (ch == '/') {
ch = '.';
}
result.push_back(ch);
}
// ...and replace the semicolon with 'dim' "[]" pairs:
while (dim--) {
result += "[]";
}
return result;
}
std::string PrettyDescriptor(Primitive::Type type) {
std::string descriptor_string(Primitive::Descriptor(type));
return PrettyDescriptor(descriptor_string);
}
std::string PrettyField(const Field* f, bool with_type) {
if (f == NULL) {
return "null";
}
FieldHelper fh(f);
std::string result;
if (with_type) {
result += PrettyDescriptor(fh.GetTypeDescriptor());
result += ' ';
}
result += PrettyDescriptor(fh.GetDeclaringClassDescriptor());
result += '.';
result += fh.GetName();
return result;
}
std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) {
const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
std::string result;
if (with_type) {
result += dex_file.GetFieldTypeDescriptor(field_id);
result += ' ';
}
result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id));
result += '.';
result += dex_file.GetFieldName(field_id);
return result;
}
std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) {
const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx);
return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id));
}
std::string PrettyArguments(const char* signature) {
std::string result;
result += '(';
CHECK_EQ(*signature, '(');
++signature; // Skip the '('.
while (*signature != ')') {
size_t argument_length = 0;
while (signature[argument_length] == '[') {
++argument_length;
}
if (signature[argument_length] == 'L') {
argument_length = (strchr(signature, ';') - signature + 1);
} else {
++argument_length;
}
std::string argument_descriptor(signature, argument_length);
result += PrettyDescriptor(argument_descriptor);
if (signature[argument_length] != ')') {
result += ", ";
}
signature += argument_length;
}
CHECK_EQ(*signature, ')');
++signature; // Skip the ')'.
result += ')';
return result;
}
std::string PrettyReturnType(const char* signature) {
const char* return_type = strchr(signature, ')');
CHECK(return_type != NULL);
++return_type; // Skip ')'.
return PrettyDescriptor(return_type);
}
std::string PrettyMethod(const AbstractMethod* m, bool with_signature) {
if (m == NULL) {
return "null";
}
MethodHelper mh(m);
std::string result(PrettyDescriptor(mh.GetDeclaringClassDescriptor()));
result += '.';
result += mh.GetName();
if (with_signature) {
std::string signature(mh.GetSignature());
if (signature == "<no signature>") {
return result + signature;
}
result = PrettyReturnType(signature.c_str()) + " " + result + PrettyArguments(signature.c_str());
}
return result;
}
std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) {
const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id)));
result += '.';
result += dex_file.GetMethodName(method_id);
if (with_signature) {
std::string signature(dex_file.GetMethodSignature(method_id));
if (signature == "<no signature>") {
return result + signature;
}
result = PrettyReturnType(signature.c_str()) + " " + result + PrettyArguments(signature.c_str());
}
return result;
}
std::string PrettyTypeOf(const Object* obj) {
if (obj == NULL) {
return "null";
}
if (obj->GetClass() == NULL) {
return "(raw)";
}
ClassHelper kh(obj->GetClass());
std::string result(PrettyDescriptor(kh.GetDescriptor()));
if (obj->IsClass()) {
kh.ChangeClass(obj->AsClass());
result += "<" + PrettyDescriptor(kh.GetDescriptor()) + ">";
}
return result;
}
std::string PrettyClass(const Class* c) {
if (c == NULL) {
return "null";
}
std::string result;
result += "java.lang.Class<";
result += PrettyDescriptor(c);
result += ">";
return result;
}
std::string PrettyClassAndClassLoader(const Class* c) {
if (c == NULL) {
return "null";
}
std::string result;
result += "java.lang.Class<";
result += PrettyDescriptor(c);
result += ",";
result += PrettyTypeOf(c->GetClassLoader());
// TODO: add an identifying hash value for the loader
result += ">";
return result;
}
std::string PrettySize(size_t byte_count) {
// The byte thresholds at which we display amounts. A byte count is displayed
// in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
static const size_t kUnitThresholds[] = {
0, // B up to...
3*1024, // KB up to...
2*1024*1024, // MB up to...
1024*1024*1024 // GB from here.
};
static const size_t kBytesPerUnit[] = { 1, KB, MB, GB };
static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" };
int i = arraysize(kUnitThresholds);
while (--i > 0) {
if (byte_count >= kUnitThresholds[i]) {
break;
}
}
return StringPrintf("%zd%s", byte_count / kBytesPerUnit[i], kUnitStrings[i]);
}
std::string PrettyDuration(uint64_t nano_duration) {
if (nano_duration == 0) {
return "0";
} else {
return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration));
}
}
TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) {
const uint64_t one_sec = 1000 * 1000 * 1000;
const uint64_t one_ms = 1000 * 1000;
const uint64_t one_us = 1000;
if (nano_duration >= one_sec) {
return kTimeUnitSecond;
} else if (nano_duration >= one_ms) {
return kTimeUnitMillisecond;
} else if (nano_duration >= one_us) {
return kTimeUnitMicrosecond;
} else {
return kTimeUnitNanosecond;
}
}
uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) {
const uint64_t one_sec = 1000 * 1000 * 1000;
const uint64_t one_ms = 1000 * 1000;
const uint64_t one_us = 1000;
switch (time_unit) {
case kTimeUnitSecond:
return one_sec;
case kTimeUnitMillisecond:
return one_ms;
case kTimeUnitMicrosecond:
return one_us;
case kTimeUnitNanosecond:
return 1;
}
return 0;
}
std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit) {
const char* unit = NULL;
uint64_t divisor = GetNsToTimeUnitDivisor(time_unit);
uint32_t zero_fill = 1;
switch (time_unit) {
case kTimeUnitSecond:
unit = "s";
zero_fill = 9;
break;
case kTimeUnitMillisecond:
unit = "ms";
zero_fill = 6;
break;
case kTimeUnitMicrosecond:
unit = "us";
zero_fill = 3;
break;
case kTimeUnitNanosecond:
unit = "ns";
zero_fill = 0;
break;
}
uint64_t whole_part = nano_duration / divisor;
uint64_t fractional_part = nano_duration % divisor;
if (fractional_part == 0) {
return StringPrintf("%llu%s", whole_part, unit);
} else {
while ((fractional_part % 1000) == 0) {
zero_fill -= 3;
fractional_part /= 1000;
}
if (zero_fill == 3) {
return StringPrintf("%llu.%03llu%s", whole_part, fractional_part, unit);
} else if (zero_fill == 6) {
return StringPrintf("%llu.%06llu%s", whole_part, fractional_part, unit);
} else {
return StringPrintf("%llu.%09llu%s", whole_part, fractional_part, unit);
}
}
}
std::string PrintableString(const std::string& utf) {
std::string result;
result += '"';
const char* p = utf.c_str();
size_t char_count = CountModifiedUtf8Chars(p);
for (size_t i = 0; i < char_count; ++i) {
uint16_t ch = GetUtf16FromUtf8(&p);
if (ch == '\\') {
result += "\\\\";
} else if (ch == '\n') {
result += "\\n";
} else if (ch == '\r') {
result += "\\r";
} else if (ch == '\t') {
result += "\\t";
} else if (NeedsEscaping(ch)) {
StringAppendF(&result, "\\u%04x", ch);
} else {
result += ch;
}
}
result += '"';
return result;
}
// See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules.
std::string MangleForJni(const std::string& s) {
std::string result;
size_t char_count = CountModifiedUtf8Chars(s.c_str());
const char* cp = &s[0];
for (size_t i = 0; i < char_count; ++i) {
uint16_t ch = GetUtf16FromUtf8(&cp);
if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) {
result.push_back(ch);
} else if (ch == '.' || ch == '/') {
result += "_";
} else if (ch == '_') {
result += "_1";
} else if (ch == ';') {
result += "_2";
} else if (ch == '[') {
result += "_3";
} else {
StringAppendF(&result, "_0%04x", ch);
}
}
return result;
}
std::string DotToDescriptor(const char* class_name) {
std::string descriptor(class_name);
std::replace(descriptor.begin(), descriptor.end(), '.', '/');
if (descriptor.length() > 0 && descriptor[0] != '[') {
descriptor = "L" + descriptor + ";";
}
return descriptor;
}
std::string DescriptorToDot(const char* descriptor) {
size_t length = strlen(descriptor);
if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
std::string result(descriptor + 1, length - 2);
std::replace(result.begin(), result.end(), '/', '.');
return result;
}
return descriptor;
}
std::string DescriptorToName(const char* descriptor) {
size_t length = strlen(descriptor);
if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
std::string result(descriptor + 1, length - 2);
return result;
}
return descriptor;
}
std::string JniShortName(const AbstractMethod* m) {
MethodHelper mh(m);
std::string class_name(mh.GetDeclaringClassDescriptor());
// Remove the leading 'L' and trailing ';'...
CHECK_EQ(class_name[0], 'L') << class_name;
CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
class_name.erase(0, 1);
class_name.erase(class_name.size() - 1, 1);
std::string method_name(mh.GetName());
std::string short_name;
short_name += "Java_";
short_name += MangleForJni(class_name);
short_name += "_";
short_name += MangleForJni(method_name);
return short_name;
}
std::string JniLongName(const AbstractMethod* m) {
std::string long_name;
long_name += JniShortName(m);
long_name += "__";
std::string signature(MethodHelper(m).GetSignature());
signature.erase(0, 1);
signature.erase(signature.begin() + signature.find(')'), signature.end());
long_name += MangleForJni(signature);
return long_name;
}
// Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
0x00000000, // 00..1f low control characters; nothing valid
0x03ff2010, // 20..3f digits and symbols; valid: '0'..'9', '$', '-'
0x87fffffe, // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
0x07fffffe // 60..7f lowercase etc.; valid: 'a'..'z'
};
// Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
/*
* It's a multibyte encoded character. Decode it and analyze. We
* accept anything that isn't (a) an improperly encoded low value,
* (b) an improper surrogate pair, (c) an encoded '\0', (d) a high
* control character, or (e) a high space, layout, or special
* character (U+00a0, U+2000..U+200f, U+2028..U+202f,
* U+fff0..U+ffff). This is all specified in the dex format
* document.
*/
uint16_t utf16 = GetUtf16FromUtf8(pUtf8Ptr);
// Perform follow-up tests based on the high 8 bits.
switch (utf16 >> 8) {
case 0x00:
// It's only valid if it's above the ISO-8859-1 high space (0xa0).
return (utf16 > 0x00a0);
case 0xd8:
case 0xd9:
case 0xda:
case 0xdb:
// It's a leading surrogate. Check to see that a trailing
// surrogate follows.
utf16 = GetUtf16FromUtf8(pUtf8Ptr);
return (utf16 >= 0xdc00) && (utf16 <= 0xdfff);
case 0xdc:
case 0xdd:
case 0xde:
case 0xdf:
// It's a trailing surrogate, which is not valid at this point.
return false;
case 0x20:
case 0xff:
// It's in the range that has spaces, controls, and specials.
switch (utf16 & 0xfff8) {
case 0x2000:
case 0x2008:
case 0x2028:
case 0xfff0:
case 0xfff8:
return false;
}
break;
}
return true;
}
/* Return whether the pointed-at modified-UTF-8 encoded character is
* valid as part of a member name, updating the pointer to point past
* the consumed character. This will consume two encoded UTF-16 code
* points if the character is encoded as a surrogate pair. Also, if
* this function returns false, then the given pointer may only have
* been partially advanced.
*/
bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
uint8_t c = (uint8_t) **pUtf8Ptr;
if (c <= 0x7f) {
// It's low-ascii, so check the table.
uint32_t wordIdx = c >> 5;
uint32_t bitIdx = c & 0x1f;
(*pUtf8Ptr)++;
return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
}
// It's a multibyte encoded character. Call a non-inline function
// for the heavy lifting.
return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
}
bool IsValidMemberName(const char* s) {
bool angle_name = false;
switch (*s) {
case '\0':
// The empty string is not a valid name.
return false;
case '<':
angle_name = true;
s++;
break;
}
while (true) {
switch (*s) {
case '\0':
return !angle_name;
case '>':
return angle_name && s[1] == '\0';
}
if (!IsValidPartOfMemberNameUtf8(&s)) {
return false;
}
}
}
enum ClassNameType { kName, kDescriptor };
bool IsValidClassName(const char* s, ClassNameType type, char separator) {
int arrayCount = 0;
while (*s == '[') {
arrayCount++;
s++;
}
if (arrayCount > 255) {
// Arrays may have no more than 255 dimensions.
return false;
}
if (arrayCount != 0) {
/*
* If we're looking at an array of some sort, then it doesn't
* matter if what is being asked for is a class name; the
* format looks the same as a type descriptor in that case, so
* treat it as such.
*/
type = kDescriptor;
}
if (type == kDescriptor) {
/*
* We are looking for a descriptor. Either validate it as a
* single-character primitive type, or continue on to check the
* embedded class name (bracketed by "L" and ";").
*/
switch (*(s++)) {
case 'B':
case 'C':
case 'D':
case 'F':
case 'I':
case 'J':
case 'S':
case 'Z':
// These are all single-character descriptors for primitive types.
return (*s == '\0');
case 'V':
// Non-array void is valid, but you can't have an array of void.
return (arrayCount == 0) && (*s == '\0');
case 'L':
// Class name: Break out and continue below.
break;
default:
// Oddball descriptor character.
return false;
}
}
/*
* We just consumed the 'L' that introduces a class name as part
* of a type descriptor, or we are looking for an unadorned class
* name.
*/
bool sepOrFirst = true; // first character or just encountered a separator.
for (;;) {
uint8_t c = (uint8_t) *s;
switch (c) {
case '\0':
/*
* Premature end for a type descriptor, but valid for
* a class name as long as we haven't encountered an
* empty component (including the degenerate case of
* the empty string "").
*/
return (type == kName) && !sepOrFirst;
case ';':
/*
* Invalid character for a class name, but the
* legitimate end of a type descriptor. In the latter
* case, make sure that this is the end of the string
* and that it doesn't end with an empty component
* (including the degenerate case of "L;").
*/
return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
case '/':
case '.':
if (c != separator) {
// The wrong separator character.
return false;
}
if (sepOrFirst) {
// Separator at start or two separators in a row.
return false;
}
sepOrFirst = true;
s++;
break;
default:
if (!IsValidPartOfMemberNameUtf8(&s)) {
return false;
}
sepOrFirst = false;
break;
}
}
}
bool IsValidBinaryClassName(const char* s) {
return IsValidClassName(s, kName, '.');
}
bool IsValidJniClassName(const char* s) {
return IsValidClassName(s, kName, '/');
}
bool IsValidDescriptor(const char* s) {
return IsValidClassName(s, kDescriptor, '/');
}
void Split(const std::string& s, char separator, std::vector<std::string>& result) {
const char* p = s.data();
const char* end = p + s.size();
while (p != end) {
if (*p == separator) {
++p;
} else {
const char* start = p;
while (++p != end && *p != separator) {
// Skip to the next occurrence of the separator.
}
result.push_back(std::string(start, p - start));
}
}
}
template <typename StringT>
std::string Join(std::vector<StringT>& strings, char separator) {
if (strings.empty()) {
return "";
}
std::string result(strings[0]);
for (size_t i = 1; i < strings.size(); ++i) {
result += separator;
result += strings[i];
}
return result;
}
// Explicit instantiations.
template std::string Join<std::string>(std::vector<std::string>& strings, char separator);
template std::string Join<const char*>(std::vector<const char*>& strings, char separator);
template std::string Join<char*>(std::vector<char*>& strings, char separator);
bool StartsWith(const std::string& s, const char* prefix) {
return s.compare(0, strlen(prefix), prefix) == 0;
}
bool EndsWith(const std::string& s, const char* suffix) {
size_t suffix_length = strlen(suffix);
size_t string_length = s.size();
if (suffix_length > string_length) {
return false;
}
size_t offset = string_length - suffix_length;
return s.compare(offset, suffix_length, suffix) == 0;
}
void SetThreadName(const char* thread_name) {
ANNOTATE_THREAD_NAME(thread_name); // For tsan.
int hasAt = 0;
int hasDot = 0;
const char* s = thread_name;
while (*s) {
if (*s == '.') {
hasDot = 1;
} else if (*s == '@') {
hasAt = 1;
}
s++;
}
int len = s - thread_name;
if (len < 15 || hasAt || !hasDot) {
s = thread_name;
} else {
s = thread_name + len - 15;
}
#if defined(HAVE_ANDROID_PTHREAD_SETNAME_NP)
// pthread_setname_np fails rather than truncating long strings.
char buf[16]; // MAX_TASK_COMM_LEN=16 is hard-coded into bionic
strncpy(buf, s, sizeof(buf)-1);
buf[sizeof(buf)-1] = '\0';
errno = pthread_setname_np(pthread_self(), buf);
if (errno != 0) {
PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'";
}
#elif defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED >= 1060
pthread_setname_np(thread_name);
#elif defined(HAVE_PRCTL)
prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0); // NOLINT (unsigned long)
#else
UNIMPLEMENTED(WARNING) << thread_name;
#endif
}
void GetTaskStats(pid_t tid, char& state, int& utime, int& stime, int& task_cpu) {
utime = stime = task_cpu = 0;
std::string stats;
if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) {
return;
}
// Skip the command, which may contain spaces.
stats = stats.substr(stats.find(')') + 2);
// Extract the three fields we care about.
std::vector<std::string> fields;
Split(stats, ' ', fields);
state = fields[0][0];
utime = strtoull(fields[11].c_str(), NULL, 10);
stime = strtoull(fields[12].c_str(), NULL, 10);
task_cpu = strtoull(fields[36].c_str(), NULL, 10);
}
std::string GetSchedulerGroupName(pid_t tid) {
// /proc/<pid>/cgroup looks like this:
// 2:devices:/
// 1:cpuacct,cpu:/
// We want the third field from the line whose second field contains the "cpu" token.
std::string cgroup_file;
if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
return "";
}
std::vector<std::string> cgroup_lines;
Split(cgroup_file, '\n', cgroup_lines);
for (size_t i = 0; i < cgroup_lines.size(); ++i) {
std::vector<std::string> cgroup_fields;
Split(cgroup_lines[i], ':', cgroup_fields);
std::vector<std::string> cgroups;
Split(cgroup_fields[1], ',', cgroups);
for (size_t i = 0; i < cgroups.size(); ++i) {
if (cgroups[i] == "cpu") {
return cgroup_fields[2].substr(1); // Skip the leading slash.
}
}
}
return "";
}
static const char* CleanMapName(const backtrace_symbol_t* symbol) {
const char* map_name = symbol->map_name;
if (map_name == NULL) {
map_name = "???";
}
// Turn "/usr/local/google/home/enh/clean-dalvik-dev/out/host/linux-x86/lib/libartd.so"
// into "libartd.so".
const char* last_slash = strrchr(map_name, '/');
if (last_slash != NULL) {
map_name = last_slash + 1;
}
return map_name;
}
static void FindSymbolInElf(const backtrace_frame_t* frame, const backtrace_symbol_t* symbol,
std::string& symbol_name, uint32_t& pc_offset) {
symbol_table_t* symbol_table = NULL;
if (symbol->map_name != NULL) {
symbol_table = load_symbol_table(symbol->map_name);
}
const symbol_t* elf_symbol = NULL;
bool was_relative = true;
if (symbol_table != NULL) {
elf_symbol = find_symbol(symbol_table, symbol->relative_pc);
if (elf_symbol == NULL) {
elf_symbol = find_symbol(symbol_table, frame->absolute_pc);
was_relative = false;
}
}
if (elf_symbol != NULL) {
const char* demangled_symbol_name = demangle_symbol_name(elf_symbol->name);
if (demangled_symbol_name != NULL) {
symbol_name = demangled_symbol_name;
} else {
symbol_name = elf_symbol->name;
}
// TODO: is it a libcorkscrew bug that we have to do this?
pc_offset = (was_relative ? symbol->relative_pc : frame->absolute_pc) - elf_symbol->start;
} else {
symbol_name = "???";
}
free_symbol_table(symbol_table);
}
void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
// Ensure libcorkscrew doesn't use a stale cache of /proc/self/maps.
flush_my_map_info_list();
const size_t MAX_DEPTH = 32;
UniquePtr<backtrace_frame_t[]> frames(new backtrace_frame_t[MAX_DEPTH]);
size_t ignore_count = 2; // Don't include unwind_backtrace_thread or DumpNativeStack.
ssize_t frame_count = unwind_backtrace_thread(tid, frames.get(), ignore_count, MAX_DEPTH);
if (frame_count == -1) {
os << prefix << "(unwind_backtrace_thread failed for thread " << tid << ")\n";
return;
} else if (frame_count == 0) {
os << prefix << "(no native stack frames for thread " << tid << ")\n";
return;
}
UniquePtr<backtrace_symbol_t[]> backtrace_symbols(new backtrace_symbol_t[frame_count]);
get_backtrace_symbols(frames.get(), frame_count, backtrace_symbols.get());
for (size_t i = 0; i < static_cast<size_t>(frame_count); ++i) {
const backtrace_frame_t* frame = &frames[i];
const backtrace_symbol_t* symbol = &backtrace_symbols[i];
// We produce output like this:
// ] #00 unwind_backtrace_thread+536 [0x55d75bb8] (libcorkscrew.so)
std::string symbol_name;
uint32_t pc_offset = 0;
if (symbol->demangled_name != NULL) {
symbol_name = symbol->demangled_name;
pc_offset = symbol->relative_pc - symbol->relative_symbol_addr;
} else if (symbol->symbol_name != NULL) {
symbol_name = symbol->symbol_name;
pc_offset = symbol->relative_pc - symbol->relative_symbol_addr;
} else {
// dladdr(3) didn't find a symbol; maybe it's static? Look in the ELF file...
FindSymbolInElf(frame, symbol, symbol_name, pc_offset);
}
os << prefix;
if (include_count) {
os << StringPrintf("#%02zd ", i);
}
os << symbol_name;
if (pc_offset != 0) {
os << "+" << pc_offset;
}
os << StringPrintf(" [%p] (%s)\n",
reinterpret_cast<void*>(frame->absolute_pc), CleanMapName(symbol));
}
free_backtrace_symbols(backtrace_symbols.get(), frame_count);
}
#if defined(__APPLE__)
// TODO: is there any way to get the kernel stack on Mac OS?
void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {}
#else
void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
if (tid == GetTid()) {
// There's no point showing that we're reading our stack out of /proc!
return;
}
std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid));
std::string kernel_stack;
if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) {
os << prefix << "(couldn't read " << kernel_stack_filename << ")\n";
return;
}
std::vector<std::string> kernel_stack_frames;
Split(kernel_stack, '\n', kernel_stack_frames);
// We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff",
// which looking at the source appears to be the kernel's way of saying "that's all, folks!".
kernel_stack_frames.pop_back();
for (size_t i = 0; i < kernel_stack_frames.size(); ++i) {
// Turn "[<ffffffff8109156d>] futex_wait_queue_me+0xcd/0x110" into "futex_wait_queue_me+0xcd/0x110".
const char* text = kernel_stack_frames[i].c_str();
const char* close_bracket = strchr(text, ']');
if (close_bracket != NULL) {
text = close_bracket + 2;
}
os << prefix;
if (include_count) {
os << StringPrintf("#%02zd ", i);
}
os << text << "\n";
}
}
#endif
const char* GetAndroidRoot() {
const char* android_root = getenv("ANDROID_ROOT");
if (android_root == NULL) {
if (OS::DirectoryExists("/system")) {
android_root = "/system";
} else {
LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist";
return "";
}
}
if (!OS::DirectoryExists(android_root)) {
LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root;
return "";
}
return android_root;
}
const char* GetAndroidData() {
const char* android_data = getenv("ANDROID_DATA");
if (android_data == NULL) {
if (OS::DirectoryExists("/data")) {
android_data = "/data";
} else {
LOG(FATAL) << "ANDROID_DATA not set and /data does not exist";
return "";
}
}
if (!OS::DirectoryExists(android_data)) {
LOG(FATAL) << "Failed to find ANDROID_DATA directory " << android_data;
return "";
}
return android_data;
}
std::string GetArtCacheOrDie(const char* android_data) {
std::string art_cache(StringPrintf("%s/art-cache", android_data));
if (!OS::DirectoryExists(art_cache.c_str())) {
if (StartsWith(art_cache, "/tmp/")) {
int result = mkdir(art_cache.c_str(), 0700);
if (result != 0) {
LOG(FATAL) << "Failed to create art-cache directory " << art_cache;
return "";
}
} else {
LOG(FATAL) << "Failed to find art-cache directory " << art_cache;
return "";
}
}
return art_cache;
}
std::string GetArtCacheFilenameOrDie(const std::string& location) {
std::string art_cache(GetArtCacheOrDie(GetAndroidData()));
CHECK_EQ(location[0], '/') << location;
std::string cache_file(location, 1); // skip leading slash
std::replace(cache_file.begin(), cache_file.end(), '/', '@');
return art_cache + "/" + cache_file;
}
bool IsValidZipFilename(const std::string& filename) {
if (filename.size() < 4) {
return false;
}
std::string suffix(filename.substr(filename.size() - 4));
return (suffix == ".zip" || suffix == ".jar" || suffix == ".apk");
}
bool IsValidDexFilename(const std::string& filename) {
return EndsWith(filename, ".dex");
}
bool IsValidOatFilename(const std::string& filename) {
return EndsWith(filename, ".oat");
}
} // namespace art