| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "heap.h" |
| |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| |
| #include <limits> |
| #include <vector> |
| |
| #include "card_table.h" |
| #include "debugger.h" |
| #include "image.h" |
| #include "mark_sweep.h" |
| #include "object.h" |
| #include "object_utils.h" |
| #include "os.h" |
| #include "space.h" |
| #include "stl_util.h" |
| #include "thread_list.h" |
| #include "timing_logger.h" |
| #include "UniquePtr.h" |
| |
| namespace art { |
| |
| std::vector<Space*> Heap::spaces_; |
| |
| AllocSpace* Heap::alloc_space_ = NULL; |
| |
| size_t Heap::num_bytes_allocated_ = 0; |
| |
| size_t Heap::num_objects_allocated_ = 0; |
| |
| bool Heap::is_gc_running_ = false; |
| |
| HeapBitmap* Heap::mark_bitmap_ = NULL; |
| |
| HeapBitmap* Heap::live_bitmap_ = NULL; |
| |
| CardTable* Heap::card_table_ = NULL; |
| |
| bool Heap::card_marking_disabled_ = false; |
| |
| Class* Heap::java_lang_ref_FinalizerReference_ = NULL; |
| Class* Heap::java_lang_ref_ReferenceQueue_ = NULL; |
| |
| MemberOffset Heap::reference_referent_offset_ = MemberOffset(0); |
| MemberOffset Heap::reference_queue_offset_ = MemberOffset(0); |
| MemberOffset Heap::reference_queueNext_offset_ = MemberOffset(0); |
| MemberOffset Heap::reference_pendingNext_offset_ = MemberOffset(0); |
| MemberOffset Heap::finalizer_reference_zombie_offset_ = MemberOffset(0); |
| |
| float Heap::target_utilization_ = 0.5; |
| |
| Mutex* Heap::lock_ = NULL; |
| |
| bool Heap::verify_objects_ = false; |
| |
| static void UpdateFirstAndLastSpace(Space** first_space, Space** last_space, Space* space) { |
| if (*first_space == NULL) { |
| *first_space = space; |
| *last_space = space; |
| } else { |
| if ((*first_space)->Begin() > space->Begin()) { |
| *first_space = space; |
| } else if (space->Begin() > (*last_space)->Begin()) { |
| *last_space = space; |
| } |
| } |
| } |
| |
| static bool GenerateImage(const std::string image_file_name) { |
| const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString()); |
| std::vector<std::string> boot_class_path; |
| Split(boot_class_path_string, ':', boot_class_path); |
| |
| std::vector<char*> arg_vector; |
| |
| std::string dex2oat_string(GetAndroidRoot()); |
| dex2oat_string += "/bin/dex2oat"; |
| #ifndef NDEBUG |
| dex2oat_string += 'd'; |
| #endif |
| const char* dex2oat = dex2oat_string.c_str(); |
| arg_vector.push_back(strdup(dex2oat)); |
| |
| std::string image_option_string("--image="); |
| image_option_string += image_file_name; |
| const char* image_option = image_option_string.c_str(); |
| arg_vector.push_back(strdup(image_option)); |
| |
| arg_vector.push_back(strdup("--runtime-arg")); |
| arg_vector.push_back(strdup("-Xms64m")); |
| |
| arg_vector.push_back(strdup("--runtime-arg")); |
| arg_vector.push_back(strdup("-Xmx64m")); |
| |
| for (size_t i = 0; i < boot_class_path.size(); i++) { |
| std::string dex_file_option_string("--dex-file="); |
| dex_file_option_string += boot_class_path[i]; |
| const char* dex_file_option = dex_file_option_string.c_str(); |
| arg_vector.push_back(strdup(dex_file_option)); |
| } |
| |
| std::string oat_file_option_string("--oat-file="); |
| oat_file_option_string += image_file_name; |
| oat_file_option_string.erase(oat_file_option_string.size() - 3); |
| oat_file_option_string += "oat"; |
| const char* oat_file_option = oat_file_option_string.c_str(); |
| arg_vector.push_back(strdup(oat_file_option)); |
| |
| arg_vector.push_back(strdup("--base=0x60000000")); |
| |
| std::string command_line(Join(arg_vector, ' ')); |
| LOG(INFO) << command_line; |
| |
| arg_vector.push_back(NULL); |
| char** argv = &arg_vector[0]; |
| |
| // fork and exec dex2oat |
| pid_t pid = fork(); |
| if (pid == 0) { |
| // no allocation allowed between fork and exec |
| |
| // change process groups, so we don't get reaped by ProcessManager |
| setpgid(0, 0); |
| |
| execv(dex2oat, argv); |
| |
| PLOG(FATAL) << "execv(" << dex2oat << ") failed"; |
| return false; |
| } else { |
| STLDeleteElements(&arg_vector); |
| |
| // wait for dex2oat to finish |
| int status; |
| pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0)); |
| if (got_pid != pid) { |
| PLOG(ERROR) << "waitpid failed: wanted " << pid << ", got " << got_pid; |
| return false; |
| } |
| if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { |
| LOG(ERROR) << dex2oat << " failed: " << command_line; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void Heap::Init(size_t initial_size, size_t growth_limit, size_t capacity, |
| const std::string& original_image_file_name) { |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| LOG(INFO) << "Heap::Init entering"; |
| } |
| |
| // Compute the bounds of all spaces for allocating live and mark bitmaps |
| // there will be at least one space (the alloc space) |
| Space* first_space = NULL; |
| Space* last_space = NULL; |
| |
| // Requested begin for the alloc space, to follow the mapped image and oat files |
| byte* requested_begin = NULL; |
| std::string image_file_name(original_image_file_name); |
| if (!image_file_name.empty()) { |
| ImageSpace* space = NULL; |
| if (OS::FileExists(image_file_name.c_str())) { |
| // If the /system file exists, it should be up-to-date, don't try to generate |
| space = Space::CreateImageSpace(image_file_name); |
| } else { |
| // If the /system file didn't exist, we need to use one from the art-cache. |
| // If the cache file exists, try to open, but if it fails, regenerate. |
| // If it does not exist, generate. |
| image_file_name = GetArtCacheFilenameOrDie(image_file_name); |
| if (OS::FileExists(image_file_name.c_str())) { |
| space = Space::CreateImageSpace(image_file_name); |
| } |
| if (space == NULL) { |
| if (!GenerateImage(image_file_name)) { |
| LOG(FATAL) << "Failed to generate image: " << image_file_name; |
| } |
| space = Space::CreateImageSpace(image_file_name); |
| } |
| } |
| if (space == NULL) { |
| LOG(FATAL) << "Failed to create space from " << image_file_name; |
| } |
| |
| AddSpace(space); |
| UpdateFirstAndLastSpace(&first_space, &last_space, space); |
| // Oat files referenced by image files immediately follow them in memory, ensure alloc space |
| // isn't going to get in the middle |
| byte* oat_end_addr = space->GetImageHeader().GetOatEnd(); |
| CHECK(oat_end_addr > space->End()); |
| if (oat_end_addr > requested_begin) { |
| requested_begin = reinterpret_cast<byte*>(RoundUp(reinterpret_cast<uintptr_t>(oat_end_addr), |
| kPageSize)); |
| } |
| } |
| |
| alloc_space_ = Space::CreateAllocSpace("alloc space", initial_size, growth_limit, capacity, |
| requested_begin); |
| if (alloc_space_ == NULL) { |
| LOG(FATAL) << "Failed to create alloc space"; |
| } |
| AddSpace(alloc_space_); |
| UpdateFirstAndLastSpace(&first_space, &last_space, alloc_space_); |
| byte* heap_begin = first_space->Begin(); |
| size_t heap_capacity = (last_space->Begin() - first_space->Begin()) + last_space->NonGrowthLimitCapacity(); |
| |
| // Allocate the initial live bitmap. |
| UniquePtr<HeapBitmap> live_bitmap(HeapBitmap::Create("dalvik-bitmap-1", heap_begin, heap_capacity)); |
| if (live_bitmap.get() == NULL) { |
| LOG(FATAL) << "Failed to create live bitmap"; |
| } |
| |
| // Mark image objects in the live bitmap |
| for (size_t i = 0; i < spaces_.size(); i++) { |
| Space* space = spaces_[i]; |
| if (space->IsImageSpace()) { |
| space->AsImageSpace()->RecordImageAllocations(live_bitmap.get()); |
| } |
| } |
| |
| // Allocate the initial mark bitmap. |
| UniquePtr<HeapBitmap> mark_bitmap(HeapBitmap::Create("dalvik-bitmap-2", heap_begin, heap_capacity)); |
| if (mark_bitmap.get() == NULL) { |
| LOG(FATAL) << "Failed to create mark bitmap"; |
| } |
| |
| // Allocate the card table. |
| UniquePtr<CardTable> card_table(CardTable::Create(heap_begin, heap_capacity)); |
| if (card_table.get() == NULL) { |
| LOG(FATAL) << "Failed to create card table"; |
| } |
| |
| live_bitmap_ = live_bitmap.release(); |
| mark_bitmap_ = mark_bitmap.release(); |
| card_table_ = card_table.release(); |
| |
| num_bytes_allocated_ = 0; |
| num_objects_allocated_ = 0; |
| |
| // It's still to early to take a lock because there are no threads yet, |
| // but we can create the heap lock now. We don't create it earlier to |
| // make it clear that you can't use locks during heap initialization. |
| lock_ = new Mutex("Heap lock", kHeapLock); |
| |
| Heap::EnableObjectValidation(); |
| |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| LOG(INFO) << "Heap::Init exiting"; |
| } |
| } |
| |
| void Heap::Destroy() { |
| // We can't take the heap lock here because there might be a daemon thread suspended with the |
| // heap lock held. We know though that no non-daemon threads are executing, and we know that |
| // all daemon threads are suspended, and we also know that the threads list have been deleted, so |
| // those threads can't resume. We're the only running thread, and we can do whatever we like... |
| STLDeleteElements(&spaces_); |
| delete mark_bitmap_; |
| delete live_bitmap_; |
| delete card_table_; |
| delete lock_; |
| } |
| |
| Object* Heap::AllocObject(Class* klass, size_t byte_count) { |
| { |
| ScopedHeapLock heap_lock; |
| DCHECK(klass == NULL || (klass->IsClassClass() && byte_count >= sizeof(Class)) || |
| (klass->IsVariableSize() || klass->GetObjectSize() == byte_count) || |
| strlen(ClassHelper(klass).GetDescriptor()) == 0); |
| DCHECK_GE(byte_count, sizeof(Object)); |
| Object* obj = AllocateLocked(byte_count); |
| if (obj != NULL) { |
| obj->SetClass(klass); |
| if (Dbg::IsAllocTrackingEnabled()) { |
| Dbg::RecordAllocation(klass, byte_count); |
| } |
| return obj; |
| } |
| } |
| |
| Thread::Current()->ThrowOutOfMemoryError(klass, byte_count); |
| return NULL; |
| } |
| |
| bool Heap::IsHeapAddress(const Object* obj) { |
| // Note: we deliberately don't take the lock here, and mustn't test anything that would |
| // require taking the lock. |
| if (obj == NULL || !IsAligned<kObjectAlignment>(obj)) { |
| return false; |
| } |
| for (size_t i = 0; i < spaces_.size(); i++) { |
| if (spaces_[i]->Contains(obj)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool Heap::IsLiveObjectLocked(const Object* obj) { |
| lock_->AssertHeld(); |
| return IsHeapAddress(obj) && live_bitmap_->Test(obj); |
| } |
| |
| #if VERIFY_OBJECT_ENABLED |
| void Heap::VerifyObject(const Object* obj) { |
| if (!verify_objects_) { |
| return; |
| } |
| ScopedHeapLock heap_lock; |
| Heap::VerifyObjectLocked(obj); |
| } |
| #endif |
| |
| void Heap::VerifyObjectLocked(const Object* obj) { |
| lock_->AssertHeld(); |
| if (obj != NULL) { |
| if (!IsAligned<kObjectAlignment>(obj)) { |
| LOG(FATAL) << "Object isn't aligned: " << obj; |
| } else if (!live_bitmap_->Test(obj)) { |
| LOG(FATAL) << "Object is dead: " << obj; |
| } |
| // Ignore early dawn of the universe verifications |
| if (num_objects_allocated_ > 10) { |
| const byte* raw_addr = reinterpret_cast<const byte*>(obj) + |
| Object::ClassOffset().Int32Value(); |
| const Class* c = *reinterpret_cast<Class* const *>(raw_addr); |
| if (c == NULL) { |
| LOG(FATAL) << "Null class in object: " << obj; |
| } else if (!IsAligned<kObjectAlignment>(c)) { |
| LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj; |
| } else if (!live_bitmap_->Test(c)) { |
| LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj; |
| } |
| // Check obj.getClass().getClass() == obj.getClass().getClass().getClass() |
| // Note: we don't use the accessors here as they have internal sanity checks |
| // that we don't want to run |
| raw_addr = reinterpret_cast<const byte*>(c) + Object::ClassOffset().Int32Value(); |
| const Class* c_c = *reinterpret_cast<Class* const *>(raw_addr); |
| raw_addr = reinterpret_cast<const byte*>(c_c) + Object::ClassOffset().Int32Value(); |
| const Class* c_c_c = *reinterpret_cast<Class* const *>(raw_addr); |
| CHECK_EQ(c_c, c_c_c); |
| } |
| } |
| } |
| |
| void Heap::VerificationCallback(Object* obj, void* arg) { |
| DCHECK(obj != NULL); |
| Heap::VerifyObjectLocked(obj); |
| } |
| |
| void Heap::VerifyHeap() { |
| ScopedHeapLock heap_lock; |
| live_bitmap_->Walk(Heap::VerificationCallback, NULL); |
| } |
| |
| void Heap::RecordAllocationLocked(AllocSpace* space, const Object* obj) { |
| #ifndef NDEBUG |
| if (Runtime::Current()->IsStarted()) { |
| lock_->AssertHeld(); |
| } |
| #endif |
| size_t size = space->AllocationSize(obj); |
| DCHECK_GT(size, 0u); |
| num_bytes_allocated_ += size; |
| num_objects_allocated_ += 1; |
| |
| if (Runtime::Current()->HasStatsEnabled()) { |
| RuntimeStats* global_stats = Runtime::Current()->GetStats(); |
| RuntimeStats* thread_stats = Thread::Current()->GetStats(); |
| ++global_stats->allocated_objects; |
| ++thread_stats->allocated_objects; |
| global_stats->allocated_bytes += size; |
| thread_stats->allocated_bytes += size; |
| } |
| |
| live_bitmap_->Set(obj); |
| } |
| |
| void Heap::RecordFreeLocked(size_t freed_objects, size_t freed_bytes) { |
| lock_->AssertHeld(); |
| |
| if (freed_objects < num_objects_allocated_) { |
| num_objects_allocated_ -= freed_objects; |
| } else { |
| num_objects_allocated_ = 0; |
| } |
| if (freed_bytes < num_bytes_allocated_) { |
| num_bytes_allocated_ -= freed_bytes; |
| } else { |
| num_bytes_allocated_ = 0; |
| } |
| |
| if (Runtime::Current()->HasStatsEnabled()) { |
| RuntimeStats* global_stats = Runtime::Current()->GetStats(); |
| RuntimeStats* thread_stats = Thread::Current()->GetStats(); |
| ++global_stats->freed_objects; |
| ++thread_stats->freed_objects; |
| global_stats->freed_bytes += freed_bytes; |
| thread_stats->freed_bytes += freed_bytes; |
| } |
| } |
| |
| Object* Heap::AllocateLocked(size_t size) { |
| lock_->AssertHeld(); |
| DCHECK(alloc_space_ != NULL); |
| AllocSpace* space = alloc_space_; |
| Object* obj = AllocateLocked(space, size); |
| if (obj != NULL) { |
| RecordAllocationLocked(space, obj); |
| } |
| return obj; |
| } |
| |
| Object* Heap::AllocateLocked(AllocSpace* space, size_t alloc_size) { |
| lock_->AssertHeld(); |
| |
| // Since allocation can cause a GC which will need to SuspendAll, |
| // make sure all allocators are in the kRunnable state. |
| CHECK_EQ(Thread::Current()->GetState(), Thread::kRunnable); |
| |
| // Fail impossible allocations |
| if (alloc_size > space->Capacity()) { |
| // On failure collect soft references |
| CollectGarbageInternal(true); |
| return NULL; |
| } |
| |
| Object* ptr = space->AllocWithoutGrowth(alloc_size); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| |
| // The allocation failed. If the GC is running, block until it completes and retry. |
| if (is_gc_running_) { |
| // The GC is concurrently tracing the heap. Release the heap lock, wait for the GC to |
| // complete, and retrying allocating. |
| WaitForConcurrentGcToComplete(); |
| ptr = space->AllocWithoutGrowth(alloc_size); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| } |
| |
| // Another failure. Our thread was starved or there may be too many |
| // live objects. Try a foreground GC. This will have no effect if |
| // the concurrent GC is already running. |
| if (Runtime::Current()->HasStatsEnabled()) { |
| ++Runtime::Current()->GetStats()->gc_for_alloc_count; |
| ++Thread::Current()->GetStats()->gc_for_alloc_count; |
| } |
| CollectGarbageInternal(false); |
| ptr = space->AllocWithoutGrowth(alloc_size); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| |
| // Even that didn't work; this is an exceptional state. |
| // Try harder, growing the heap if necessary. |
| ptr = space->AllocWithGrowth(alloc_size); |
| if (ptr != NULL) { |
| //size_t new_footprint = dvmHeapSourceGetIdealFootprint(); |
| size_t new_footprint = space->GetFootprintLimit(); |
| // OLD-TODO: may want to grow a little bit more so that the amount of |
| // free space is equal to the old free space + the |
| // utilization slop for the new allocation. |
| VLOG(gc) << "Grow heap (frag case) to " << PrettySize(new_footprint) |
| << " for a " << PrettySize(alloc_size) << " allocation"; |
| return ptr; |
| } |
| |
| // Most allocations should have succeeded by now, so the heap is |
| // really full, really fragmented, or the requested size is really |
| // big. Do another GC, collecting SoftReferences this time. The VM |
| // spec requires that all SoftReferences have been collected and |
| // cleared before throwing an OOME. |
| |
| // OLD-TODO: wait for the finalizers from the previous GC to finish |
| VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size) << " allocation"; |
| CollectGarbageInternal(true); |
| ptr = space->AllocWithGrowth(alloc_size); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| |
| LOG(ERROR) << "Out of memory on a " << PrettySize(alloc_size) << " allocation"; |
| |
| // TODO: tell the HeapSource to dump its state |
| // TODO: dump stack traces for all threads |
| |
| return NULL; |
| } |
| |
| int64_t Heap::GetMaxMemory() { |
| return alloc_space_->Capacity(); |
| } |
| |
| int64_t Heap::GetTotalMemory() { |
| return alloc_space_->Capacity(); |
| } |
| |
| int64_t Heap::GetFreeMemory() { |
| return alloc_space_->Capacity() - num_bytes_allocated_; |
| } |
| |
| class InstanceCounter { |
| public: |
| InstanceCounter(Class* c, bool count_assignable) |
| : class_(c), count_assignable_(count_assignable), count_(0) { |
| } |
| |
| size_t GetCount() { |
| return count_; |
| } |
| |
| static void Callback(Object* o, void* arg) { |
| reinterpret_cast<InstanceCounter*>(arg)->VisitInstance(o); |
| } |
| |
| private: |
| void VisitInstance(Object* o) { |
| Class* instance_class = o->GetClass(); |
| if (count_assignable_) { |
| if (instance_class == class_) { |
| ++count_; |
| } |
| } else { |
| if (instance_class != NULL && class_->IsAssignableFrom(instance_class)) { |
| ++count_; |
| } |
| } |
| } |
| |
| Class* class_; |
| bool count_assignable_; |
| size_t count_; |
| }; |
| |
| int64_t Heap::CountInstances(Class* c, bool count_assignable) { |
| ScopedHeapLock heap_lock; |
| InstanceCounter counter(c, count_assignable); |
| live_bitmap_->Walk(InstanceCounter::Callback, &counter); |
| return counter.GetCount(); |
| } |
| |
| void Heap::CollectGarbage(bool clear_soft_references) { |
| ScopedHeapLock heap_lock; |
| CollectGarbageInternal(clear_soft_references); |
| } |
| |
| void Heap::CollectGarbageInternal(bool clear_soft_references) { |
| lock_->AssertHeld(); |
| |
| ThreadList* thread_list = Runtime::Current()->GetThreadList(); |
| thread_list->SuspendAll(); |
| |
| size_t initial_size = num_bytes_allocated_; |
| TimingLogger timings("CollectGarbageInternal"); |
| uint64_t t0 = NanoTime(); |
| Object* cleared_references = NULL; |
| { |
| MarkSweep mark_sweep; |
| timings.AddSplit("ctor"); |
| |
| mark_sweep.Init(); |
| timings.AddSplit("Init"); |
| |
| mark_sweep.MarkRoots(); |
| timings.AddSplit("MarkRoots"); |
| |
| mark_sweep.ScanDirtyImageRoots(); |
| timings.AddSplit("DirtyImageRoots"); |
| |
| // Roots are marked on the bitmap and the mark_stack is empty |
| DCHECK(mark_sweep.IsMarkStackEmpty()); |
| |
| // TODO: if concurrent |
| // unlock heap |
| // thread_list->ResumeAll(); |
| |
| // Recursively mark all bits set in the non-image mark bitmap |
| mark_sweep.RecursiveMark(); |
| timings.AddSplit("RecursiveMark"); |
| |
| // TODO: if concurrent |
| // lock heap |
| // thread_list->SuspendAll(); |
| // re-mark root set |
| // scan dirty objects |
| |
| mark_sweep.ProcessReferences(clear_soft_references); |
| timings.AddSplit("ProcessReferences"); |
| |
| // TODO: if concurrent |
| // swap bitmaps |
| |
| mark_sweep.Sweep(); |
| timings.AddSplit("Sweep"); |
| |
| cleared_references = mark_sweep.GetClearedReferences(); |
| } |
| |
| GrowForUtilization(); |
| timings.AddSplit("GrowForUtilization"); |
| uint64_t t1 = NanoTime(); |
| thread_list->ResumeAll(); |
| |
| EnqueueClearedReferences(&cleared_references); |
| RequestHeapTrim(); |
| |
| uint64_t duration_ns = t1 - t0; |
| bool gc_was_particularly_slow = duration_ns > MsToNs(50); // TODO: crank this down for concurrent. |
| if (VLOG_IS_ON(gc) || gc_was_particularly_slow) { |
| // TODO: somehow make the specific GC implementation (here MarkSweep) responsible for logging. |
| size_t bytes_freed = initial_size - num_bytes_allocated_; |
| if (bytes_freed > KB) { // ignore freed bytes in output if > 1KB |
| bytes_freed = RoundDown(bytes_freed, KB); |
| } |
| size_t bytes_allocated = RoundUp(num_bytes_allocated_, KB); |
| // lose low nanoseconds in duration. TODO: make this part of PrettyDuration |
| duration_ns = (duration_ns / 1000) * 1000; |
| size_t total = GetTotalMemory(); |
| size_t percentFree = 100 - static_cast<size_t>(100.0f * static_cast<float>(num_bytes_allocated_) / total); |
| LOG(INFO) << "GC freed " << PrettySize(bytes_freed) << ", " << percentFree << "% free, " |
| << PrettySize(bytes_allocated) << "/" << PrettySize(total) << ", " |
| << "paused " << PrettyDuration(duration_ns); |
| } |
| Dbg::GcDidFinish(); |
| if (VLOG_IS_ON(heap)) { |
| timings.Dump(); |
| } |
| } |
| |
| void Heap::WaitForConcurrentGcToComplete() { |
| lock_->AssertHeld(); |
| } |
| |
| void Heap::SetIdealFootprint(size_t max_allowed_footprint) { |
| size_t alloc_space_capacity = alloc_space_->Capacity(); |
| if (max_allowed_footprint > alloc_space_capacity) { |
| VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) |
| << " to " << PrettySize(alloc_space_capacity); |
| max_allowed_footprint = alloc_space_capacity; |
| } |
| alloc_space_->SetFootprintLimit(max_allowed_footprint); |
| } |
| |
| // kHeapIdealFree is the ideal maximum free size, when we grow the heap for utilization. |
| static const size_t kHeapIdealFree = 2 * MB; |
| // kHeapMinFree guarantees that you always have at least 512 KB free, when you grow for utilization, |
| // regardless of target utilization ratio. |
| static const size_t kHeapMinFree = kHeapIdealFree / 4; |
| |
| void Heap::GrowForUtilization() { |
| lock_->AssertHeld(); |
| |
| // We know what our utilization is at this moment. |
| // This doesn't actually resize any memory. It just lets the heap grow more |
| // when necessary. |
| size_t target_size(num_bytes_allocated_ / Heap::GetTargetHeapUtilization()); |
| |
| if (target_size > num_bytes_allocated_ + kHeapIdealFree) { |
| target_size = num_bytes_allocated_ + kHeapIdealFree; |
| } else if (target_size < num_bytes_allocated_ + kHeapMinFree) { |
| target_size = num_bytes_allocated_ + kHeapMinFree; |
| } |
| |
| SetIdealFootprint(target_size); |
| } |
| |
| void Heap::ClearGrowthLimit() { |
| ScopedHeapLock heap_lock; |
| WaitForConcurrentGcToComplete(); |
| alloc_space_->ClearGrowthLimit(); |
| } |
| |
| pid_t Heap::GetLockOwner() { |
| return lock_->GetOwner(); |
| } |
| |
| void Heap::Lock() { |
| // Grab the lock, but put ourselves into Thread::kVmWait if it looks |
| // like we're going to have to wait on the mutex. This prevents |
| // deadlock if another thread is calling CollectGarbageInternal, |
| // since they will have the heap lock and be waiting for mutators to |
| // suspend. |
| if (!lock_->TryLock()) { |
| ScopedThreadStateChange tsc(Thread::Current(), Thread::kVmWait); |
| lock_->Lock(); |
| } |
| } |
| |
| void Heap::Unlock() { |
| lock_->Unlock(); |
| } |
| |
| void Heap::SetWellKnownClasses(Class* java_lang_ref_FinalizerReference, |
| Class* java_lang_ref_ReferenceQueue) { |
| java_lang_ref_FinalizerReference_ = java_lang_ref_FinalizerReference; |
| java_lang_ref_ReferenceQueue_ = java_lang_ref_ReferenceQueue; |
| CHECK(java_lang_ref_FinalizerReference_ != NULL); |
| CHECK(java_lang_ref_ReferenceQueue_ != NULL); |
| } |
| |
| void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset, |
| MemberOffset reference_queue_offset, |
| MemberOffset reference_queueNext_offset, |
| MemberOffset reference_pendingNext_offset, |
| MemberOffset finalizer_reference_zombie_offset) { |
| reference_referent_offset_ = reference_referent_offset; |
| reference_queue_offset_ = reference_queue_offset; |
| reference_queueNext_offset_ = reference_queueNext_offset; |
| reference_pendingNext_offset_ = reference_pendingNext_offset; |
| finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset; |
| CHECK_NE(reference_referent_offset_.Uint32Value(), 0U); |
| CHECK_NE(reference_queue_offset_.Uint32Value(), 0U); |
| CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U); |
| CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U); |
| CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U); |
| } |
| |
| Object* Heap::GetReferenceReferent(Object* reference) { |
| DCHECK(reference != NULL); |
| DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U); |
| return reference->GetFieldObject<Object*>(reference_referent_offset_, true); |
| } |
| |
| void Heap::ClearReferenceReferent(Object* reference) { |
| DCHECK(reference != NULL); |
| DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U); |
| reference->SetFieldObject(reference_referent_offset_, NULL, true); |
| } |
| |
| // Returns true if the reference object has not yet been enqueued. |
| bool Heap::IsEnqueuable(const Object* ref) { |
| DCHECK(ref != NULL); |
| const Object* queue = ref->GetFieldObject<Object*>(reference_queue_offset_, false); |
| const Object* queue_next = ref->GetFieldObject<Object*>(reference_queueNext_offset_, false); |
| return (queue != NULL) && (queue_next == NULL); |
| } |
| |
| void Heap::EnqueueReference(Object* ref, Object** cleared_reference_list) { |
| DCHECK(ref != NULL); |
| CHECK(ref->GetFieldObject<Object*>(reference_queue_offset_, false) != NULL); |
| CHECK(ref->GetFieldObject<Object*>(reference_queueNext_offset_, false) == NULL); |
| EnqueuePendingReference(ref, cleared_reference_list); |
| } |
| |
| void Heap::EnqueuePendingReference(Object* ref, Object** list) { |
| DCHECK(ref != NULL); |
| DCHECK(list != NULL); |
| |
| if (*list == NULL) { |
| ref->SetFieldObject(reference_pendingNext_offset_, ref, false); |
| *list = ref; |
| } else { |
| Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false); |
| ref->SetFieldObject(reference_pendingNext_offset_, head, false); |
| (*list)->SetFieldObject(reference_pendingNext_offset_, ref, false); |
| } |
| } |
| |
| Object* Heap::DequeuePendingReference(Object** list) { |
| DCHECK(list != NULL); |
| DCHECK(*list != NULL); |
| Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false); |
| Object* ref; |
| if (*list == head) { |
| ref = *list; |
| *list = NULL; |
| } else { |
| Object* next = head->GetFieldObject<Object*>(reference_pendingNext_offset_, false); |
| (*list)->SetFieldObject(reference_pendingNext_offset_, next, false); |
| ref = head; |
| } |
| ref->SetFieldObject(reference_pendingNext_offset_, NULL, false); |
| return ref; |
| } |
| |
| void Heap::AddFinalizerReference(Thread* self, Object* object) { |
| ScopedThreadStateChange tsc(self, Thread::kRunnable); |
| static Method* FinalizerReference_add = |
| java_lang_ref_FinalizerReference_->FindDirectMethod("add", "(Ljava/lang/Object;)V"); |
| DCHECK(FinalizerReference_add != NULL); |
| Object* args[] = { object }; |
| FinalizerReference_add->Invoke(self, NULL, reinterpret_cast<byte*>(&args), NULL); |
| } |
| |
| void Heap::EnqueueClearedReferences(Object** cleared) { |
| DCHECK(cleared != NULL); |
| if (*cleared != NULL) { |
| static Method* ReferenceQueue_add = |
| java_lang_ref_ReferenceQueue_->FindDirectMethod("add", "(Ljava/lang/ref/Reference;)V"); |
| DCHECK(ReferenceQueue_add != NULL); |
| |
| Thread* self = Thread::Current(); |
| ScopedThreadStateChange tsc(self, Thread::kRunnable); |
| Object* args[] = { *cleared }; |
| ReferenceQueue_add->Invoke(self, NULL, reinterpret_cast<byte*>(&args), NULL); |
| *cleared = NULL; |
| } |
| } |
| |
| void Heap::RequestHeapTrim() { |
| // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap |
| // because that only marks object heads, so a large array looks like lots of empty space. We |
| // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional |
| // to utilization (which is probably inversely proportional to how much benefit we can expect). |
| // We could try mincore(2) but that's only a measure of how many pages we haven't given away, |
| // not how much use we're making of those pages. |
| float utilization = static_cast<float>(num_bytes_allocated_) / alloc_space_->Size(); |
| if (utilization > 0.75f) { |
| // Don't bother trimming the heap if it's more than 75% utilized. |
| // (This percentage was picked arbitrarily.) |
| return; |
| } |
| if (!Runtime::Current()->IsStarted()) { |
| // Heap trimming isn't supported without a Java runtime (such as at dex2oat time) |
| return; |
| } |
| JNIEnv* env = Thread::Current()->GetJniEnv(); |
| static jclass Daemons_class = CacheClass(env, "java/lang/Daemons"); |
| static jmethodID Daemons_requestHeapTrim = env->GetStaticMethodID(Daemons_class, "requestHeapTrim", "()V"); |
| env->CallStaticVoidMethod(Daemons_class, Daemons_requestHeapTrim); |
| CHECK(!env->ExceptionCheck()); |
| } |
| |
| } // namespace art |