x86 source code hack and slash

Made a pass over the compiler source to get it into a compileable
state for the x86 target.  Lots of temporary #ifdefs, but it
compiles and makes it to oatArchInit().

Change-Id: Ib8bcd2a032e47dcb83430dbc479a29758e084359
diff --git a/src/compiler/codegen/x86/GenInvoke.cc b/src/compiler/codegen/x86/GenInvoke.cc
new file mode 100644
index 0000000..2f095f1
--- /dev/null
+++ b/src/compiler/codegen/x86/GenInvoke.cc
@@ -0,0 +1,533 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+namespace art {
+
+/*
+ * This source files contains "gen" codegen routines that should
+ * be applicable to most targets.  Only mid-level support utilities
+ * and "op" calls may be used here.
+ */
+
+
+/*
+ * x86 targets will likely be different enough to need their own
+ * invoke gen routies.
+ */
+typedef int (*NextCallInsn)(CompilationUnit*, MIR*, int, uint32_t dexIdx,
+                            uint32_t methodIdx);
+/*
+ * If there are any ins passed in registers that have not been promoted
+ * to a callee-save register, flush them to the frame.  Perform intial
+ * assignment of promoted arguments.
+ */
+void flushIns(CompilationUnit* cUnit)
+{
+    UNIMPLEMENTED(WARNING) << "flushIns";
+#if 0
+    if (cUnit->numIns == 0)
+        return;
+    int firstArgReg = rARG1;
+    int lastArgReg = rARG3;
+    int startVReg = cUnit->numDalvikRegisters - cUnit->numIns;
+    /*
+     * Arguments passed in registers should be flushed
+     * to their backing locations in the frame for now.
+     * Also, we need to do initial assignment for promoted
+     * arguments.  NOTE: an older version of dx had an issue
+     * in which it would reuse static method argument registers.
+     * This could result in the same Dalvik virtual register
+     * being promoted to both core and fp regs.  In those
+     * cases, copy argument to both.  This will be uncommon
+     * enough that it isn't worth attempting to optimize.
+     */
+    for (int i = 0; i < cUnit->numIns; i++) {
+        PromotionMap vMap = cUnit->promotionMap[startVReg + i];
+        if (i <= (lastArgReg - firstArgReg)) {
+            // If arriving in register
+            if (vMap.coreLocation == kLocPhysReg) {
+                opRegCopy(cUnit, vMap.coreReg, firstArgReg + i);
+            }
+            if (vMap.fpLocation == kLocPhysReg) {
+                opRegCopy(cUnit, vMap.fpReg, firstArgReg + i);
+            }
+            // Also put a copy in memory in case we're partially promoted
+            storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
+                          firstArgReg + i, kWord);
+        } else {
+            // If arriving in frame & promoted
+            if (vMap.coreLocation == kLocPhysReg) {
+                loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
+                             vMap.coreReg);
+            }
+            if (vMap.fpLocation == kLocPhysReg) {
+                loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i),
+                             vMap.fpReg);
+            }
+        }
+    }
+#endif
+}
+
+/*
+ * Bit of a hack here - in leiu of a real scheduling pass,
+ * emit the next instruction in static & direct invoke sequences.
+ */
+int nextSDCallInsn(CompilationUnit* cUnit, MIR* mir,
+                   int state, uint32_t dexIdx, uint32_t unused)
+{
+    UNIMPLEMENTED(WARNING) << "nextSDCallInsn";
+    return 0;
+#if 0
+    switch(state) {
+        case 0:  // Get the current Method* [sets rARG0]
+            loadCurrMethodDirect(cUnit, rARG0);
+            break;
+        case 1:  // Get method->dex_cache_resolved_methods_
+            loadWordDisp(cUnit, rARG0,
+                Method::DexCacheResolvedMethodsOffset().Int32Value(),
+                rARG0);
+            break;
+        case 2:  // Grab target method*
+            loadWordDisp(cUnit, rARG0,
+                Array::DataOffset(sizeof(Object*)).Int32Value() + dexIdx * 4,
+                rARG0);
+            break;
+        case 3:  // Grab the code from the method*
+            loadWordDisp(cUnit, rARG0, Method::GetCodeOffset().Int32Value(),
+                         rINVOKE_TGT);
+            break;
+        default:
+            return -1;
+    }
+    return state + 1;
+#endif
+}
+
+/*
+ * Bit of a hack here - in leiu of a real scheduling pass,
+ * emit the next instruction in a virtual invoke sequence.
+ * We can use rLR as a temp prior to target address loading
+ * Note also that we'll load the first argument ("this") into
+ * rARG1 here rather than the standard loadArgRegs.
+ */
+int nextVCallInsn(CompilationUnit* cUnit, MIR* mir,
+                  int state, uint32_t dexIdx, uint32_t methodIdx)
+{
+    UNIMPLEMENTED(WARNING) << "nextVCallInsn";
+    return 0;
+#if 0
+    RegLocation rlArg;
+    /*
+     * This is the fast path in which the target virtual method is
+     * fully resolved at compile time.
+     */
+    switch(state) {
+        case 0:  // Get "this" [set rARG1]
+            rlArg = oatGetSrc(cUnit, mir, 0);
+            loadValueDirectFixed(cUnit, rlArg, rARG1);
+            break;
+        case 1: // Is "this" null? [use rARG1]
+            genNullCheck(cUnit, oatSSASrc(mir,0), rARG1, mir);
+            // get this->klass_ [use rARG1, set rINVOKE_TGT]
+            loadWordDisp(cUnit, rARG1, Object::ClassOffset().Int32Value(),
+                         rINVOKE_TGT);
+            break;
+        case 2: // Get this->klass_->vtable [usr rINVOKE_TGT, set rINVOKE_TGT]
+            loadWordDisp(cUnit, rINVOKE_TGT, Class::VTableOffset().Int32Value(),
+                         rINVOKE_TGT);
+            break;
+        case 3: // Get target method [use rINVOKE_TGT, set rARG0]
+            loadWordDisp(cUnit, rINVOKE_TGT, (methodIdx * 4) +
+                         Array::DataOffset(sizeof(Object*)).Int32Value(),
+                         rARG0);
+            break;
+        case 4: // Get the compiled code address [uses rARG0, sets rINVOKE_TGT]
+            loadWordDisp(cUnit, rARG0, Method::GetCodeOffset().Int32Value(),
+                         rINVOKE_TGT);
+            break;
+        default:
+            return -1;
+    }
+    return state + 1;
+#endif
+}
+
+/*
+ * Interleave launch code for INVOKE_SUPER.  See comments
+ * for nextVCallIns.
+ */
+int nextSuperCallInsn(CompilationUnit* cUnit, MIR* mir,
+                      int state, uint32_t dexIdx, uint32_t methodIdx)
+{
+    UNIMPLEMENTED(WARNING) << "nextSuperCallInsn";
+    return 0;
+#if 0
+    /*
+     * This is the fast path in which the target virtual method is
+     * fully resolved at compile time.  Note also that this path assumes
+     * that the check to verify that the target method index falls
+     * within the size of the super's vtable has been done at compile-time.
+     */
+    RegLocation rlArg;
+    switch(state) {
+        case 0: // Get current Method* [set rARG0]
+            loadCurrMethodDirect(cUnit, rARG0);
+            // Load "this" [set rARG1]
+            rlArg = oatGetSrc(cUnit, mir, 0);
+            loadValueDirectFixed(cUnit, rlArg, rARG1);
+            // Get method->declaring_class_ [use rARG0, set rINVOKE_TGT]
+            loadWordDisp(cUnit, rARG0,
+                         Method::DeclaringClassOffset().Int32Value(),
+                         rINVOKE_TGT);
+            // Is "this" null? [use rARG1]
+            genNullCheck(cUnit, oatSSASrc(mir,0), rARG1, mir);
+            break;
+        case 1: // method->declaring_class_->super_class [use/set rINVOKE_TGT]
+            loadWordDisp(cUnit, rINVOKE_TGT,
+                         Class::SuperClassOffset().Int32Value(), rINVOKE_TGT);
+            break;
+        case 2: // Get ...->super_class_->vtable [u/s rINVOKE_TGT]
+            loadWordDisp(cUnit, rINVOKE_TGT,
+                         Class::VTableOffset().Int32Value(), rINVOKE_TGT);
+            break;
+        case 3: // Get target method [use rINVOKE_TGT, set rARG0]
+            loadWordDisp(cUnit, rINVOKE_TGT, (methodIdx * 4) +
+                         Array::DataOffset(sizeof(Object*)).Int32Value(),
+                         rARG0);
+            break;
+        case 4: // target compiled code address [uses rARG0, sets rINVOKE_TGT]
+            loadWordDisp(cUnit, rARG0, Method::GetCodeOffset().Int32Value(),
+                         rINVOKE_TGT);
+            break;
+        default:
+            return -1;
+    }
+    return state + 1;
+#endif
+}
+
+int nextInvokeInsnSP(CompilationUnit* cUnit, MIR* mir, int trampoline,
+                     int state, uint32_t dexIdx, uint32_t methodIdx)
+{
+    UNIMPLEMENTED(WARNING) << "nextInvokeInsnSP";
+    return 0;
+#if 0
+    /*
+     * This handles the case in which the base method is not fully
+     * resolved at compile time, we bail to a runtime helper.
+     */
+    if (state == 0) {
+        // Load trampoline target
+        loadWordDisp(cUnit, rSELF, trampoline, rINVOKE_TGT);
+        // Load rARG0 with method index
+        loadConstant(cUnit, rARG0, dexIdx);
+        return 1;
+    }
+    return -1;
+#endif
+}
+
+int nextStaticCallInsnSP(CompilationUnit* cUnit, MIR* mir,
+                         int state, uint32_t dexIdx, uint32_t methodIdx)
+{
+  int trampoline = OFFSETOF_MEMBER(Thread, pInvokeStaticTrampolineWithAccessCheck);
+  return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
+}
+
+int nextDirectCallInsnSP(CompilationUnit* cUnit, MIR* mir, int state,
+                         uint32_t dexIdx, uint32_t methodIdx)
+{
+  int trampoline = OFFSETOF_MEMBER(Thread, pInvokeDirectTrampolineWithAccessCheck);
+  return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
+}
+
+int nextSuperCallInsnSP(CompilationUnit* cUnit, MIR* mir, int state,
+                        uint32_t dexIdx, uint32_t methodIdx)
+{
+  int trampoline = OFFSETOF_MEMBER(Thread, pInvokeSuperTrampolineWithAccessCheck);
+  return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
+}
+
+int nextVCallInsnSP(CompilationUnit* cUnit, MIR* mir, int state,
+                    uint32_t dexIdx, uint32_t methodIdx)
+{
+  int trampoline = OFFSETOF_MEMBER(Thread, pInvokeVirtualTrampolineWithAccessCheck);
+  return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
+}
+
+/*
+ * All invoke-interface calls bounce off of art_invoke_interface_trampoline,
+ * which will locate the target and continue on via a tail call.
+ */
+int nextInterfaceCallInsn(CompilationUnit* cUnit, MIR* mir, int state,
+                          uint32_t dexIdx, uint32_t unused)
+{
+  int trampoline = OFFSETOF_MEMBER(Thread, pInvokeInterfaceTrampoline);
+  return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
+}
+
+int nextInterfaceCallInsnWithAccessCheck(CompilationUnit* cUnit, MIR* mir,
+                                         int state, uint32_t dexIdx,
+                                         uint32_t unused)
+{
+  int trampoline = OFFSETOF_MEMBER(Thread, pInvokeInterfaceTrampolineWithAccessCheck);
+  return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0);
+}
+
+int loadArgRegs(CompilationUnit* cUnit, MIR* mir, DecodedInstruction* dInsn,
+                int callState, NextCallInsn nextCallInsn, uint32_t dexIdx,
+                uint32_t methodIdx, bool skipThis)
+{
+    UNIMPLEMENTED(WARNING) << "loadArgRegs";
+    return 0;
+#if 0
+    int nextReg = rARG1;
+    int nextArg = 0;
+    if (skipThis) {
+        nextReg++;
+        nextArg++;
+    }
+    for (; (nextReg <= rARG3) && (nextArg < mir->ssaRep->numUses); nextReg++) {
+        RegLocation rlArg = oatGetRawSrc(cUnit, mir, nextArg++);
+        rlArg = oatUpdateRawLoc(cUnit, rlArg);
+        if (rlArg.wide && (nextReg <= rARG2)) {
+            loadValueDirectWideFixed(cUnit, rlArg, nextReg, nextReg + 1);
+            nextReg++;
+            nextArg++;
+        } else {
+            rlArg.wide = false;
+            loadValueDirectFixed(cUnit, rlArg, nextReg);
+        }
+        callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
+    }
+    return callState;
+#endif
+}
+
+/*
+ * Load up to 5 arguments, the first three of which will be in
+ * rARG1 .. rARG3.  On entry rARG0 contains the current method pointer,
+ * and as part of the load sequence, it must be replaced with
+ * the target method pointer.  Note, this may also be called
+ * for "range" variants if the number of arguments is 5 or fewer.
+ */
+int genDalvikArgsNoRange(CompilationUnit* cUnit, MIR* mir,
+                         DecodedInstruction* dInsn, int callState,
+                         LIR** pcrLabel, NextCallInsn nextCallInsn,
+                         uint32_t dexIdx, uint32_t methodIdx, bool skipThis)
+{
+    UNIMPLEMENTED(WARNING) << "genDalvikArgsNoRange";
+    return 0;
+#if 0
+    RegLocation rlArg;
+
+    /* If no arguments, just return */
+    if (dInsn->vA == 0)
+        return callState;
+
+    callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
+
+    DCHECK_LE(dInsn->vA, 5U);
+    if (dInsn->vA > 3) {
+        uint32_t nextUse = 3;
+        //Detect special case of wide arg spanning arg3/arg4
+        RegLocation rlUse0 = oatGetRawSrc(cUnit, mir, 0);
+        RegLocation rlUse1 = oatGetRawSrc(cUnit, mir, 1);
+        RegLocation rlUse2 = oatGetRawSrc(cUnit, mir, 2);
+        if (((!rlUse0.wide && !rlUse1.wide) || rlUse0.wide) &&
+            rlUse2.wide) {
+            int reg;
+            // Wide spans, we need the 2nd half of uses[2].
+            rlArg = oatUpdateLocWide(cUnit, rlUse2);
+            if (rlArg.location == kLocPhysReg) {
+                reg = rlArg.highReg;
+            } else {
+                // rARG2 & rARG3 can safely be used here
+                reg = rARG3;
+                loadWordDisp(cUnit, rSP,
+                             oatSRegOffset(cUnit, rlArg.sRegLow) + 4, reg);
+                callState = nextCallInsn(cUnit, mir, callState, dexIdx,
+                                         methodIdx);
+            }
+            storeBaseDisp(cUnit, rSP, (nextUse + 1) * 4, reg, kWord);
+            storeBaseDisp(cUnit, rSP, 16 /* (3+1)*4 */, reg, kWord);
+            callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
+            nextUse++;
+        }
+        // Loop through the rest
+        while (nextUse < dInsn->vA) {
+            int lowReg;
+            int highReg;
+            rlArg = oatGetRawSrc(cUnit, mir, nextUse);
+            rlArg = oatUpdateRawLoc(cUnit, rlArg);
+            if (rlArg.location == kLocPhysReg) {
+                lowReg = rlArg.lowReg;
+                highReg = rlArg.highReg;
+            } else {
+                lowReg = rARG2;
+                highReg = rARG3;
+                if (rlArg.wide) {
+                    loadValueDirectWideFixed(cUnit, rlArg, lowReg, highReg);
+                } else {
+                    loadValueDirectFixed(cUnit, rlArg, lowReg);
+                }
+                callState = nextCallInsn(cUnit, mir, callState, dexIdx,
+                                         methodIdx);
+            }
+            int outsOffset = (nextUse + 1) * 4;
+            if (rlArg.wide) {
+                storeBaseDispWide(cUnit, rSP, outsOffset, lowReg, highReg);
+                nextUse += 2;
+            } else {
+                storeWordDisp(cUnit, rSP, outsOffset, lowReg);
+                nextUse++;
+            }
+            callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
+        }
+    }
+
+    callState = loadArgRegs(cUnit, mir, dInsn, callState, nextCallInsn,
+                            dexIdx, methodIdx, skipThis);
+
+    if (pcrLabel) {
+        *pcrLabel = genNullCheck(cUnit, oatSSASrc(mir,0), rARG1, mir);
+    }
+    return callState;
+#endif
+}
+
+/*
+ * May have 0+ arguments (also used for jumbo).  Note that
+ * source virtual registers may be in physical registers, so may
+ * need to be flushed to home location before copying.  This
+ * applies to arg3 and above (see below).
+ *
+ * Two general strategies:
+ *    If < 20 arguments
+ *       Pass args 3-18 using vldm/vstm block copy
+ *       Pass arg0, arg1 & arg2 in rARG1-rARG3
+ *    If 20+ arguments
+ *       Pass args arg19+ using memcpy block copy
+ *       Pass arg0, arg1 & arg2 in rARG1-rARG3
+ *
+ */
+int genDalvikArgsRange(CompilationUnit* cUnit, MIR* mir,
+                       DecodedInstruction* dInsn, int callState,
+                       LIR** pcrLabel, NextCallInsn nextCallInsn,
+                       uint32_t dexIdx, uint32_t methodIdx, bool skipThis)
+{
+    UNIMPLEMENTED(WARNING) << "genDalvikArgsRange";
+    return 0;
+#if 0
+    int firstArg = dInsn->vC;
+    int numArgs = dInsn->vA;
+
+    // If we can treat it as non-range (Jumbo ops will use range form)
+    if (numArgs <= 5)
+        return genDalvikArgsNoRange(cUnit, mir, dInsn, callState, pcrLabel,
+                                    nextCallInsn, dexIdx, methodIdx,
+                                    skipThis);
+    /*
+     * Make sure range list doesn't span the break between in normal
+     * Dalvik vRegs and the ins.
+     */
+    int highestArg = oatGetSrc(cUnit, mir, numArgs-1).sRegLow;
+    int boundaryReg = cUnit->numDalvikRegisters - cUnit->numIns;
+    if ((firstArg < boundaryReg) && (highestArg >= boundaryReg)) {
+        LOG(FATAL) << "Argument list spanned locals & args";
+    }
+
+    /*
+     * First load the non-register arguments.  Both forms expect all
+     * of the source arguments to be in their home frame location, so
+     * scan the sReg names and flush any that have been promoted to
+     * frame backing storage.
+     */
+    // Scan the rest of the args - if in physReg flush to memory
+    for (int nextArg = 0; nextArg < numArgs;) {
+        RegLocation loc = oatGetRawSrc(cUnit, mir, nextArg);
+        if (loc.wide) {
+            loc = oatUpdateLocWide(cUnit, loc);
+            if ((nextArg >= 2) && (loc.location == kLocPhysReg)) {
+                storeBaseDispWide(cUnit, rSP,
+                                  oatSRegOffset(cUnit, loc.sRegLow),
+                                  loc.lowReg, loc.highReg);
+            }
+            nextArg += 2;
+        } else {
+            loc = oatUpdateLoc(cUnit, loc);
+            if ((nextArg >= 3) && (loc.location == kLocPhysReg)) {
+                storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, loc.sRegLow),
+                              loc.lowReg, kWord);
+            }
+            nextArg++;
+        }
+    }
+
+    int startOffset = oatSRegOffset(cUnit,
+        cUnit->regLocation[mir->ssaRep->uses[3]].sRegLow);
+    int outsOffset = 4 /* Method* */ + (3 * 4);
+#if defined(TARGET_MIPS)
+    // Generate memcpy
+    opRegRegImm(cUnit, kOpAdd, rARG0, rSP, outsOffset);
+    opRegRegImm(cUnit, kOpAdd, rARG1, rSP, startOffset);
+    int rTgt = loadHelper(cUnit, OFFSETOF_MEMBER(Thread, pMemcpy));
+    loadConstant(cUnit, rARG2, (numArgs - 3) * 4);
+    callRuntimeHelper(cUnit, rTgt);
+    // Restore Method*
+    loadCurrMethodDirect(cUnit, rARG0);
+#else
+    if (numArgs >= 20) {
+        // Generate memcpy
+        opRegRegImm(cUnit, kOpAdd, rARG0, rSP, outsOffset);
+        opRegRegImm(cUnit, kOpAdd, rARG1, rSP, startOffset);
+        int rTgt = loadHelper(cUnit, OFFSETOF_MEMBER(Thread, pMemcpy));
+        loadConstant(cUnit, rARG2, (numArgs - 3) * 4);
+        callRuntimeHelper(cUnit, rTgt);
+        // Restore Method*
+        loadCurrMethodDirect(cUnit, rARG0);
+    } else {
+        // Use vldm/vstm pair using rARG3 as a temp
+        int regsLeft = std::min(numArgs - 3, 16);
+        callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
+        opRegRegImm(cUnit, kOpAdd, rARG3, rSP, startOffset);
+        LIR* ld = newLIR3(cUnit, kThumb2Vldms, rARG3, fr0, regsLeft);
+        //TUNING: loosen barrier
+        ld->defMask = ENCODE_ALL;
+        setMemRefType(ld, true /* isLoad */, kDalvikReg);
+        callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
+        opRegRegImm(cUnit, kOpAdd, rARG3, rSP, 4 /* Method* */ + (3 * 4));
+        callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
+        LIR* st = newLIR3(cUnit, kThumb2Vstms, rARG3, fr0, regsLeft);
+        setMemRefType(st, false /* isLoad */, kDalvikReg);
+        st->defMask = ENCODE_ALL;
+        callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
+    }
+#endif
+
+    callState = loadArgRegs(cUnit, mir, dInsn, callState, nextCallInsn,
+                            dexIdx, methodIdx, skipThis);
+
+    callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx);
+    if (pcrLabel) {
+        *pcrLabel = genNullCheck(cUnit, oatSSASrc(mir,0), rARG1, mir);
+    }
+    return callState;
+#endif
+}
+
+}  // namespace art