blob: bc55800d9ac455bc298c8a16bd9ae2c91fb57864 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "oat/runtime/oat_support_entrypoints.h"
#include "../compiler_ir.h"
#include "ralloc_util.h"
#include "codegen_util.h"
namespace art {
/*
* This source files contains "gen" codegen routines that should
* be applicable to most targets. Only mid-level support utilities
* and "op" calls may be used here.
*/
/*
* If there are any ins passed in registers that have not been promoted
* to a callee-save register, flush them to the frame. Perform intial
* assignment of promoted arguments.
*
* ArgLocs is an array of location records describing the incoming arguments
* with one location record per word of argument.
*/
void FlushIns(CompilationUnit* cUnit, RegLocation* ArgLocs, RegLocation rlMethod)
{
/*
* Dummy up a RegLocation for the incoming Method*
* It will attempt to keep kArg0 live (or copy it to home location
* if promoted).
*/
RegLocation rlSrc = rlMethod;
rlSrc.location = kLocPhysReg;
rlSrc.lowReg = TargetReg(kArg0);
rlSrc.home = false;
MarkLive(cUnit, rlSrc.lowReg, rlSrc.sRegLow);
StoreValue(cUnit, rlMethod, rlSrc);
// If Method* has been promoted, explicitly flush
if (rlMethod.location == kLocPhysReg) {
StoreWordDisp(cUnit, TargetReg(kSp), 0, TargetReg(kArg0));
}
if (cUnit->numIns == 0)
return;
const int numArgRegs = 3;
static SpecialTargetRegister argRegs[] = {kArg1, kArg2, kArg3};
int startVReg = cUnit->numDalvikRegisters - cUnit->numIns;
/*
* Copy incoming arguments to their proper home locations.
* NOTE: an older version of dx had an issue in which
* it would reuse static method argument registers.
* This could result in the same Dalvik virtual register
* being promoted to both core and fp regs. To account for this,
* we only copy to the corresponding promoted physical register
* if it matches the type of the SSA name for the incoming
* argument. It is also possible that long and double arguments
* end up half-promoted. In those cases, we must flush the promoted
* half to memory as well.
*/
for (int i = 0; i < cUnit->numIns; i++) {
PromotionMap* vMap = &cUnit->promotionMap[startVReg + i];
if (i < numArgRegs) {
// If arriving in register
bool needFlush = true;
RegLocation* tLoc = &ArgLocs[i];
if ((vMap->coreLocation == kLocPhysReg) && !tLoc->fp) {
OpRegCopy(cUnit, vMap->coreReg, TargetReg(argRegs[i]));
needFlush = false;
} else if ((vMap->fpLocation == kLocPhysReg) && tLoc->fp) {
OpRegCopy(cUnit, vMap->FpReg, TargetReg(argRegs[i]));
needFlush = false;
} else {
needFlush = true;
}
// For wide args, force flush if only half is promoted
if (tLoc->wide) {
PromotionMap* pMap = vMap + (tLoc->highWord ? -1 : +1);
needFlush |= (pMap->coreLocation != vMap->coreLocation) ||
(pMap->fpLocation != vMap->fpLocation);
}
if (needFlush) {
StoreBaseDisp(cUnit, TargetReg(kSp), SRegOffset(cUnit, startVReg + i),
TargetReg(argRegs[i]), kWord);
}
} else {
// If arriving in frame & promoted
if (vMap->coreLocation == kLocPhysReg) {
LoadWordDisp(cUnit, TargetReg(kSp), SRegOffset(cUnit, startVReg + i),
vMap->coreReg);
}
if (vMap->fpLocation == kLocPhysReg) {
LoadWordDisp(cUnit, TargetReg(kSp), SRegOffset(cUnit, startVReg + i),
vMap->FpReg);
}
}
}
}
/*
* Bit of a hack here - in the absence of a real scheduling pass,
* emit the next instruction in static & direct invoke sequences.
*/
static int NextSDCallInsn(CompilationUnit* cUnit, CallInfo* info,
int state, uint32_t dexIdx, uint32_t unused,
uintptr_t directCode, uintptr_t directMethod,
InvokeType type)
{
if (cUnit->instructionSet != kThumb2) {
// Disable sharpening
directCode = 0;
directMethod = 0;
}
if (directCode != 0 && directMethod != 0) {
switch (state) {
case 0: // Get the current Method* [sets kArg0]
if (directCode != static_cast<unsigned int>(-1)) {
LoadConstant(cUnit, TargetReg(kInvokeTgt), directCode);
} else {
LIR* dataTarget = ScanLiteralPool(cUnit->codeLiteralList, dexIdx, 0);
if (dataTarget == NULL) {
dataTarget = AddWordData(cUnit, &cUnit->codeLiteralList, dexIdx);
dataTarget->operands[1] = type;
}
LIR* loadPcRel = OpPcRelLoad(cUnit, TargetReg(kInvokeTgt), dataTarget);
AppendLIR(cUnit, loadPcRel);
DCHECK_EQ(cUnit->instructionSet, kThumb2) << reinterpret_cast<void*>(dataTarget);
}
if (directMethod != static_cast<unsigned int>(-1)) {
LoadConstant(cUnit, TargetReg(kArg0), directMethod);
} else {
LIR* dataTarget = ScanLiteralPool(cUnit->methodLiteralList, dexIdx, 0);
if (dataTarget == NULL) {
dataTarget = AddWordData(cUnit, &cUnit->methodLiteralList, dexIdx);
dataTarget->operands[1] = type;
}
LIR* loadPcRel = OpPcRelLoad(cUnit, TargetReg(kArg0), dataTarget);
AppendLIR(cUnit, loadPcRel);
DCHECK_EQ(cUnit->instructionSet, kThumb2) << reinterpret_cast<void*>(dataTarget);
}
break;
default:
return -1;
}
} else {
switch (state) {
case 0: // Get the current Method* [sets kArg0]
// TUNING: we can save a reg copy if Method* has been promoted.
LoadCurrMethodDirect(cUnit, TargetReg(kArg0));
break;
case 1: // Get method->dex_cache_resolved_methods_
LoadWordDisp(cUnit, TargetReg(kArg0),
AbstractMethod::DexCacheResolvedMethodsOffset().Int32Value(), TargetReg(kArg0));
// Set up direct code if known.
if (directCode != 0) {
if (directCode != static_cast<unsigned int>(-1)) {
LoadConstant(cUnit, TargetReg(kInvokeTgt), directCode);
} else {
LIR* dataTarget = ScanLiteralPool(cUnit->codeLiteralList, dexIdx, 0);
if (dataTarget == NULL) {
dataTarget = AddWordData(cUnit, &cUnit->codeLiteralList, dexIdx);
dataTarget->operands[1] = type;
}
LIR* loadPcRel = OpPcRelLoad(cUnit, TargetReg(kInvokeTgt), dataTarget);
AppendLIR(cUnit, loadPcRel);
DCHECK_EQ(cUnit->instructionSet, kThumb2) << reinterpret_cast<void*>(dataTarget);
}
}
break;
case 2: // Grab target method*
LoadWordDisp(cUnit, TargetReg(kArg0),
Array::DataOffset(sizeof(Object*)).Int32Value() + dexIdx * 4, TargetReg(kArg0));
break;
case 3: // Grab the code from the method*
if (cUnit->instructionSet != kX86) {
if (directCode == 0) {
LoadWordDisp(cUnit, TargetReg(kArg0), AbstractMethod::GetCodeOffset().Int32Value(),
TargetReg(kInvokeTgt));
}
break;
}
// Intentional fallthrough for x86
default:
return -1;
}
}
return state + 1;
}
/*
* Bit of a hack here - in the absence of a real scheduling pass,
* emit the next instruction in a virtual invoke sequence.
* We can use kLr as a temp prior to target address loading
* Note also that we'll load the first argument ("this") into
* kArg1 here rather than the standard LoadArgRegs.
*/
static int NextVCallInsn(CompilationUnit* cUnit, CallInfo* info,
int state, uint32_t dexIdx, uint32_t methodIdx,
uintptr_t unused, uintptr_t unused2, InvokeType unused3)
{
/*
* This is the fast path in which the target virtual method is
* fully resolved at compile time.
*/
switch (state) {
case 0: { // Get "this" [set kArg1]
RegLocation rlArg = info->args[0];
LoadValueDirectFixed(cUnit, rlArg, TargetReg(kArg1));
break;
}
case 1: // Is "this" null? [use kArg1]
GenNullCheck(cUnit, info->args[0].sRegLow, TargetReg(kArg1), info->optFlags);
// get this->klass_ [use kArg1, set kInvokeTgt]
LoadWordDisp(cUnit, TargetReg(kArg1), Object::ClassOffset().Int32Value(),
TargetReg(kInvokeTgt));
break;
case 2: // Get this->klass_->vtable [usr kInvokeTgt, set kInvokeTgt]
LoadWordDisp(cUnit, TargetReg(kInvokeTgt), Class::VTableOffset().Int32Value(),
TargetReg(kInvokeTgt));
break;
case 3: // Get target method [use kInvokeTgt, set kArg0]
LoadWordDisp(cUnit, TargetReg(kInvokeTgt), (methodIdx * 4) +
Array::DataOffset(sizeof(Object*)).Int32Value(), TargetReg(kArg0));
break;
case 4: // Get the compiled code address [uses kArg0, sets kInvokeTgt]
if (cUnit->instructionSet != kX86) {
LoadWordDisp(cUnit, TargetReg(kArg0), AbstractMethod::GetCodeOffset().Int32Value(),
TargetReg(kInvokeTgt));
break;
}
// Intentional fallthrough for X86
default:
return -1;
}
return state + 1;
}
/*
* All invoke-interface calls bounce off of art_invoke_interface_trampoline,
* which will locate the target and continue on via a tail call.
*/
static int NextInterfaceCallInsn(CompilationUnit* cUnit, CallInfo* info, int state,
uint32_t dexIdx, uint32_t unused, uintptr_t unused2,
uintptr_t directMethod, InvokeType unused4)
{
if (cUnit->instructionSet != kThumb2) {
// Disable sharpening
directMethod = 0;
}
int trampoline = (cUnit->instructionSet == kX86) ? 0
: ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline);
if (directMethod != 0) {
switch (state) {
case 0: // Load the trampoline target [sets kInvokeTgt].
if (cUnit->instructionSet != kX86) {
LoadWordDisp(cUnit, TargetReg(kSelf), trampoline, TargetReg(kInvokeTgt));
}
// Get the interface Method* [sets kArg0]
if (directMethod != static_cast<unsigned int>(-1)) {
LoadConstant(cUnit, TargetReg(kArg0), directMethod);
} else {
LIR* dataTarget = ScanLiteralPool(cUnit->methodLiteralList, dexIdx, 0);
if (dataTarget == NULL) {
dataTarget = AddWordData(cUnit, &cUnit->methodLiteralList, dexIdx);
dataTarget->operands[1] = kInterface;
}
LIR* loadPcRel = OpPcRelLoad(cUnit, TargetReg(kArg0), dataTarget);
AppendLIR(cUnit, loadPcRel);
DCHECK_EQ(cUnit->instructionSet, kThumb2) << reinterpret_cast<void*>(dataTarget);
}
break;
default:
return -1;
}
} else {
switch (state) {
case 0:
// Get the current Method* [sets kArg0] - TUNING: remove copy of method if it is promoted.
LoadCurrMethodDirect(cUnit, TargetReg(kArg0));
// Load the trampoline target [sets kInvokeTgt].
if (cUnit->instructionSet != kX86) {
LoadWordDisp(cUnit, TargetReg(kSelf), trampoline, TargetReg(kInvokeTgt));
}
break;
case 1: // Get method->dex_cache_resolved_methods_ [set/use kArg0]
LoadWordDisp(cUnit, TargetReg(kArg0),
AbstractMethod::DexCacheResolvedMethodsOffset().Int32Value(),
TargetReg(kArg0));
break;
case 2: // Grab target method* [set/use kArg0]
LoadWordDisp(cUnit, TargetReg(kArg0),
Array::DataOffset(sizeof(Object*)).Int32Value() + dexIdx * 4,
TargetReg(kArg0));
break;
default:
return -1;
}
}
return state + 1;
}
static int NextInvokeInsnSP(CompilationUnit* cUnit, CallInfo* info, int trampoline,
int state, uint32_t dexIdx, uint32_t methodIdx)
{
/*
* This handles the case in which the base method is not fully
* resolved at compile time, we bail to a runtime helper.
*/
if (state == 0) {
if (cUnit->instructionSet != kX86) {
// Load trampoline target
LoadWordDisp(cUnit, TargetReg(kSelf), trampoline, TargetReg(kInvokeTgt));
}
// Load kArg0 with method index
LoadConstant(cUnit, TargetReg(kArg0), dexIdx);
return 1;
}
return -1;
}
static int NextStaticCallInsnSP(CompilationUnit* cUnit, CallInfo* info,
int state, uint32_t dexIdx, uint32_t methodIdx,
uintptr_t unused, uintptr_t unused2,
InvokeType unused3)
{
int trampoline = ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
return NextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0);
}
static int NextDirectCallInsnSP(CompilationUnit* cUnit, CallInfo* info, int state,
uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused,
uintptr_t unused2, InvokeType unused3)
{
int trampoline = ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
return NextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0);
}
static int NextSuperCallInsnSP(CompilationUnit* cUnit, CallInfo* info, int state,
uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused,
uintptr_t unused2, InvokeType unused3)
{
int trampoline = ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
return NextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0);
}
static int NextVCallInsnSP(CompilationUnit* cUnit, CallInfo* info, int state,
uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused,
uintptr_t unused2, InvokeType unused3)
{
int trampoline = ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
return NextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0);
}
static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cUnit,
CallInfo* info, int state,
uint32_t dexIdx, uint32_t unused,
uintptr_t unused2, uintptr_t unused3,
InvokeType unused4)
{
int trampoline = ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
return NextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0);
}
static int LoadArgRegs(CompilationUnit* cUnit, CallInfo* info, int callState,
NextCallInsn nextCallInsn, uint32_t dexIdx,
uint32_t methodIdx, uintptr_t directCode,
uintptr_t directMethod, InvokeType type, bool skipThis)
{
int lastArgReg = TargetReg(kArg3);
int nextReg = TargetReg(kArg1);
int nextArg = 0;
if (skipThis) {
nextReg++;
nextArg++;
}
for (; (nextReg <= lastArgReg) && (nextArg < info->numArgWords); nextReg++) {
RegLocation rlArg = info->args[nextArg++];
rlArg = UpdateRawLoc(cUnit, rlArg);
if (rlArg.wide && (nextReg <= TargetReg(kArg2))) {
LoadValueDirectWideFixed(cUnit, rlArg, nextReg, nextReg + 1);
nextReg++;
nextArg++;
} else {
rlArg.wide = false;
LoadValueDirectFixed(cUnit, rlArg, nextReg);
}
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
}
return callState;
}
/*
* Load up to 5 arguments, the first three of which will be in
* kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
* and as part of the load sequence, it must be replaced with
* the target method pointer. Note, this may also be called
* for "range" variants if the number of arguments is 5 or fewer.
*/
int GenDalvikArgsNoRange(CompilationUnit* cUnit, CallInfo* info,
int callState,
LIR** pcrLabel, NextCallInsn nextCallInsn,
uint32_t dexIdx, uint32_t methodIdx,
uintptr_t directCode, uintptr_t directMethod,
InvokeType type, bool skipThis)
{
RegLocation rlArg;
/* If no arguments, just return */
if (info->numArgWords == 0)
return callState;
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
DCHECK_LE(info->numArgWords, 5);
if (info->numArgWords > 3) {
int32_t nextUse = 3;
//Detect special case of wide arg spanning arg3/arg4
RegLocation rlUse0 = info->args[0];
RegLocation rlUse1 = info->args[1];
RegLocation rlUse2 = info->args[2];
if (((!rlUse0.wide && !rlUse1.wide) || rlUse0.wide) &&
rlUse2.wide) {
int reg = -1;
// Wide spans, we need the 2nd half of uses[2].
rlArg = UpdateLocWide(cUnit, rlUse2);
if (rlArg.location == kLocPhysReg) {
reg = rlArg.highReg;
} else {
// kArg2 & rArg3 can safely be used here
reg = TargetReg(kArg3);
LoadWordDisp(cUnit, TargetReg(kSp), SRegOffset(cUnit, rlArg.sRegLow) + 4, reg);
callState = nextCallInsn(cUnit, info, callState, dexIdx,
methodIdx, directCode, directMethod, type);
}
StoreBaseDisp(cUnit, TargetReg(kSp), (nextUse + 1) * 4, reg, kWord);
StoreBaseDisp(cUnit, TargetReg(kSp), 16 /* (3+1)*4 */, reg, kWord);
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
nextUse++;
}
// Loop through the rest
while (nextUse < info->numArgWords) {
int lowReg;
int highReg = -1;
rlArg = info->args[nextUse];
rlArg = UpdateRawLoc(cUnit, rlArg);
if (rlArg.location == kLocPhysReg) {
lowReg = rlArg.lowReg;
highReg = rlArg.highReg;
} else {
lowReg = TargetReg(kArg2);
if (rlArg.wide) {
highReg = TargetReg(kArg3);
LoadValueDirectWideFixed(cUnit, rlArg, lowReg, highReg);
} else {
LoadValueDirectFixed(cUnit, rlArg, lowReg);
}
callState = nextCallInsn(cUnit, info, callState, dexIdx,
methodIdx, directCode, directMethod, type);
}
int outsOffset = (nextUse + 1) * 4;
if (rlArg.wide) {
StoreBaseDispWide(cUnit, TargetReg(kSp), outsOffset, lowReg, highReg);
nextUse += 2;
} else {
StoreWordDisp(cUnit, TargetReg(kSp), outsOffset, lowReg);
nextUse++;
}
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
}
}
callState = LoadArgRegs(cUnit, info, callState, nextCallInsn,
dexIdx, methodIdx, directCode, directMethod,
type, skipThis);
if (pcrLabel) {
*pcrLabel = GenNullCheck(cUnit, info->args[0].sRegLow, TargetReg(kArg1), info->optFlags);
}
return callState;
}
/*
* May have 0+ arguments (also used for jumbo). Note that
* source virtual registers may be in physical registers, so may
* need to be flushed to home location before copying. This
* applies to arg3 and above (see below).
*
* Two general strategies:
* If < 20 arguments
* Pass args 3-18 using vldm/vstm block copy
* Pass arg0, arg1 & arg2 in kArg1-kArg3
* If 20+ arguments
* Pass args arg19+ using memcpy block copy
* Pass arg0, arg1 & arg2 in kArg1-kArg3
*
*/
int GenDalvikArgsRange(CompilationUnit* cUnit, CallInfo* info, int callState,
LIR** pcrLabel, NextCallInsn nextCallInsn,
uint32_t dexIdx, uint32_t methodIdx,
uintptr_t directCode, uintptr_t directMethod,
InvokeType type, bool skipThis)
{
// If we can treat it as non-range (Jumbo ops will use range form)
if (info->numArgWords <= 5)
return GenDalvikArgsNoRange(cUnit, info, callState, pcrLabel,
nextCallInsn, dexIdx, methodIdx,
directCode, directMethod, type, skipThis);
/*
* First load the non-register arguments. Both forms expect all
* of the source arguments to be in their home frame location, so
* scan the sReg names and flush any that have been promoted to
* frame backing storage.
*/
// Scan the rest of the args - if in physReg flush to memory
for (int nextArg = 0; nextArg < info->numArgWords;) {
RegLocation loc = info->args[nextArg];
if (loc.wide) {
loc = UpdateLocWide(cUnit, loc);
if ((nextArg >= 2) && (loc.location == kLocPhysReg)) {
StoreBaseDispWide(cUnit, TargetReg(kSp), SRegOffset(cUnit, loc.sRegLow),
loc.lowReg, loc.highReg);
}
nextArg += 2;
} else {
loc = UpdateLoc(cUnit, loc);
if ((nextArg >= 3) && (loc.location == kLocPhysReg)) {
StoreBaseDisp(cUnit, TargetReg(kSp), SRegOffset(cUnit, loc.sRegLow),
loc.lowReg, kWord);
}
nextArg++;
}
}
int startOffset = SRegOffset(cUnit, info->args[3].sRegLow);
int outsOffset = 4 /* Method* */ + (3 * 4);
if (cUnit->instructionSet != kThumb2) {
// Generate memcpy
OpRegRegImm(cUnit, kOpAdd, TargetReg(kArg0), TargetReg(kSp), outsOffset);
OpRegRegImm(cUnit, kOpAdd, TargetReg(kArg1), TargetReg(kSp), startOffset);
CallRuntimeHelperRegRegImm(cUnit, ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
TargetReg(kArg1), (info->numArgWords - 3) * 4, false);
} else {
if (info->numArgWords >= 20) {
// Generate memcpy
OpRegRegImm(cUnit, kOpAdd, TargetReg(kArg0), TargetReg(kSp), outsOffset);
OpRegRegImm(cUnit, kOpAdd, TargetReg(kArg1), TargetReg(kSp), startOffset);
CallRuntimeHelperRegRegImm(cUnit, ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
TargetReg(kArg1), (info->numArgWords - 3) * 4, false);
} else {
// Use vldm/vstm pair using kArg3 as a temp
int regsLeft = std::min(info->numArgWords - 3, 16);
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
OpRegRegImm(cUnit, kOpAdd, TargetReg(kArg3), TargetReg(kSp), startOffset);
LIR* ld = OpVldm(cUnit, TargetReg(kArg3), regsLeft);
//TUNING: loosen barrier
ld->defMask = ENCODE_ALL;
SetMemRefType(ld, true /* isLoad */, kDalvikReg);
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
OpRegRegImm(cUnit, kOpAdd, TargetReg(kArg3), TargetReg(kSp), 4 /* Method* */ + (3 * 4));
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
LIR* st = OpVstm(cUnit, TargetReg(kArg3), regsLeft);
SetMemRefType(st, false /* isLoad */, kDalvikReg);
st->defMask = ENCODE_ALL;
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
}
}
callState = LoadArgRegs(cUnit, info, callState, nextCallInsn,
dexIdx, methodIdx, directCode, directMethod,
type, skipThis);
callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx,
directCode, directMethod, type);
if (pcrLabel) {
*pcrLabel = GenNullCheck(cUnit, info->args[0].sRegLow, TargetReg(kArg1),
info->optFlags);
}
return callState;
}
RegLocation InlineTarget(CompilationUnit* cUnit, CallInfo* info)
{
RegLocation res;
if (info->result.location == kLocInvalid) {
res = GetReturn(cUnit, false);
} else {
res = info->result;
}
return res;
}
RegLocation InlineTargetWide(CompilationUnit* cUnit, CallInfo* info)
{
RegLocation res;
if (info->result.location == kLocInvalid) {
res = GetReturnWide(cUnit, false);
} else {
res = info->result;
}
return res;
}
bool GenInlinedCharAt(CompilationUnit* cUnit, CallInfo* info)
{
if (cUnit->instructionSet == kMips) {
// TODO - add Mips implementation
return false;
}
// Location of reference to data array
int valueOffset = String::ValueOffset().Int32Value();
// Location of count
int countOffset = String::CountOffset().Int32Value();
// Starting offset within data array
int offsetOffset = String::OffsetOffset().Int32Value();
// Start of char data with array_
int dataOffset = Array::DataOffset(sizeof(uint16_t)).Int32Value();
RegLocation rlObj = info->args[0];
RegLocation rlIdx = info->args[1];
rlObj = LoadValue(cUnit, rlObj, kCoreReg);
rlIdx = LoadValue(cUnit, rlIdx, kCoreReg);
int regMax;
GenNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, info->optFlags);
bool rangeCheck = (!(info->optFlags & MIR_IGNORE_RANGE_CHECK));
LIR* launchPad = NULL;
int regOff = INVALID_REG;
int regPtr = INVALID_REG;
if (cUnit->instructionSet != kX86) {
regOff = AllocTemp(cUnit);
regPtr = AllocTemp(cUnit);
if (rangeCheck) {
regMax = AllocTemp(cUnit);
LoadWordDisp(cUnit, rlObj.lowReg, countOffset, regMax);
}
LoadWordDisp(cUnit, rlObj.lowReg, offsetOffset, regOff);
LoadWordDisp(cUnit, rlObj.lowReg, valueOffset, regPtr);
if (rangeCheck) {
// Set up a launch pad to allow retry in case of bounds violation */
launchPad = RawLIR(cUnit, 0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
InsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads,
reinterpret_cast<uintptr_t>(launchPad));
OpRegReg(cUnit, kOpCmp, rlIdx.lowReg, regMax);
FreeTemp(cUnit, regMax);
OpCondBranch(cUnit, kCondCs, launchPad);
}
} else {
if (rangeCheck) {
regMax = AllocTemp(cUnit);
LoadWordDisp(cUnit, rlObj.lowReg, countOffset, regMax);
// Set up a launch pad to allow retry in case of bounds violation */
launchPad = RawLIR(cUnit, 0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
InsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads,
reinterpret_cast<uintptr_t>(launchPad));
OpRegReg(cUnit, kOpCmp, rlIdx.lowReg, regMax);
FreeTemp(cUnit, regMax);
OpCondBranch(cUnit, kCondCc, launchPad);
}
regOff = AllocTemp(cUnit);
regPtr = AllocTemp(cUnit);
LoadWordDisp(cUnit, rlObj.lowReg, offsetOffset, regOff);
LoadWordDisp(cUnit, rlObj.lowReg, valueOffset, regPtr);
}
OpRegImm(cUnit, kOpAdd, regPtr, dataOffset);
OpRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
FreeTemp(cUnit, rlObj.lowReg);
FreeTemp(cUnit, rlIdx.lowReg);
RegLocation rlDest = InlineTarget(cUnit, info);
RegLocation rlResult = EvalLoc(cUnit, rlDest, kCoreReg, true);
LoadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
FreeTemp(cUnit, regOff);
FreeTemp(cUnit, regPtr);
StoreValue(cUnit, rlDest, rlResult);
if (rangeCheck) {
launchPad->operands[2] = 0; // no resumption
}
// Record that we've already inlined & null checked
info->optFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
return true;
}
// Generates an inlined String.isEmpty or String.length.
bool GenInlinedStringIsEmptyOrLength(CompilationUnit* cUnit, CallInfo* info,
bool isEmpty)
{
if (cUnit->instructionSet == kMips) {
// TODO - add Mips implementation
return false;
}
// dst = src.length();
RegLocation rlObj = info->args[0];
rlObj = LoadValue(cUnit, rlObj, kCoreReg);
RegLocation rlDest = InlineTarget(cUnit, info);
RegLocation rlResult = EvalLoc(cUnit, rlDest, kCoreReg, true);
GenNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, info->optFlags);
LoadWordDisp(cUnit, rlObj.lowReg, String::CountOffset().Int32Value(),
rlResult.lowReg);
if (isEmpty) {
// dst = (dst == 0);
if (cUnit->instructionSet == kThumb2) {
int tReg = AllocTemp(cUnit);
OpRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg);
OpRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg);
} else {
DCHECK_EQ(cUnit->instructionSet, kX86);
OpRegImm(cUnit, kOpSub, rlResult.lowReg, 1);
OpRegImm(cUnit, kOpLsr, rlResult.lowReg, 31);
}
}
StoreValue(cUnit, rlDest, rlResult);
return true;
}
bool GenInlinedAbsInt(CompilationUnit *cUnit, CallInfo* info)
{
if (cUnit->instructionSet == kMips) {
// TODO - add Mips implementation
return false;
}
RegLocation rlSrc = info->args[0];
rlSrc = LoadValue(cUnit, rlSrc, kCoreReg);
RegLocation rlDest = InlineTarget(cUnit, info);
RegLocation rlResult = EvalLoc(cUnit, rlDest, kCoreReg, true);
int signReg = AllocTemp(cUnit);
// abs(x) = y<=x>>31, (x+y)^y.
OpRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
OpRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
OpRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
StoreValue(cUnit, rlDest, rlResult);
return true;
}
bool GenInlinedAbsLong(CompilationUnit *cUnit, CallInfo* info)
{
if (cUnit->instructionSet == kMips) {
// TODO - add Mips implementation
return false;
}
if (cUnit->instructionSet == kThumb2) {
RegLocation rlSrc = info->args[0];
rlSrc = LoadValueWide(cUnit, rlSrc, kCoreReg);
RegLocation rlDest = InlineTargetWide(cUnit, info);
RegLocation rlResult = EvalLoc(cUnit, rlDest, kCoreReg, true);
int signReg = AllocTemp(cUnit);
// abs(x) = y<=x>>31, (x+y)^y.
OpRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
OpRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
OpRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg);
OpRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
OpRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
StoreValueWide(cUnit, rlDest, rlResult);
return true;
} else {
DCHECK_EQ(cUnit->instructionSet, kX86);
// Reuse source registers to avoid running out of temps
RegLocation rlSrc = info->args[0];
rlSrc = LoadValueWide(cUnit, rlSrc, kCoreReg);
RegLocation rlDest = InlineTargetWide(cUnit, info);
RegLocation rlResult = EvalLoc(cUnit, rlDest, kCoreReg, true);
OpRegCopyWide(cUnit, rlResult.lowReg, rlResult.highReg, rlSrc.lowReg, rlSrc.highReg);
FreeTemp(cUnit, rlSrc.lowReg);
FreeTemp(cUnit, rlSrc.highReg);
int signReg = AllocTemp(cUnit);
// abs(x) = y<=x>>31, (x+y)^y.
OpRegRegImm(cUnit, kOpAsr, signReg, rlResult.highReg, 31);
OpRegReg(cUnit, kOpAdd, rlResult.lowReg, signReg);
OpRegReg(cUnit, kOpAdc, rlResult.highReg, signReg);
OpRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
OpRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
StoreValueWide(cUnit, rlDest, rlResult);
return true;
}
}
bool GenInlinedFloatCvt(CompilationUnit *cUnit, CallInfo* info)
{
if (cUnit->instructionSet == kMips) {
// TODO - add Mips implementation
return false;
}
RegLocation rlSrc = info->args[0];
RegLocation rlDest = InlineTarget(cUnit, info);
StoreValue(cUnit, rlDest, rlSrc);
return true;
}
bool GenInlinedDoubleCvt(CompilationUnit *cUnit, CallInfo* info)
{
if (cUnit->instructionSet == kMips) {
// TODO - add Mips implementation
return false;
}
RegLocation rlSrc = info->args[0];
RegLocation rlDest = InlineTargetWide(cUnit, info);
StoreValueWide(cUnit, rlDest, rlSrc);
return true;
}
/*
* Fast string.indexOf(I) & (II). Tests for simple case of char <= 0xffff,
* otherwise bails to standard library code.
*/
bool GenInlinedIndexOf(CompilationUnit* cUnit, CallInfo* info,
bool zeroBased)
{
if (cUnit->instructionSet == kMips) {
// TODO - add Mips implementation
return false;
}
ClobberCalleeSave(cUnit);
LockCallTemps(cUnit); // Using fixed registers
int regPtr = TargetReg(kArg0);
int regChar = TargetReg(kArg1);
int regStart = TargetReg(kArg2);
RegLocation rlObj = info->args[0];
RegLocation rlChar = info->args[1];
RegLocation rlStart = info->args[2];
LoadValueDirectFixed(cUnit, rlObj, regPtr);
LoadValueDirectFixed(cUnit, rlChar, regChar);
if (zeroBased) {
LoadConstant(cUnit, regStart, 0);
} else {
LoadValueDirectFixed(cUnit, rlStart, regStart);
}
int rTgt = (cUnit->instructionSet != kX86) ? LoadHelper(cUnit, ENTRYPOINT_OFFSET(pIndexOf)) : 0;
GenNullCheck(cUnit, rlObj.sRegLow, regPtr, info->optFlags);
LIR* launchPad = RawLIR(cUnit, 0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
InsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads, reinterpret_cast<uintptr_t>(launchPad));
OpCmpImmBranch(cUnit, kCondGt, regChar, 0xFFFF, launchPad);
// NOTE: not a safepoint
if (cUnit->instructionSet != kX86) {
OpReg(cUnit, kOpBlx, rTgt);
} else {
OpThreadMem(cUnit, kOpBlx, ENTRYPOINT_OFFSET(pIndexOf));
}
LIR* resumeTgt = NewLIR0(cUnit, kPseudoTargetLabel);
launchPad->operands[2] = reinterpret_cast<uintptr_t>(resumeTgt);
// Record that we've already inlined & null checked
info->optFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
RegLocation rlReturn = GetReturn(cUnit, false);
RegLocation rlDest = InlineTarget(cUnit, info);
StoreValue(cUnit, rlDest, rlReturn);
return true;
}
/* Fast string.compareTo(Ljava/lang/string;)I. */
bool GenInlinedStringCompareTo(CompilationUnit* cUnit, CallInfo* info)
{
if (cUnit->instructionSet == kMips) {
// TODO - add Mips implementation
return false;
}
ClobberCalleeSave(cUnit);
LockCallTemps(cUnit); // Using fixed registers
int regThis = TargetReg(kArg0);
int regCmp = TargetReg(kArg1);
RegLocation rlThis = info->args[0];
RegLocation rlCmp = info->args[1];
LoadValueDirectFixed(cUnit, rlThis, regThis);
LoadValueDirectFixed(cUnit, rlCmp, regCmp);
int rTgt = (cUnit->instructionSet != kX86) ?
LoadHelper(cUnit, ENTRYPOINT_OFFSET(pStringCompareTo)) : 0;
GenNullCheck(cUnit, rlThis.sRegLow, regThis, info->optFlags);
//TUNING: check if rlCmp.sRegLow is already null checked
LIR* launchPad = RawLIR(cUnit, 0, kPseudoIntrinsicRetry, reinterpret_cast<uintptr_t>(info));
InsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads, reinterpret_cast<uintptr_t>(launchPad));
OpCmpImmBranch(cUnit, kCondEq, regCmp, 0, launchPad);
// NOTE: not a safepoint
if (cUnit->instructionSet != kX86) {
OpReg(cUnit, kOpBlx, rTgt);
} else {
OpThreadMem(cUnit, kOpBlx, ENTRYPOINT_OFFSET(pStringCompareTo));
}
launchPad->operands[2] = 0; // No return possible
// Record that we've already inlined & null checked
info->optFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
RegLocation rlReturn = GetReturn(cUnit, false);
RegLocation rlDest = InlineTarget(cUnit, info);
StoreValue(cUnit, rlDest, rlReturn);
return true;
}
bool GenIntrinsic(CompilationUnit* cUnit, CallInfo* info)
{
if (info->optFlags & MIR_INLINED) {
return false;
}
/*
* TODO: move these to a target-specific structured constant array
* and use a generic match function. The list of intrinsics may be
* slightly different depending on target.
* TODO: Fold this into a matching function that runs during
* basic block building. This should be part of the action for
* small method inlining and recognition of the special object init
* method. By doing this during basic block construction, we can also
* take advantage of/generate new useful dataflow info.
*/
std::string tgtMethod(PrettyMethod(info->index, *cUnit->dex_file));
if (tgtMethod.find(" java.lang") != std::string::npos) {
if (tgtMethod == "long java.lang.Double.doubleToRawLongBits(double)") {
return GenInlinedDoubleCvt(cUnit, info);
}
if (tgtMethod == "double java.lang.Double.longBitsToDouble(long)") {
return GenInlinedDoubleCvt(cUnit, info);
}
if (tgtMethod == "int java.lang.Float.floatToRawIntBits(float)") {
return GenInlinedFloatCvt(cUnit, info);
}
if (tgtMethod == "float java.lang.Float.intBitsToFloat(int)") {
return GenInlinedFloatCvt(cUnit, info);
}
if (tgtMethod == "int java.lang.Math.abs(int)" ||
tgtMethod == "int java.lang.StrictMath.abs(int)") {
return GenInlinedAbsInt(cUnit, info);
}
if (tgtMethod == "long java.lang.Math.abs(long)" ||
tgtMethod == "long java.lang.StrictMath.abs(long)") {
return GenInlinedAbsLong(cUnit, info);
}
if (tgtMethod == "int java.lang.Math.max(int, int)" ||
tgtMethod == "int java.lang.StrictMath.max(int, int)") {
return GenInlinedMinMaxInt(cUnit, info, false /* isMin */);
}
if (tgtMethod == "int java.lang.Math.min(int, int)" ||
tgtMethod == "int java.lang.StrictMath.min(int, int)") {
return GenInlinedMinMaxInt(cUnit, info, true /* isMin */);
}
if (tgtMethod == "double java.lang.Math.sqrt(double)" ||
tgtMethod == "double java.lang.StrictMath.sqrt(double)") {
return GenInlinedSqrt(cUnit, info);
}
if (tgtMethod == "char java.lang.String.charAt(int)") {
return GenInlinedCharAt(cUnit, info);
}
if (tgtMethod == "int java.lang.String.compareTo(java.lang.String)") {
return GenInlinedStringCompareTo(cUnit, info);
}
if (tgtMethod == "boolean java.lang.String.isEmpty()") {
return GenInlinedStringIsEmptyOrLength(cUnit, info, true /* isEmpty */);
}
if (tgtMethod == "int java.lang.String.indexOf(int, int)") {
return GenInlinedIndexOf(cUnit, info, false /* base 0 */);
}
if (tgtMethod == "int java.lang.String.indexOf(int)") {
return GenInlinedIndexOf(cUnit, info, true /* base 0 */);
}
if (tgtMethod == "int java.lang.String.length()") {
return GenInlinedStringIsEmptyOrLength(cUnit, info, false /* isEmpty */);
}
} else if (tgtMethod.find("boolean sun.misc.Unsafe.compareAndSwap") != std::string::npos) {
if (tgtMethod == "boolean sun.misc.Unsafe.compareAndSwapInt(java.lang.Object, long, int, int)") {
return GenInlinedCas32(cUnit, info, false);
}
if (tgtMethod == "boolean sun.misc.Unsafe.compareAndSwapObject(java.lang.Object, long, java.lang.Object, java.lang.Object)") {
return GenInlinedCas32(cUnit, info, true);
}
}
return false;
}
void GenInvoke(CompilationUnit* cUnit, CallInfo* info)
{
if (GenIntrinsic(cUnit, info)) {
return;
}
InvokeType originalType = info->type; // avoiding mutation by ComputeInvokeInfo
int callState = 0;
LIR* nullCk;
LIR** pNullCk = NULL;
NextCallInsn nextCallInsn;
FlushAllRegs(cUnit); /* Everything to home location */
// Explicit register usage
LockCallTemps(cUnit);
OatCompilationUnit mUnit(cUnit->class_loader, cUnit->class_linker,
*cUnit->dex_file,
cUnit->code_item, cUnit->method_idx,
cUnit->access_flags);
uint32_t dexMethodIdx = info->index;
int vtableIdx;
uintptr_t directCode;
uintptr_t directMethod;
bool skipThis;
bool fastPath =
cUnit->compiler->ComputeInvokeInfo(dexMethodIdx, &mUnit, info->type,
vtableIdx, directCode,
directMethod)
&& !SLOW_INVOKE_PATH;
if (info->type == kInterface) {
if (fastPath) {
pNullCk = &nullCk;
}
nextCallInsn = fastPath ? NextInterfaceCallInsn
: NextInterfaceCallInsnWithAccessCheck;
skipThis = false;
} else if (info->type == kDirect) {
if (fastPath) {
pNullCk = &nullCk;
}
nextCallInsn = fastPath ? NextSDCallInsn : NextDirectCallInsnSP;
skipThis = false;
} else if (info->type == kStatic) {
nextCallInsn = fastPath ? NextSDCallInsn : NextStaticCallInsnSP;
skipThis = false;
} else if (info->type == kSuper) {
DCHECK(!fastPath); // Fast path is a direct call.
nextCallInsn = NextSuperCallInsnSP;
skipThis = false;
} else {
DCHECK_EQ(info->type, kVirtual);
nextCallInsn = fastPath ? NextVCallInsn : NextVCallInsnSP;
skipThis = fastPath;
}
if (!info->isRange) {
callState = GenDalvikArgsNoRange(cUnit, info, callState, pNullCk,
nextCallInsn, dexMethodIdx,
vtableIdx, directCode, directMethod,
originalType, skipThis);
} else {
callState = GenDalvikArgsRange(cUnit, info, callState, pNullCk,
nextCallInsn, dexMethodIdx, vtableIdx,
directCode, directMethod, originalType,
skipThis);
}
// Finish up any of the call sequence not interleaved in arg loading
while (callState >= 0) {
callState = nextCallInsn(cUnit, info, callState, dexMethodIdx,
vtableIdx, directCode, directMethod,
originalType);
}
if (cUnit->enableDebug & (1 << kDebugDisplayMissingTargets)) {
GenShowTarget(cUnit);
}
LIR* callInst;
if (cUnit->instructionSet != kX86) {
callInst = OpReg(cUnit, kOpBlx, TargetReg(kInvokeTgt));
} else {
if (fastPath && info->type != kInterface) {
callInst = OpMem(cUnit, kOpBlx, TargetReg(kArg0),
AbstractMethod::GetCodeOffset().Int32Value());
} else {
int trampoline = 0;
switch (info->type) {
case kInterface:
trampoline = fastPath ? ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline)
: ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
break;
case kDirect:
trampoline = ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
break;
case kStatic:
trampoline = ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
break;
case kSuper:
trampoline = ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
break;
case kVirtual:
trampoline = ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
break;
default:
LOG(FATAL) << "Unexpected invoke type";
}
callInst = OpThreadMem(cUnit, kOpBlx, trampoline);
}
}
MarkSafepointPC(cUnit, callInst);
ClobberCalleeSave(cUnit);
if (info->result.location != kLocInvalid) {
// We have a following MOVE_RESULT - do it now.
if (info->result.wide) {
RegLocation retLoc = GetReturnWide(cUnit, info->result.fp);
StoreValueWide(cUnit, info->result, retLoc);
} else {
RegLocation retLoc = GetReturn(cUnit, info->result.fp);
StoreValue(cUnit, info->result, retLoc);
}
}
}
/*
* Build an array of location records for the incoming arguments.
* Note: one location record per word of arguments, with dummy
* high-word loc for wide arguments. Also pull up any following
* MOVE_RESULT and incorporate it into the invoke.
*/
CallInfo* NewMemCallInfo(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir,
InvokeType type, bool isRange)
{
CallInfo* info = static_cast<CallInfo*>(NewMem(cUnit, sizeof(CallInfo), true, kAllocMisc));
MIR* moveResultMIR = FindMoveResult(cUnit, bb, mir);
if (moveResultMIR == NULL) {
info->result.location = kLocInvalid;
} else {
info->result = GetRawDest(cUnit, moveResultMIR);
moveResultMIR->dalvikInsn.opcode = Instruction::NOP;
}
info->numArgWords = mir->ssaRep->numUses;
info->args = (info->numArgWords == 0) ? NULL : static_cast<RegLocation*>
(NewMem(cUnit, sizeof(RegLocation) * info->numArgWords, false, kAllocMisc));
for (int i = 0; i < info->numArgWords; i++) {
info->args[i] = GetRawSrc(cUnit, mir, i);
}
info->optFlags = mir->optimizationFlags;
info->type = type;
info->isRange = isRange;
info->index = mir->dalvikInsn.vB;
info->offset = mir->offset;
return info;
}
} // namespace art