| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "reference_processor.h" |
| |
| #include "base/time_utils.h" |
| #include "collector/garbage_collector.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/reference-inl.h" |
| #include "reference_processor-inl.h" |
| #include "reflection.h" |
| #include "ScopedLocalRef.h" |
| #include "scoped_thread_state_change.h" |
| #include "task_processor.h" |
| #include "utils.h" |
| #include "well_known_classes.h" |
| |
| namespace art { |
| namespace gc { |
| |
| static constexpr bool kAsyncReferenceQueueAdd = false; |
| |
| ReferenceProcessor::ReferenceProcessor() |
| : collector_(nullptr), |
| preserving_references_(false), |
| condition_("reference processor condition", *Locks::reference_processor_lock_) , |
| soft_reference_queue_(Locks::reference_queue_soft_references_lock_), |
| weak_reference_queue_(Locks::reference_queue_weak_references_lock_), |
| finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_), |
| phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_), |
| cleared_references_(Locks::reference_queue_cleared_references_lock_) { |
| } |
| |
| void ReferenceProcessor::EnableSlowPath() { |
| mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true); |
| } |
| |
| void ReferenceProcessor::DisableSlowPath(Thread* self) { |
| mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false); |
| condition_.Broadcast(self); |
| } |
| |
| void ReferenceProcessor::BroadcastForSlowPath(Thread* self) { |
| CHECK(kUseReadBarrier); |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| condition_.Broadcast(self); |
| } |
| |
| mirror::Object* ReferenceProcessor::GetReferent(Thread* self, mirror::Reference* reference) { |
| if (!kUseReadBarrier || self->GetWeakRefAccessEnabled()) { |
| // Under read barrier / concurrent copying collector, it's not safe to call GetReferent() when |
| // weak ref access is disabled as the call includes a read barrier which may push a ref onto the |
| // mark stack and interfere with termination of marking. |
| mirror::Object* const referent = reference->GetReferent(); |
| // If the referent is null then it is already cleared, we can just return null since there is no |
| // scenario where it becomes non-null during the reference processing phase. |
| if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) { |
| return referent; |
| } |
| } |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| while ((!kUseReadBarrier && SlowPathEnabled()) || |
| (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) { |
| mirror::HeapReference<mirror::Object>* const referent_addr = |
| reference->GetReferentReferenceAddr(); |
| // If the referent became cleared, return it. Don't need barrier since thread roots can't get |
| // updated until after we leave the function due to holding the mutator lock. |
| if (referent_addr->AsMirrorPtr() == nullptr) { |
| return nullptr; |
| } |
| // Try to see if the referent is already marked by using the is_marked_callback. We can return |
| // it to the mutator as long as the GC is not preserving references. |
| if (LIKELY(collector_ != nullptr)) { |
| // If it's null it means not marked, but it could become marked if the referent is reachable |
| // by finalizer referents. So we can not return in this case and must block. Otherwise, we |
| // can return it to the mutator as long as the GC is not preserving references, in which |
| // case only black nodes can be safely returned. If the GC is preserving references, the |
| // mutator could take a white field from a grey or white node and move it somewhere else |
| // in the heap causing corruption since this field would get swept. |
| if (collector_->IsMarkedHeapReference(referent_addr)) { |
| if (!preserving_references_ || |
| (LIKELY(!reference->IsFinalizerReferenceInstance()) && !reference->IsEnqueued())) { |
| return referent_addr->AsMirrorPtr(); |
| } |
| } |
| } |
| condition_.WaitHoldingLocks(self); |
| } |
| return reference->GetReferent(); |
| } |
| |
| void ReferenceProcessor::StartPreservingReferences(Thread* self) { |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| preserving_references_ = true; |
| } |
| |
| void ReferenceProcessor::StopPreservingReferences(Thread* self) { |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| preserving_references_ = false; |
| // We are done preserving references, some people who are blocked may see a marked referent. |
| condition_.Broadcast(self); |
| } |
| |
| // Process reference class instances and schedule finalizations. |
| void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timings, |
| bool clear_soft_references, |
| collector::GarbageCollector* collector) { |
| TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings); |
| Thread* self = Thread::Current(); |
| { |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| collector_ = collector; |
| if (!kUseReadBarrier) { |
| CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent"; |
| } else { |
| // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent == false). |
| CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent); |
| } |
| } |
| // Unless required to clear soft references with white references, preserve some white referents. |
| if (!clear_soft_references) { |
| TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" : |
| "(Paused)ForwardSoftReferences", timings); |
| if (concurrent) { |
| StartPreservingReferences(self); |
| } |
| // TODO: Add smarter logic for preserving soft references. The behavior should be a conditional |
| // mark if the SoftReference is supposed to be preserved. |
| soft_reference_queue_.ForwardSoftReferences(collector); |
| collector->ProcessMarkStack(); |
| if (concurrent) { |
| StopPreservingReferences(self); |
| } |
| } |
| // Clear all remaining soft and weak references with white referents. |
| soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); |
| weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); |
| { |
| TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" : |
| "(Paused)EnqueueFinalizerReferences", timings); |
| if (concurrent) { |
| StartPreservingReferences(self); |
| } |
| // Preserve all white objects with finalize methods and schedule them for finalization. |
| finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector); |
| collector->ProcessMarkStack(); |
| if (concurrent) { |
| StopPreservingReferences(self); |
| } |
| } |
| // Clear all finalizer referent reachable soft and weak references with white referents. |
| soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); |
| weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); |
| // Clear all phantom references with white referents. |
| phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); |
| // At this point all reference queues other than the cleared references should be empty. |
| DCHECK(soft_reference_queue_.IsEmpty()); |
| DCHECK(weak_reference_queue_.IsEmpty()); |
| DCHECK(finalizer_reference_queue_.IsEmpty()); |
| DCHECK(phantom_reference_queue_.IsEmpty()); |
| { |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| // Need to always do this since the next GC may be concurrent. Doing this for only concurrent |
| // could result in a stale is_marked_callback_ being called before the reference processing |
| // starts since there is a small window of time where slow_path_enabled_ is enabled but the |
| // callback isn't yet set. |
| collector_ = nullptr; |
| if (!kUseReadBarrier && concurrent) { |
| // Done processing, disable the slow path and broadcast to the waiters. |
| DisableSlowPath(self); |
| } |
| } |
| } |
| |
| // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been |
| // marked, put it on the appropriate list in the heap for later processing. |
| void ReferenceProcessor::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref, |
| collector::GarbageCollector* collector) { |
| // klass can be the class of the old object if the visitor already updated the class of ref. |
| DCHECK(klass != nullptr); |
| DCHECK(klass->IsTypeOfReferenceClass()); |
| mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr(); |
| if (referent->AsMirrorPtr() != nullptr && !collector->IsMarkedHeapReference(referent)) { |
| Thread* self = Thread::Current(); |
| // TODO: Remove these locks, and use atomic stacks for storing references? |
| // We need to check that the references haven't already been enqueued since we can end up |
| // scanning the same reference multiple times due to dirty cards. |
| if (klass->IsSoftReferenceClass()) { |
| soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); |
| } else if (klass->IsWeakReferenceClass()) { |
| weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); |
| } else if (klass->IsFinalizerReferenceClass()) { |
| finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); |
| } else if (klass->IsPhantomReferenceClass()) { |
| phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); |
| } else { |
| LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex |
| << klass->GetAccessFlags(); |
| } |
| } |
| } |
| |
| void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) { |
| cleared_references_.UpdateRoots(visitor); |
| } |
| |
| class ClearedReferenceTask : public HeapTask { |
| public: |
| explicit ClearedReferenceTask(jobject cleared_references) |
| : HeapTask(NanoTime()), cleared_references_(cleared_references) { |
| } |
| virtual void Run(Thread* thread) { |
| ScopedObjectAccess soa(thread); |
| jvalue args[1]; |
| args[0].l = cleared_references_; |
| InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args); |
| soa.Env()->DeleteGlobalRef(cleared_references_); |
| } |
| |
| private: |
| const jobject cleared_references_; |
| }; |
| |
| void ReferenceProcessor::EnqueueClearedReferences(Thread* self) { |
| Locks::mutator_lock_->AssertNotHeld(self); |
| // When a runtime isn't started there are no reference queues to care about so ignore. |
| if (!cleared_references_.IsEmpty()) { |
| if (LIKELY(Runtime::Current()->IsStarted())) { |
| jobject cleared_references; |
| { |
| ReaderMutexLock mu(self, *Locks::mutator_lock_); |
| cleared_references = self->GetJniEnv()->vm->AddGlobalRef( |
| self, cleared_references_.GetList()); |
| } |
| if (kAsyncReferenceQueueAdd) { |
| // TODO: This can cause RunFinalization to terminate before newly freed objects are |
| // finalized since they may not be enqueued by the time RunFinalization starts. |
| Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask( |
| self, new ClearedReferenceTask(cleared_references)); |
| } else { |
| ClearedReferenceTask task(cleared_references); |
| task.Run(self); |
| } |
| } |
| cleared_references_.Clear(); |
| } |
| } |
| |
| bool ReferenceProcessor::MakeCircularListIfUnenqueued(mirror::FinalizerReference* reference) { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, *Locks::reference_processor_lock_); |
| // Wait untul we are done processing reference. |
| while ((!kUseReadBarrier && SlowPathEnabled()) || |
| (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) { |
| condition_.WaitHoldingLocks(self); |
| } |
| // At this point, since the sentinel of the reference is live, it is guaranteed to not be |
| // enqueued if we just finished processing references. Otherwise, we may be doing the main GC |
| // phase. Since we are holding the reference processor lock, it guarantees that reference |
| // processing can't begin. The GC could have just enqueued the reference one one of the internal |
| // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this |
| // race. |
| MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_); |
| if (!reference->IsEnqueued()) { |
| CHECK(reference->IsFinalizerReferenceInstance()); |
| if (Runtime::Current()->IsActiveTransaction()) { |
| reference->SetPendingNext<true>(reference); |
| } else { |
| reference->SetPendingNext<false>(reference); |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| } // namespace gc |
| } // namespace art |