blob: f4799d2dcee1781e6358ba3efeb2a6c6f6de3685 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef ART_TARGET_ANDROID
#include <android/log.h>
#else
#include <stdarg.h>
#include <iostream>
#endif
#include <dlfcn.h>
#include <errno.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <initializer_list>
#include <mutex>
#include <utility>
#include "sigchain.h"
#if defined(__APPLE__)
#define _NSIG NSIG
#define sighandler_t sig_t
// Darwin has an #error when ucontext.h is included without _XOPEN_SOURCE defined.
#define _XOPEN_SOURCE
#endif
#include <ucontext.h>
// libsigchain provides an interception layer for signal handlers, to allow ART and others to give
// their signal handlers the first stab at handling signals before passing them on to user code.
//
// It implements wrapper functions for signal, sigaction, and sigprocmask, and a handler that
// forwards signals appropriately.
//
// In our handler, we start off with all signals blocked, fetch the original signal mask from the
// passed in ucontext, and then adjust our signal mask appropriately for the user handler.
//
// It's somewhat tricky for us to properly handle some flag cases:
// SA_NOCLDSTOP and SA_NOCLDWAIT: shouldn't matter, we don't have special handlers for SIGCHLD.
// SA_NODEFER: unimplemented, we can manually change the signal mask appropriately.
// ~SA_ONSTACK: always silently enable this
// SA_RESETHAND: unimplemented, but we can probably do this?
// ~SA_RESTART: unimplemented, maybe we can reserve an RT signal, register an empty handler that
// doesn't have SA_RESTART, and raise the signal to avoid restarting syscalls that are
// expected to be interrupted?
static void log(const char* format, ...) {
char buf[256];
va_list ap;
va_start(ap, format);
vsnprintf(buf, sizeof(buf), format, ap);
#ifdef ART_TARGET_ANDROID
__android_log_write(ANDROID_LOG_ERROR, "libsigchain", buf);
#else
std::cout << buf << "\n";
#endif
va_end(ap);
}
#define fatal(...) log(__VA_ARGS__); abort()
static int sigorset(sigset_t* dest, sigset_t* left, sigset_t* right) {
sigemptyset(dest);
for (size_t i = 0; i < sizeof(sigset_t) * CHAR_BIT; ++i) {
if (sigismember(left, i) == 1 || sigismember(right, i) == 1) {
sigaddset(dest, i);
}
}
return 0;
}
namespace art {
static decltype(&sigaction) linked_sigaction;
static decltype(&sigprocmask) linked_sigprocmask;
static pthread_key_t GetHandlingSignalKey() {
static pthread_key_t key;
static std::once_flag once;
std::call_once(once, []() {
int rc = pthread_key_create(&key, nullptr);
if (rc != 0) {
fatal("failed to create sigchain pthread key: %s", strerror(rc));
}
});
return key;
}
static bool GetHandlingSignal() {
void* result = pthread_getspecific(GetHandlingSignalKey());
return reinterpret_cast<uintptr_t>(result);
}
static void SetHandlingSignal(bool value) {
pthread_setspecific(GetHandlingSignalKey(),
reinterpret_cast<void*>(static_cast<uintptr_t>(value)));
}
class ScopedHandlingSignal {
public:
ScopedHandlingSignal() : original_value_(GetHandlingSignal()) {
}
~ScopedHandlingSignal() {
SetHandlingSignal(original_value_);
}
private:
bool original_value_;
};
class SignalChain {
public:
SignalChain() : claimed_(false) {
}
bool IsClaimed() {
return claimed_;
}
void Claim(int signo) {
if (!claimed_) {
Register(signo);
claimed_ = true;
}
}
// Register the signal chain with the kernel if needed.
void Register(int signo) {
struct sigaction handler_action = {};
handler_action.sa_sigaction = SignalChain::Handler;
handler_action.sa_flags = SA_RESTART | SA_SIGINFO | SA_ONSTACK;
sigfillset(&handler_action.sa_mask);
linked_sigaction(signo, &handler_action, &action_);
}
void SetAction(const struct sigaction* action) {
action_ = *action;
}
struct sigaction GetAction() {
return action_;
}
void AddSpecialHandler(SpecialSignalHandlerFn fn) {
for (SpecialSignalHandlerFn& slot : special_handlers_) {
if (slot == nullptr) {
slot = fn;
return;
}
}
fatal("too many special signal handlers");
}
void RemoveSpecialHandler(SpecialSignalHandlerFn fn) {
// This isn't thread safe, but it's unlikely to be a real problem.
size_t len = sizeof(special_handlers_)/sizeof(*special_handlers_);
for (size_t i = 0; i < len; ++i) {
if (special_handlers_[i] == fn) {
for (size_t j = i; j < len - 1; ++j) {
special_handlers_[j] = special_handlers_[j + 1];
}
special_handlers_[len - 1] = nullptr;
return;
}
}
fatal("failed to find special handler to remove");
}
static void Handler(int signo, siginfo_t* siginfo, void*);
private:
bool claimed_;
struct sigaction action_;
SpecialSignalHandlerFn special_handlers_[2];
};
static SignalChain chains[_NSIG];
class ScopedSignalUnblocker {
public:
explicit ScopedSignalUnblocker(const std::initializer_list<int>& signals) {
sigset_t new_mask;
sigemptyset(&new_mask);
for (int signal : signals) {
sigaddset(&new_mask, signal);
}
if (sigprocmask(SIG_UNBLOCK, &new_mask, &previous_mask_) != 0) {
fatal("failed to unblock signals: %s", strerror(errno));
}
}
~ScopedSignalUnblocker() {
if (sigprocmask(SIG_SETMASK, &previous_mask_, nullptr) != 0) {
fatal("failed to unblock signals: %s", strerror(errno));
}
}
private:
sigset_t previous_mask_;
};
void SignalChain::Handler(int signo, siginfo_t* siginfo, void* ucontext_raw) {
ScopedHandlingSignal handling_signal;
// Try the special handlers first.
// If one of them crashes, we'll reenter this handler and pass that crash onto the user handler.
if (!GetHandlingSignal()) {
ScopedSignalUnblocker unblocked { SIGABRT, SIGBUS, SIGFPE, SIGILL, SIGSEGV }; // NOLINT
SetHandlingSignal(true);
for (const auto& handler : chains[signo].special_handlers_) {
if (handler != nullptr && handler(signo, siginfo, ucontext_raw)) {
return;
}
}
}
// Forward to the user's signal handler.
int handler_flags = chains[signo].action_.sa_flags;
ucontext_t* ucontext = static_cast<ucontext_t*>(ucontext_raw);
sigset_t mask;
sigorset(&mask, &ucontext->uc_sigmask, &chains[signo].action_.sa_mask);
if ((handler_flags & SA_NODEFER)) {
sigdelset(&mask, signo);
}
sigprocmask(SIG_SETMASK, &mask, nullptr);
if ((handler_flags & SA_SIGINFO)) {
chains[signo].action_.sa_sigaction(signo, siginfo, ucontext_raw);
} else {
auto handler = chains[signo].action_.sa_handler;
if (handler == SIG_IGN) {
return;
} else if (handler == SIG_DFL) {
fatal("exiting due to SIG_DFL handler for signal %d", signo);
} else {
handler(signo);
}
}
}
extern "C" int sigaction(int signal, const struct sigaction* new_action, struct sigaction* old_action) {
// If this signal has been claimed as a signal chain, record the user's
// action but don't pass it on to the kernel.
// Note that we check that the signal number is in range here. An out of range signal
// number should behave exactly as the libc sigaction.
if (signal < 0 || signal >= _NSIG) {
errno = EINVAL;
return -1;
}
if (chains[signal].IsClaimed()) {
struct sigaction saved_action = chains[signal].GetAction();
if (new_action != nullptr) {
chains[signal].SetAction(new_action);
}
if (old_action != nullptr) {
*old_action = saved_action;
}
return 0;
}
// Will only get here if the signal chain has not been claimed. We want
// to pass the sigaction on to the kernel via the real sigaction in libc.
InitializeSignalChain();
return linked_sigaction(signal, new_action, old_action);
}
extern "C" sighandler_t signal(int signo, sighandler_t handler) {
if (signo < 0 || signo > _NSIG) {
errno = EINVAL;
return SIG_ERR;
}
struct sigaction sa = {};
sigemptyset(&sa.sa_mask);
sa.sa_handler = handler;
sa.sa_flags = SA_RESTART | SA_ONSTACK;
sighandler_t oldhandler;
// If this signal has been claimed as a signal chain, record the user's
// action but don't pass it on to the kernel.
if (chains[signo].IsClaimed()) {
oldhandler = reinterpret_cast<sighandler_t>(chains[signo].GetAction().sa_handler);
chains[signo].SetAction(&sa);
return oldhandler;
}
// Will only get here if the signal chain has not been claimed. We want
// to pass the sigaction on to the kernel via the real sigaction in libc.
InitializeSignalChain();
if (linked_sigaction(signo, &sa, &sa) == -1) {
return SIG_ERR;
}
return reinterpret_cast<sighandler_t>(sa.sa_handler);
}
#if !defined(__LP64__)
extern "C" sighandler_t bsd_signal(int signo, sighandler_t handler) {
return signal(signo, handler);
}
#endif
extern "C" int sigprocmask(int how, const sigset_t* bionic_new_set, sigset_t* bionic_old_set) {
// When inside a signal handler, forward directly to the actual sigprocmask.
if (GetHandlingSignal()) {
return linked_sigprocmask(how, bionic_new_set, bionic_old_set);
}
const sigset_t* new_set_ptr = bionic_new_set;
sigset_t tmpset;
if (bionic_new_set != nullptr) {
tmpset = *bionic_new_set;
if (how == SIG_BLOCK) {
// Don't allow claimed signals in the mask. If a signal chain has been claimed
// we can't allow the user to block that signal.
for (int i = 0 ; i < _NSIG; ++i) {
if (chains[i].IsClaimed() && sigismember(&tmpset, i)) {
sigdelset(&tmpset, i);
}
}
}
new_set_ptr = &tmpset;
}
InitializeSignalChain();
return linked_sigprocmask(how, new_set_ptr, bionic_old_set);
}
extern "C" void InitializeSignalChain() {
// Warning.
// Don't call this from within a signal context as it makes calls to
// dlsym. Calling into the dynamic linker will result in locks being
// taken and if it so happens that a signal occurs while one of these
// locks is already taken, dlsym will block trying to reenter a
// mutex and we will never get out of it.
static bool initialized = false;
if (initialized) {
// Don't initialize twice.
return;
}
void* linked_sigaction_sym = dlsym(RTLD_NEXT, "sigaction");
if (linked_sigaction_sym == nullptr) {
linked_sigaction_sym = dlsym(RTLD_DEFAULT, "sigaction");
if (linked_sigaction_sym == nullptr ||
linked_sigaction_sym == reinterpret_cast<void*>(sigaction)) {
fatal("Unable to find next sigaction in signal chain");
}
}
void* linked_sigprocmask_sym = dlsym(RTLD_NEXT, "sigprocmask");
if (linked_sigprocmask_sym == nullptr) {
linked_sigprocmask_sym = dlsym(RTLD_DEFAULT, "sigprocmask");
if (linked_sigprocmask_sym == nullptr ||
linked_sigprocmask_sym == reinterpret_cast<void*>(sigprocmask)) {
fatal("Unable to find next sigprocmask in signal chain");
}
}
linked_sigaction = reinterpret_cast<decltype(linked_sigaction)>(linked_sigaction_sym);
linked_sigprocmask = reinterpret_cast<decltype(linked_sigprocmask)>(linked_sigprocmask_sym);
initialized = true;
}
extern "C" void AddSpecialSignalHandlerFn(int signal, SpecialSignalHandlerFn fn) {
if (signal <= 0 || signal >= _NSIG) {
fatal("Invalid signal %d", signal);
}
// Set the managed_handler.
chains[signal].AddSpecialHandler(fn);
chains[signal].Claim(signal);
}
extern "C" void RemoveSpecialSignalHandlerFn(int signal, SpecialSignalHandlerFn fn) {
if (signal <= 0 || signal >= _NSIG) {
fatal("Invalid signal %d", signal);
}
chains[signal].RemoveSpecialHandler(fn);
}
extern "C" void EnsureFrontOfChain(int signal) {
if (signal <= 0 || signal >= _NSIG) {
fatal("Invalid signal %d", signal);
}
// Read the current action without looking at the chain, it should be the expected action.
struct sigaction current_action;
InitializeSignalChain();
linked_sigaction(signal, nullptr, &current_action);
// If the sigactions don't match then we put the current action on the chain and make ourself as
// the main action.
if (current_action.sa_sigaction != SignalChain::Handler) {
log("Warning: Unexpected sigaction action found %p\n", current_action.sa_sigaction);
chains[signal].Register(signal);
}
}
} // namespace art