blob: 6673ea8ac5c4f9a7f27ae1d769bfdfe23c01f852 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "quick_compiler.h"
#include <cstdint>
#include "art_method-inl.h"
#include "base/dumpable.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/timing_logger.h"
#include "compiler.h"
#include "dex_file-inl.h"
#include "dex_file_to_method_inliner_map.h"
#include "dex/compiler_ir.h"
#include "dex/dex_flags.h"
#include "dex/mir_graph.h"
#include "dex/pass_driver_me_opts.h"
#include "dex/pass_driver_me_post_opt.h"
#include "dex/pass_manager.h"
#include "dex/quick/mir_to_lir.h"
#include "dex/verified_method.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "elf_writer_quick.h"
#include "experimental_flags.h"
#include "jni/quick/jni_compiler.h"
#include "mir_to_lir.h"
#include "mirror/object.h"
#include "runtime.h"
// Specific compiler backends.
#ifdef ART_ENABLE_CODEGEN_arm
#include "dex/quick/arm/backend_arm.h"
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
#include "dex/quick/arm64/backend_arm64.h"
#endif
#if defined(ART_ENABLE_CODEGEN_mips) || defined(ART_ENABLE_CODEGEN_mips64)
#include "dex/quick/mips/backend_mips.h"
#endif
#if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
#include "dex/quick/x86/backend_x86.h"
#endif
namespace art {
static_assert(0U == static_cast<size_t>(kNone), "kNone not 0");
static_assert(1U == static_cast<size_t>(kArm), "kArm not 1");
static_assert(2U == static_cast<size_t>(kArm64), "kArm64 not 2");
static_assert(3U == static_cast<size_t>(kThumb2), "kThumb2 not 3");
static_assert(4U == static_cast<size_t>(kX86), "kX86 not 4");
static_assert(5U == static_cast<size_t>(kX86_64), "kX86_64 not 5");
static_assert(6U == static_cast<size_t>(kMips), "kMips not 6");
static_assert(7U == static_cast<size_t>(kMips64), "kMips64 not 7");
// Additional disabled optimizations (over generally disabled) per instruction set.
static constexpr uint32_t kDisabledOptimizationsPerISA[] = {
// 0 = kNone.
~0U,
// 1 = kArm, unused (will use kThumb2).
~0U,
// 2 = kArm64.
0,
// 3 = kThumb2.
0,
// 4 = kX86.
(1 << kLoadStoreElimination) |
0,
// 5 = kX86_64.
(1 << kLoadStoreElimination) |
0,
// 6 = kMips.
(1 << kLoadStoreElimination) |
(1 << kLoadHoisting) |
(1 << kSuppressLoads) |
(1 << kNullCheckElimination) |
(1 << kPromoteRegs) |
(1 << kTrackLiveTemps) |
(1 << kSafeOptimizations) |
(1 << kBBOpt) |
(1 << kMatch) |
(1 << kPromoteCompilerTemps) |
0,
// 7 = kMips64.
(1 << kLoadStoreElimination) |
(1 << kLoadHoisting) |
(1 << kSuppressLoads) |
(1 << kNullCheckElimination) |
(1 << kPromoteRegs) |
(1 << kTrackLiveTemps) |
(1 << kSafeOptimizations) |
(1 << kBBOpt) |
(1 << kMatch) |
(1 << kPromoteCompilerTemps) |
0
};
static_assert(sizeof(kDisabledOptimizationsPerISA) == 8 * sizeof(uint32_t),
"kDisabledOpts unexpected");
// Supported shorty types per instruction set. null means that all are available.
// Z : boolean
// B : byte
// S : short
// C : char
// I : int
// J : long
// F : float
// D : double
// L : reference(object, array)
// V : void
static const char* kSupportedTypes[] = {
// 0 = kNone.
"",
// 1 = kArm, unused (will use kThumb2).
"",
// 2 = kArm64.
nullptr,
// 3 = kThumb2.
nullptr,
// 4 = kX86.
nullptr,
// 5 = kX86_64.
nullptr,
// 6 = kMips.
nullptr,
// 7 = kMips64.
nullptr
};
static_assert(sizeof(kSupportedTypes) == 8 * sizeof(char*), "kSupportedTypes unexpected");
static int kAllOpcodes[] = {
Instruction::NOP,
Instruction::MOVE,
Instruction::MOVE_FROM16,
Instruction::MOVE_16,
Instruction::MOVE_WIDE,
Instruction::MOVE_WIDE_FROM16,
Instruction::MOVE_WIDE_16,
Instruction::MOVE_OBJECT,
Instruction::MOVE_OBJECT_FROM16,
Instruction::MOVE_OBJECT_16,
Instruction::MOVE_RESULT,
Instruction::MOVE_RESULT_WIDE,
Instruction::MOVE_RESULT_OBJECT,
Instruction::MOVE_EXCEPTION,
Instruction::RETURN_VOID,
Instruction::RETURN,
Instruction::RETURN_WIDE,
Instruction::RETURN_OBJECT,
Instruction::CONST_4,
Instruction::CONST_16,
Instruction::CONST,
Instruction::CONST_HIGH16,
Instruction::CONST_WIDE_16,
Instruction::CONST_WIDE_32,
Instruction::CONST_WIDE,
Instruction::CONST_WIDE_HIGH16,
Instruction::CONST_STRING,
Instruction::CONST_STRING_JUMBO,
Instruction::CONST_CLASS,
Instruction::MONITOR_ENTER,
Instruction::MONITOR_EXIT,
Instruction::CHECK_CAST,
Instruction::INSTANCE_OF,
Instruction::ARRAY_LENGTH,
Instruction::NEW_INSTANCE,
Instruction::NEW_ARRAY,
Instruction::FILLED_NEW_ARRAY,
Instruction::FILLED_NEW_ARRAY_RANGE,
Instruction::FILL_ARRAY_DATA,
Instruction::THROW,
Instruction::GOTO,
Instruction::GOTO_16,
Instruction::GOTO_32,
Instruction::PACKED_SWITCH,
Instruction::SPARSE_SWITCH,
Instruction::CMPL_FLOAT,
Instruction::CMPG_FLOAT,
Instruction::CMPL_DOUBLE,
Instruction::CMPG_DOUBLE,
Instruction::CMP_LONG,
Instruction::IF_EQ,
Instruction::IF_NE,
Instruction::IF_LT,
Instruction::IF_GE,
Instruction::IF_GT,
Instruction::IF_LE,
Instruction::IF_EQZ,
Instruction::IF_NEZ,
Instruction::IF_LTZ,
Instruction::IF_GEZ,
Instruction::IF_GTZ,
Instruction::IF_LEZ,
Instruction::UNUSED_3E,
Instruction::UNUSED_3F,
Instruction::UNUSED_40,
Instruction::UNUSED_41,
Instruction::UNUSED_42,
Instruction::UNUSED_43,
Instruction::AGET,
Instruction::AGET_WIDE,
Instruction::AGET_OBJECT,
Instruction::AGET_BOOLEAN,
Instruction::AGET_BYTE,
Instruction::AGET_CHAR,
Instruction::AGET_SHORT,
Instruction::APUT,
Instruction::APUT_WIDE,
Instruction::APUT_OBJECT,
Instruction::APUT_BOOLEAN,
Instruction::APUT_BYTE,
Instruction::APUT_CHAR,
Instruction::APUT_SHORT,
Instruction::IGET,
Instruction::IGET_WIDE,
Instruction::IGET_OBJECT,
Instruction::IGET_BOOLEAN,
Instruction::IGET_BYTE,
Instruction::IGET_CHAR,
Instruction::IGET_SHORT,
Instruction::IPUT,
Instruction::IPUT_WIDE,
Instruction::IPUT_OBJECT,
Instruction::IPUT_BOOLEAN,
Instruction::IPUT_BYTE,
Instruction::IPUT_CHAR,
Instruction::IPUT_SHORT,
Instruction::SGET,
Instruction::SGET_WIDE,
Instruction::SGET_OBJECT,
Instruction::SGET_BOOLEAN,
Instruction::SGET_BYTE,
Instruction::SGET_CHAR,
Instruction::SGET_SHORT,
Instruction::SPUT,
Instruction::SPUT_WIDE,
Instruction::SPUT_OBJECT,
Instruction::SPUT_BOOLEAN,
Instruction::SPUT_BYTE,
Instruction::SPUT_CHAR,
Instruction::SPUT_SHORT,
Instruction::INVOKE_VIRTUAL,
Instruction::INVOKE_SUPER,
Instruction::INVOKE_DIRECT,
Instruction::INVOKE_STATIC,
Instruction::INVOKE_INTERFACE,
Instruction::RETURN_VOID_NO_BARRIER,
Instruction::INVOKE_VIRTUAL_RANGE,
Instruction::INVOKE_SUPER_RANGE,
Instruction::INVOKE_DIRECT_RANGE,
Instruction::INVOKE_STATIC_RANGE,
Instruction::INVOKE_INTERFACE_RANGE,
Instruction::UNUSED_79,
Instruction::UNUSED_7A,
Instruction::NEG_INT,
Instruction::NOT_INT,
Instruction::NEG_LONG,
Instruction::NOT_LONG,
Instruction::NEG_FLOAT,
Instruction::NEG_DOUBLE,
Instruction::INT_TO_LONG,
Instruction::INT_TO_FLOAT,
Instruction::INT_TO_DOUBLE,
Instruction::LONG_TO_INT,
Instruction::LONG_TO_FLOAT,
Instruction::LONG_TO_DOUBLE,
Instruction::FLOAT_TO_INT,
Instruction::FLOAT_TO_LONG,
Instruction::FLOAT_TO_DOUBLE,
Instruction::DOUBLE_TO_INT,
Instruction::DOUBLE_TO_LONG,
Instruction::DOUBLE_TO_FLOAT,
Instruction::INT_TO_BYTE,
Instruction::INT_TO_CHAR,
Instruction::INT_TO_SHORT,
Instruction::ADD_INT,
Instruction::SUB_INT,
Instruction::MUL_INT,
Instruction::DIV_INT,
Instruction::REM_INT,
Instruction::AND_INT,
Instruction::OR_INT,
Instruction::XOR_INT,
Instruction::SHL_INT,
Instruction::SHR_INT,
Instruction::USHR_INT,
Instruction::ADD_LONG,
Instruction::SUB_LONG,
Instruction::MUL_LONG,
Instruction::DIV_LONG,
Instruction::REM_LONG,
Instruction::AND_LONG,
Instruction::OR_LONG,
Instruction::XOR_LONG,
Instruction::SHL_LONG,
Instruction::SHR_LONG,
Instruction::USHR_LONG,
Instruction::ADD_FLOAT,
Instruction::SUB_FLOAT,
Instruction::MUL_FLOAT,
Instruction::DIV_FLOAT,
Instruction::REM_FLOAT,
Instruction::ADD_DOUBLE,
Instruction::SUB_DOUBLE,
Instruction::MUL_DOUBLE,
Instruction::DIV_DOUBLE,
Instruction::REM_DOUBLE,
Instruction::ADD_INT_2ADDR,
Instruction::SUB_INT_2ADDR,
Instruction::MUL_INT_2ADDR,
Instruction::DIV_INT_2ADDR,
Instruction::REM_INT_2ADDR,
Instruction::AND_INT_2ADDR,
Instruction::OR_INT_2ADDR,
Instruction::XOR_INT_2ADDR,
Instruction::SHL_INT_2ADDR,
Instruction::SHR_INT_2ADDR,
Instruction::USHR_INT_2ADDR,
Instruction::ADD_LONG_2ADDR,
Instruction::SUB_LONG_2ADDR,
Instruction::MUL_LONG_2ADDR,
Instruction::DIV_LONG_2ADDR,
Instruction::REM_LONG_2ADDR,
Instruction::AND_LONG_2ADDR,
Instruction::OR_LONG_2ADDR,
Instruction::XOR_LONG_2ADDR,
Instruction::SHL_LONG_2ADDR,
Instruction::SHR_LONG_2ADDR,
Instruction::USHR_LONG_2ADDR,
Instruction::ADD_FLOAT_2ADDR,
Instruction::SUB_FLOAT_2ADDR,
Instruction::MUL_FLOAT_2ADDR,
Instruction::DIV_FLOAT_2ADDR,
Instruction::REM_FLOAT_2ADDR,
Instruction::ADD_DOUBLE_2ADDR,
Instruction::SUB_DOUBLE_2ADDR,
Instruction::MUL_DOUBLE_2ADDR,
Instruction::DIV_DOUBLE_2ADDR,
Instruction::REM_DOUBLE_2ADDR,
Instruction::ADD_INT_LIT16,
Instruction::RSUB_INT,
Instruction::MUL_INT_LIT16,
Instruction::DIV_INT_LIT16,
Instruction::REM_INT_LIT16,
Instruction::AND_INT_LIT16,
Instruction::OR_INT_LIT16,
Instruction::XOR_INT_LIT16,
Instruction::ADD_INT_LIT8,
Instruction::RSUB_INT_LIT8,
Instruction::MUL_INT_LIT8,
Instruction::DIV_INT_LIT8,
Instruction::REM_INT_LIT8,
Instruction::AND_INT_LIT8,
Instruction::OR_INT_LIT8,
Instruction::XOR_INT_LIT8,
Instruction::SHL_INT_LIT8,
Instruction::SHR_INT_LIT8,
Instruction::USHR_INT_LIT8,
Instruction::IGET_QUICK,
Instruction::IGET_WIDE_QUICK,
Instruction::IGET_OBJECT_QUICK,
Instruction::IPUT_QUICK,
Instruction::IPUT_WIDE_QUICK,
Instruction::IPUT_OBJECT_QUICK,
Instruction::INVOKE_VIRTUAL_QUICK,
Instruction::INVOKE_VIRTUAL_RANGE_QUICK,
Instruction::IPUT_BOOLEAN_QUICK,
Instruction::IPUT_BYTE_QUICK,
Instruction::IPUT_CHAR_QUICK,
Instruction::IPUT_SHORT_QUICK,
Instruction::IGET_BOOLEAN_QUICK,
Instruction::IGET_BYTE_QUICK,
Instruction::IGET_CHAR_QUICK,
Instruction::IGET_SHORT_QUICK,
Instruction::INVOKE_LAMBDA,
Instruction::UNUSED_F4,
Instruction::CAPTURE_VARIABLE,
Instruction::CREATE_LAMBDA,
Instruction::LIBERATE_VARIABLE,
Instruction::BOX_LAMBDA,
Instruction::UNBOX_LAMBDA,
Instruction::UNUSED_FA,
Instruction::UNUSED_FB,
Instruction::UNUSED_FC,
Instruction::UNUSED_FD,
Instruction::UNUSED_FE,
Instruction::UNUSED_FF,
// ----- ExtendedMIROpcode -----
kMirOpPhi,
kMirOpCopy,
kMirOpFusedCmplFloat,
kMirOpFusedCmpgFloat,
kMirOpFusedCmplDouble,
kMirOpFusedCmpgDouble,
kMirOpFusedCmpLong,
kMirOpNop,
kMirOpNullCheck,
kMirOpRangeCheck,
kMirOpDivZeroCheck,
kMirOpCheck,
kMirOpSelect,
};
static int kInvokeOpcodes[] = {
Instruction::INVOKE_VIRTUAL,
Instruction::INVOKE_SUPER,
Instruction::INVOKE_DIRECT,
Instruction::INVOKE_STATIC,
Instruction::INVOKE_INTERFACE,
Instruction::INVOKE_VIRTUAL_RANGE,
Instruction::INVOKE_SUPER_RANGE,
Instruction::INVOKE_DIRECT_RANGE,
Instruction::INVOKE_STATIC_RANGE,
Instruction::INVOKE_INTERFACE_RANGE,
Instruction::INVOKE_VIRTUAL_QUICK,
Instruction::INVOKE_VIRTUAL_RANGE_QUICK,
};
// TODO: Add support for lambda opcodes to the quick compiler.
static const int kUnsupportedLambdaOpcodes[] = {
Instruction::INVOKE_LAMBDA,
Instruction::CREATE_LAMBDA,
Instruction::BOX_LAMBDA,
Instruction::UNBOX_LAMBDA,
};
// Unsupported opcodes. Null can be used when everything is supported. Size of the lists is
// recorded below.
static const int* kUnsupportedOpcodes[] = {
// 0 = kNone.
kAllOpcodes,
// 1 = kArm, unused (will use kThumb2).
kAllOpcodes,
// 2 = kArm64.
kUnsupportedLambdaOpcodes,
// 3 = kThumb2.
kUnsupportedLambdaOpcodes,
// 4 = kX86.
kUnsupportedLambdaOpcodes,
// 5 = kX86_64.
kUnsupportedLambdaOpcodes,
// 6 = kMips.
kUnsupportedLambdaOpcodes,
// 7 = kMips64.
kUnsupportedLambdaOpcodes,
};
static_assert(sizeof(kUnsupportedOpcodes) == 8 * sizeof(int*), "kUnsupportedOpcodes unexpected");
// Size of the arrays stored above.
static const size_t kUnsupportedOpcodesSize[] = {
// 0 = kNone.
arraysize(kAllOpcodes),
// 1 = kArm, unused (will use kThumb2).
arraysize(kAllOpcodes),
// 2 = kArm64.
arraysize(kUnsupportedLambdaOpcodes),
// 3 = kThumb2.
arraysize(kUnsupportedLambdaOpcodes),
// 4 = kX86.
arraysize(kUnsupportedLambdaOpcodes),
// 5 = kX86_64.
arraysize(kUnsupportedLambdaOpcodes),
// 6 = kMips.
arraysize(kUnsupportedLambdaOpcodes),
// 7 = kMips64.
arraysize(kUnsupportedLambdaOpcodes),
};
static_assert(sizeof(kUnsupportedOpcodesSize) == 8 * sizeof(size_t),
"kUnsupportedOpcodesSize unexpected");
static bool IsUnsupportedExperimentalLambdasOnly(size_t i) {
DCHECK_LE(i, arraysize(kUnsupportedOpcodes));
return kUnsupportedOpcodes[i] == kUnsupportedLambdaOpcodes;
}
// The maximum amount of Dalvik register in a method for which we will start compiling. Tries to
// avoid an abort when we need to manage more SSA registers than we can.
static constexpr size_t kMaxAllowedDalvikRegisters = INT16_MAX / 2;
static bool CanCompileShorty(const char* shorty, InstructionSet instruction_set) {
const char* supported_types = kSupportedTypes[instruction_set];
if (supported_types == nullptr) {
// Everything available.
return true;
}
uint32_t shorty_size = strlen(shorty);
CHECK_GE(shorty_size, 1u);
for (uint32_t i = 0; i < shorty_size; i++) {
if (strchr(supported_types, shorty[i]) == nullptr) {
return false;
}
}
return true;
}
// If the ISA has unsupported opcodes, should we skip scanning over them?
//
// Most of the time we're compiling non-experimental files, so scanning just slows
// performance down by as much as 6% with 4 threads.
// In the rare cases we compile experimental opcodes, the runtime has an option to enable it,
// which will force scanning for any unsupported opcodes.
static bool SkipScanningUnsupportedOpcodes(InstructionSet instruction_set) {
if (UNLIKELY(kUnsupportedOpcodesSize[instruction_set] == 0U)) {
// All opcodes are supported no matter what. Usually not the case
// since experimental opcodes are not implemented in the quick compiler.
return true;
} else if (LIKELY(!Runtime::Current()->
AreExperimentalFlagsEnabled(ExperimentalFlags::kLambdas))) {
// Experimental opcodes are disabled.
//
// If all unsupported opcodes are experimental we don't need to do scanning.
return IsUnsupportedExperimentalLambdasOnly(instruction_set);
} else {
// Experimental opcodes are enabled.
//
// Do the opcode scanning if the ISA has any unsupported opcodes.
return false;
}
}
// Skip the method that we do not support currently.
bool QuickCompiler::CanCompileMethod(uint32_t method_idx, const DexFile& dex_file,
CompilationUnit* cu) const {
// This is a limitation in mir_graph. See MirGraph::SetNumSSARegs.
if (cu->mir_graph->GetNumOfCodeAndTempVRs() > kMaxAllowedDalvikRegisters) {
VLOG(compiler) << "Too many dalvik registers : " << cu->mir_graph->GetNumOfCodeAndTempVRs();
return false;
}
// Check whether we do have limitations at all.
if (kSupportedTypes[cu->instruction_set] == nullptr &&
SkipScanningUnsupportedOpcodes(cu->instruction_set)) {
return true;
}
// Check if we can compile the prototype.
const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx));
if (!CanCompileShorty(shorty, cu->instruction_set)) {
VLOG(compiler) << "Unsupported shorty : " << shorty;
return false;
}
const int *unsupport_list = kUnsupportedOpcodes[cu->instruction_set];
int unsupport_list_size = kUnsupportedOpcodesSize[cu->instruction_set];
for (unsigned int idx = 0; idx < cu->mir_graph->GetNumBlocks(); idx++) {
BasicBlock* bb = cu->mir_graph->GetBasicBlock(idx);
if (bb == nullptr) continue;
if (bb->block_type == kDead) continue;
for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
int opcode = mir->dalvikInsn.opcode;
// Check if we support the byte code.
if (std::find(unsupport_list, unsupport_list + unsupport_list_size, opcode)
!= unsupport_list + unsupport_list_size) {
if (!MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
VLOG(compiler) << "Unsupported dalvik byte code : "
<< mir->dalvikInsn.opcode;
} else {
VLOG(compiler) << "Unsupported extended MIR opcode : "
<< MIRGraph::extended_mir_op_names_[opcode - kMirOpFirst];
}
return false;
}
// Check if it invokes a prototype that we cannot support.
if (std::find(kInvokeOpcodes, kInvokeOpcodes + arraysize(kInvokeOpcodes), opcode)
!= kInvokeOpcodes + arraysize(kInvokeOpcodes)) {
uint32_t invoke_method_idx = mir->dalvikInsn.vB;
const char* invoke_method_shorty = dex_file.GetMethodShorty(
dex_file.GetMethodId(invoke_method_idx));
if (!CanCompileShorty(invoke_method_shorty, cu->instruction_set)) {
VLOG(compiler) << "Unsupported to invoke '"
<< PrettyMethod(invoke_method_idx, dex_file)
<< "' with shorty : " << invoke_method_shorty;
return false;
}
}
}
}
return true;
}
void QuickCompiler::InitCompilationUnit(CompilationUnit& cu) const {
// Disable optimizations according to instruction set.
cu.disable_opt |= kDisabledOptimizationsPerISA[cu.instruction_set];
if (Runtime::Current()->UseJit()) {
// Disable these optimizations for JIT until quickened byte codes are done being implemented.
// TODO: Find a cleaner way to do this.
cu.disable_opt |= 1u << kLocalValueNumbering;
}
}
void QuickCompiler::Init() {
CHECK(GetCompilerDriver()->GetCompilerContext() == nullptr);
}
void QuickCompiler::UnInit() const {
CHECK(GetCompilerDriver()->GetCompilerContext() == nullptr);
}
/* Default optimizer/debug setting for the compiler. */
static uint32_t kCompilerOptimizerDisableFlags = 0 | // Disable specific optimizations
// (1 << kLoadStoreElimination) |
// (1 << kLoadHoisting) |
// (1 << kSuppressLoads) |
// (1 << kNullCheckElimination) |
// (1 << kClassInitCheckElimination) |
// (1 << kGlobalValueNumbering) |
// (1 << kGvnDeadCodeElimination) |
// (1 << kLocalValueNumbering) |
// (1 << kPromoteRegs) |
// (1 << kTrackLiveTemps) |
// (1 << kSafeOptimizations) |
// (1 << kBBOpt) |
// (1 << kSuspendCheckElimination) |
// (1 << kMatch) |
// (1 << kPromoteCompilerTemps) |
// (1 << kSuppressExceptionEdges) |
// (1 << kSuppressMethodInlining) |
0;
static uint32_t kCompilerDebugFlags = 0 | // Enable debug/testing modes
// (1 << kDebugDisplayMissingTargets) |
// (1 << kDebugVerbose) |
// (1 << kDebugDumpCFG) |
// (1 << kDebugSlowFieldPath) |
// (1 << kDebugSlowInvokePath) |
// (1 << kDebugSlowStringPath) |
// (1 << kDebugSlowestFieldPath) |
// (1 << kDebugSlowestStringPath) |
// (1 << kDebugExerciseResolveMethod) |
// (1 << kDebugVerifyDataflow) |
// (1 << kDebugShowMemoryUsage) |
// (1 << kDebugShowNops) |
// (1 << kDebugCountOpcodes) |
// (1 << kDebugDumpCheckStats) |
// (1 << kDebugShowSummaryMemoryUsage) |
// (1 << kDebugShowFilterStats) |
// (1 << kDebugTimings) |
// (1 << kDebugCodegenDump) |
0;
CompiledMethod* QuickCompiler::Compile(const DexFile::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
jobject class_loader,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) const {
if (kPoisonHeapReferences) {
VLOG(compiler) << "Skipping method : " << PrettyMethod(method_idx, dex_file)
<< " Reason = Quick does not support heap poisoning.";
return nullptr;
}
// TODO: check method fingerprint here to determine appropriate backend type. Until then, use
// build default.
CompilerDriver* driver = GetCompilerDriver();
VLOG(compiler) << "Compiling " << PrettyMethod(method_idx, dex_file) << "...";
if (Compiler::IsPathologicalCase(*code_item, method_idx, dex_file)) {
return nullptr;
}
DCHECK(driver->GetCompilerOptions().IsCompilationEnabled());
DCHECK(!driver->GetVerifiedMethod(&dex_file, method_idx)->HasRuntimeThrow());
Runtime* const runtime = Runtime::Current();
ClassLinker* const class_linker = runtime->GetClassLinker();
InstructionSet instruction_set = driver->GetInstructionSet();
if (instruction_set == kArm) {
instruction_set = kThumb2;
}
CompilationUnit cu(runtime->GetArenaPool(), instruction_set, driver, class_linker);
cu.dex_file = &dex_file;
cu.class_def_idx = class_def_idx;
cu.method_idx = method_idx;
cu.access_flags = access_flags;
cu.invoke_type = invoke_type;
cu.shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx));
CHECK((cu.instruction_set == kThumb2) ||
(cu.instruction_set == kArm64) ||
(cu.instruction_set == kX86) ||
(cu.instruction_set == kX86_64) ||
(cu.instruction_set == kMips) ||
(cu.instruction_set == kMips64));
// TODO: set this from command line
constexpr bool compiler_flip_match = false;
const std::string compiler_method_match = "";
bool use_match = !compiler_method_match.empty();
bool match = use_match && (compiler_flip_match ^
(PrettyMethod(method_idx, dex_file).find(compiler_method_match) != std::string::npos));
if (!use_match || match) {
cu.disable_opt = kCompilerOptimizerDisableFlags;
cu.enable_debug = kCompilerDebugFlags;
cu.verbose = VLOG_IS_ON(compiler) ||
(cu.enable_debug & (1 << kDebugVerbose));
}
if (driver->GetCompilerOptions().HasVerboseMethods()) {
cu.verbose = driver->GetCompilerOptions().IsVerboseMethod(PrettyMethod(method_idx, dex_file));
}
if (cu.verbose) {
cu.enable_debug |= (1 << kDebugCodegenDump);
}
/*
* TODO: rework handling of optimization and debug flags. Should we split out
* MIR and backend flags? Need command-line setting as well.
*/
InitCompilationUnit(cu);
cu.StartTimingSplit("BuildMIRGraph");
cu.mir_graph.reset(new MIRGraph(&cu, &cu.arena));
/*
* After creation of the MIR graph, also create the code generator.
* The reason we do this is that optimizations on the MIR graph may need to get information
* that is only available if a CG exists.
*/
cu.cg.reset(GetCodeGenerator(&cu, nullptr));
/* Gathering opcode stats? */
if (kCompilerDebugFlags & (1 << kDebugCountOpcodes)) {
cu.mir_graph->EnableOpcodeCounting();
}
/* Build the raw MIR graph */
cu.mir_graph->InlineMethod(code_item, access_flags, invoke_type, class_def_idx, method_idx,
class_loader, dex_file, dex_cache);
if (!CanCompileMethod(method_idx, dex_file, &cu)) {
VLOG(compiler) << cu.instruction_set << ": Cannot compile method : "
<< PrettyMethod(method_idx, dex_file);
cu.EndTiming();
return nullptr;
}
cu.NewTimingSplit("MIROpt:CheckFilters");
std::string skip_message;
if (cu.mir_graph->SkipCompilation(&skip_message)) {
VLOG(compiler) << cu.instruction_set << ": Skipping method : "
<< PrettyMethod(method_idx, dex_file) << " Reason = " << skip_message;
cu.EndTiming();
return nullptr;
}
/* Create the pass driver and launch it */
PassDriverMEOpts pass_driver(GetPreOptPassManager(), GetPostOptPassManager(), &cu);
pass_driver.Launch();
/* For non-leaf methods check if we should skip compilation when the profiler is enabled. */
if (cu.compiler_driver->ProfilePresent()
&& !cu.mir_graph->MethodIsLeaf()
&& cu.mir_graph->SkipCompilationByName(PrettyMethod(method_idx, dex_file))) {
cu.EndTiming();
return nullptr;
}
if (cu.enable_debug & (1 << kDebugDumpCheckStats)) {
cu.mir_graph->DumpCheckStats();
}
if (kCompilerDebugFlags & (1 << kDebugCountOpcodes)) {
cu.mir_graph->ShowOpcodeStats();
}
/* Reassociate sreg names with original Dalvik vreg names. */
cu.mir_graph->RemapRegLocations();
/* Free Arenas from the cu.arena_stack for reuse by the cu.arena in the codegen. */
if (cu.enable_debug & (1 << kDebugShowMemoryUsage)) {
if (cu.arena_stack.PeakBytesAllocated() > 1 * 1024 * 1024) {
MemStats stack_stats(cu.arena_stack.GetPeakStats());
LOG(INFO) << PrettyMethod(method_idx, dex_file) << " " << Dumpable<MemStats>(stack_stats);
}
}
cu.arena_stack.Reset();
CompiledMethod* result = nullptr;
if (cu.mir_graph->PuntToInterpreter()) {
VLOG(compiler) << cu.instruction_set << ": Punted method to interpreter: "
<< PrettyMethod(method_idx, dex_file);
cu.EndTiming();
return nullptr;
}
cu.cg->Materialize();
cu.NewTimingSplit("Dedupe"); /* deduping takes up the vast majority of time in GetCompiledMethod(). */
result = cu.cg->GetCompiledMethod();
cu.NewTimingSplit("Cleanup");
if (result) {
VLOG(compiler) << cu.instruction_set << ": Compiled " << PrettyMethod(method_idx, dex_file);
} else {
VLOG(compiler) << cu.instruction_set << ": Deferred " << PrettyMethod(method_idx, dex_file);
}
if (cu.enable_debug & (1 << kDebugShowMemoryUsage)) {
if (cu.arena.BytesAllocated() > (1 * 1024 *1024)) {
MemStats mem_stats(cu.arena.GetMemStats());
LOG(INFO) << PrettyMethod(method_idx, dex_file) << " " << Dumpable<MemStats>(mem_stats);
}
}
if (cu.enable_debug & (1 << kDebugShowSummaryMemoryUsage)) {
LOG(INFO) << "MEMINFO " << cu.arena.BytesAllocated() << " " << cu.mir_graph->GetNumBlocks()
<< " " << PrettyMethod(method_idx, dex_file);
}
cu.EndTiming();
driver->GetTimingsLogger()->AddLogger(cu.timings);
return result;
}
CompiledMethod* QuickCompiler::JniCompile(uint32_t access_flags,
uint32_t method_idx,
const DexFile& dex_file) const {
return ArtQuickJniCompileMethod(GetCompilerDriver(), access_flags, method_idx, dex_file);
}
uintptr_t QuickCompiler::GetEntryPointOf(ArtMethod* method) const {
return reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCodePtrSize(
InstructionSetPointerSize(GetCompilerDriver()->GetInstructionSet())));
}
Mir2Lir* QuickCompiler::GetCodeGenerator(CompilationUnit* cu,
void* compilation_unit ATTRIBUTE_UNUSED) {
Mir2Lir* mir_to_lir = nullptr;
switch (cu->instruction_set) {
#ifdef ART_ENABLE_CODEGEN_arm
case kThumb2:
mir_to_lir = ArmCodeGenerator(cu, cu->mir_graph.get(), &cu->arena);
break;
#endif // ART_ENABLE_CODEGEN_arm
#ifdef ART_ENABLE_CODEGEN_arm64
case kArm64:
mir_to_lir = Arm64CodeGenerator(cu, cu->mir_graph.get(), &cu->arena);
break;
#endif // ART_ENABLE_CODEGEN_arm64
#if defined(ART_ENABLE_CODEGEN_mips) || defined(ART_ENABLE_CODEGEN_mips64)
// Intentional 2 level ifdef. Want to fail on mips64 if it is not enabled, even if mips is
// and vice versa.
#ifdef ART_ENABLE_CODEGEN_mips
case kMips:
// Fall-through.
#endif // ART_ENABLE_CODEGEN_mips
#ifdef ART_ENABLE_CODEGEN_mips64
case kMips64:
#endif // ART_ENABLE_CODEGEN_mips64
mir_to_lir = MipsCodeGenerator(cu, cu->mir_graph.get(), &cu->arena);
break;
#endif // ART_ENABLE_CODEGEN_mips || ART_ENABLE_CODEGEN_mips64
#if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
// Intentional 2 level ifdef. Want to fail on x86_64 if it is not enabled, even if x86 is
// and vice versa.
#ifdef ART_ENABLE_CODEGEN_x86
case kX86:
// Fall-through.
#endif // ART_ENABLE_CODEGEN_x86
#ifdef ART_ENABLE_CODEGEN_x86_64
case kX86_64:
#endif // ART_ENABLE_CODEGEN_x86_64
mir_to_lir = X86CodeGenerator(cu, cu->mir_graph.get(), &cu->arena);
break;
#endif // ART_ENABLE_CODEGEN_x86 || ART_ENABLE_CODEGEN_x86_64
default:
LOG(FATAL) << "Unexpected instruction set: " << cu->instruction_set;
}
/* The number of compiler temporaries depends on backend so set it up now if possible */
if (mir_to_lir) {
size_t max_temps = mir_to_lir->GetMaxPossibleCompilerTemps();
bool set_max = cu->mir_graph->SetMaxAvailableNonSpecialCompilerTemps(max_temps);
CHECK(set_max);
}
return mir_to_lir;
}
QuickCompiler::QuickCompiler(CompilerDriver* driver) : Compiler(driver, 100) {
const auto& compiler_options = driver->GetCompilerOptions();
auto* pass_manager_options = compiler_options.GetPassManagerOptions();
pre_opt_pass_manager_.reset(new PassManager(*pass_manager_options));
CHECK(pre_opt_pass_manager_.get() != nullptr);
PassDriverMEOpts::SetupPasses(pre_opt_pass_manager_.get());
pre_opt_pass_manager_->CreateDefaultPassList();
if (pass_manager_options->GetPrintPassOptions()) {
PassDriverMEOpts::PrintPassOptions(pre_opt_pass_manager_.get());
}
// TODO: Different options for pre vs post opts?
post_opt_pass_manager_.reset(new PassManager(PassManagerOptions()));
CHECK(post_opt_pass_manager_.get() != nullptr);
PassDriverMEPostOpt::SetupPasses(post_opt_pass_manager_.get());
post_opt_pass_manager_->CreateDefaultPassList();
if (pass_manager_options->GetPrintPassOptions()) {
PassDriverMEPostOpt::PrintPassOptions(post_opt_pass_manager_.get());
}
}
QuickCompiler::~QuickCompiler() {
}
Compiler* CreateQuickCompiler(CompilerDriver* driver) {
return QuickCompiler::Create(driver);
}
Compiler* QuickCompiler::Create(CompilerDriver* driver) {
return new QuickCompiler(driver);
}
} // namespace art