blob: 48a39bb5b444facd1cf38848e6da19585b02a794 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
Mark Mendell67c39c42014-01-31 17:28:00 -080019#include "dex/dataflow_iterator-inl.h"
Brian Carlstrom7940e442013-07-12 13:46:57 -070020#include "x86_lir.h"
21
22namespace art {
23
24/* This file contains codegen for the X86 ISA */
25
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070026LIR* X86Mir2Lir::OpFpRegCopy(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070027 int opcode;
28 /* must be both DOUBLE or both not DOUBLE */
29 DCHECK_EQ(X86_DOUBLEREG(r_dest), X86_DOUBLEREG(r_src));
30 if (X86_DOUBLEREG(r_dest)) {
31 opcode = kX86MovsdRR;
32 } else {
33 if (X86_SINGLEREG(r_dest)) {
34 if (X86_SINGLEREG(r_src)) {
35 opcode = kX86MovssRR;
36 } else { // Fpr <- Gpr
37 opcode = kX86MovdxrRR;
38 }
39 } else { // Gpr <- Fpr
40 DCHECK(X86_SINGLEREG(r_src));
41 opcode = kX86MovdrxRR;
42 }
43 }
44 DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
45 LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest, r_src);
46 if (r_dest == r_src) {
47 res->flags.is_nop = true;
48 }
49 return res;
50}
51
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070052bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070053 return true;
54}
55
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070056bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070057 return false;
58}
59
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070060bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070061 return true;
62}
63
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070064bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
Mark Mendell67c39c42014-01-31 17:28:00 -080065 return value == 0;
Brian Carlstrom7940e442013-07-12 13:46:57 -070066}
67
68/*
69 * Load a immediate using a shortcut if possible; otherwise
70 * grab from the per-translation literal pool. If target is
71 * a high register, build constant into a low register and copy.
72 *
73 * No additional register clobbering operation performed. Use this version when
74 * 1) r_dest is freshly returned from AllocTemp or
75 * 2) The codegen is under fixed register usage
76 */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070077LIR* X86Mir2Lir::LoadConstantNoClobber(int r_dest, int value) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070078 int r_dest_save = r_dest;
79 if (X86_FPREG(r_dest)) {
80 if (value == 0) {
81 return NewLIR2(kX86XorpsRR, r_dest, r_dest);
82 }
83 DCHECK(X86_SINGLEREG(r_dest));
84 r_dest = AllocTemp();
85 }
86
87 LIR *res;
88 if (value == 0) {
89 res = NewLIR2(kX86Xor32RR, r_dest, r_dest);
90 } else {
91 // Note, there is no byte immediate form of a 32 bit immediate move.
92 res = NewLIR2(kX86Mov32RI, r_dest, value);
93 }
94
95 if (X86_FPREG(r_dest_save)) {
96 NewLIR2(kX86MovdxrRR, r_dest_save, r_dest);
97 FreeTemp(r_dest);
98 }
99
100 return res;
101}
102
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700103LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
Brian Carlstromdf629502013-07-17 22:39:56 -0700104 LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700105 res->target = target;
106 return res;
107}
108
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700109LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700110 LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
111 X86ConditionEncoding(cc));
112 branch->target = target;
113 return branch;
114}
115
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700116LIR* X86Mir2Lir::OpReg(OpKind op, int r_dest_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700117 X86OpCode opcode = kX86Bkpt;
118 switch (op) {
119 case kOpNeg: opcode = kX86Neg32R; break;
120 case kOpNot: opcode = kX86Not32R; break;
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100121 case kOpRev: opcode = kX86Bswap32R; break;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700122 case kOpBlx: opcode = kX86CallR; break;
123 default:
124 LOG(FATAL) << "Bad case in OpReg " << op;
125 }
126 return NewLIR1(opcode, r_dest_src);
127}
128
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700129LIR* X86Mir2Lir::OpRegImm(OpKind op, int r_dest_src1, int value) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700130 X86OpCode opcode = kX86Bkpt;
131 bool byte_imm = IS_SIMM8(value);
132 DCHECK(!X86_FPREG(r_dest_src1));
133 switch (op) {
134 case kOpLsl: opcode = kX86Sal32RI; break;
135 case kOpLsr: opcode = kX86Shr32RI; break;
136 case kOpAsr: opcode = kX86Sar32RI; break;
137 case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
138 case kOpOr: opcode = byte_imm ? kX86Or32RI8 : kX86Or32RI; break;
139 case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700140 // case kOpSbb: opcode = kX86Sbb32RI; break;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700141 case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
142 case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
143 case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
144 case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800145 case kOpMov:
146 /*
147 * Moving the constant zero into register can be specialized as an xor of the register.
148 * However, that sets eflags while the move does not. For that reason here, always do
149 * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
150 */
151 opcode = kX86Mov32RI;
152 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700153 case kOpMul:
154 opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
155 return NewLIR3(opcode, r_dest_src1, r_dest_src1, value);
156 default:
157 LOG(FATAL) << "Bad case in OpRegImm " << op;
158 }
159 return NewLIR2(opcode, r_dest_src1, value);
160}
161
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700162LIR* X86Mir2Lir::OpRegReg(OpKind op, int r_dest_src1, int r_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700163 X86OpCode opcode = kX86Nop;
164 bool src2_must_be_cx = false;
165 switch (op) {
166 // X86 unary opcodes
167 case kOpMvn:
168 OpRegCopy(r_dest_src1, r_src2);
169 return OpReg(kOpNot, r_dest_src1);
170 case kOpNeg:
171 OpRegCopy(r_dest_src1, r_src2);
172 return OpReg(kOpNeg, r_dest_src1);
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100173 case kOpRev:
174 OpRegCopy(r_dest_src1, r_src2);
175 return OpReg(kOpRev, r_dest_src1);
176 case kOpRevsh:
177 OpRegCopy(r_dest_src1, r_src2);
178 OpReg(kOpRev, r_dest_src1);
179 return OpRegImm(kOpAsr, r_dest_src1, 16);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700180 // X86 binary opcodes
181 case kOpSub: opcode = kX86Sub32RR; break;
182 case kOpSbc: opcode = kX86Sbb32RR; break;
183 case kOpLsl: opcode = kX86Sal32RC; src2_must_be_cx = true; break;
184 case kOpLsr: opcode = kX86Shr32RC; src2_must_be_cx = true; break;
185 case kOpAsr: opcode = kX86Sar32RC; src2_must_be_cx = true; break;
186 case kOpMov: opcode = kX86Mov32RR; break;
187 case kOpCmp: opcode = kX86Cmp32RR; break;
188 case kOpAdd: opcode = kX86Add32RR; break;
189 case kOpAdc: opcode = kX86Adc32RR; break;
190 case kOpAnd: opcode = kX86And32RR; break;
191 case kOpOr: opcode = kX86Or32RR; break;
192 case kOpXor: opcode = kX86Xor32RR; break;
193 case kOp2Byte:
194 // Use shifts instead of a byte operand if the source can't be byte accessed.
195 if (r_src2 >= 4) {
196 NewLIR2(kX86Mov32RR, r_dest_src1, r_src2);
197 NewLIR2(kX86Sal32RI, r_dest_src1, 24);
198 return NewLIR2(kX86Sar32RI, r_dest_src1, 24);
199 } else {
200 opcode = kX86Movsx8RR;
201 }
202 break;
203 case kOp2Short: opcode = kX86Movsx16RR; break;
204 case kOp2Char: opcode = kX86Movzx16RR; break;
205 case kOpMul: opcode = kX86Imul32RR; break;
206 default:
207 LOG(FATAL) << "Bad case in OpRegReg " << op;
208 break;
209 }
210 CHECK(!src2_must_be_cx || r_src2 == rCX);
211 return NewLIR2(opcode, r_dest_src1, r_src2);
212}
213
Razvan A Lupusoru2c498d12014-01-29 16:02:57 -0800214LIR* X86Mir2Lir::OpMovRegMem(int r_dest, int r_base, int offset, MoveType move_type) {
215 DCHECK(!(X86_FPREG(r_base)));
216
217 X86OpCode opcode = kX86Nop;
218 switch (move_type) {
219 case kMov8GP:
220 CHECK(!X86_FPREG(r_dest));
221 opcode = kX86Mov8RM;
222 break;
223 case kMov16GP:
224 CHECK(!X86_FPREG(r_dest));
225 opcode = kX86Mov16RM;
226 break;
227 case kMov32GP:
228 CHECK(!X86_FPREG(r_dest));
229 opcode = kX86Mov32RM;
230 break;
231 case kMov32FP:
232 CHECK(X86_FPREG(r_dest));
233 opcode = kX86MovssRM;
234 break;
235 case kMov64FP:
236 CHECK(X86_FPREG(r_dest));
237 opcode = kX86MovsdRM;
238 break;
239 case kMovU128FP:
240 CHECK(X86_FPREG(r_dest));
241 opcode = kX86MovupsRM;
242 break;
243 case kMovA128FP:
244 CHECK(X86_FPREG(r_dest));
245 opcode = kX86MovapsRM;
246 break;
247 case kMovLo128FP:
248 CHECK(X86_FPREG(r_dest));
249 opcode = kX86MovlpsRM;
250 break;
251 case kMovHi128FP:
252 CHECK(X86_FPREG(r_dest));
253 opcode = kX86MovhpsRM;
254 break;
255 case kMov64GP:
256 case kMovLo64FP:
257 case kMovHi64FP:
258 default:
259 LOG(FATAL) << "Bad case in OpMovRegMem";
260 break;
261 }
262
263 return NewLIR3(opcode, r_dest, r_base, offset);
264}
265
266LIR* X86Mir2Lir::OpMovMemReg(int r_base, int offset, int r_src, MoveType move_type) {
267 DCHECK(!(X86_FPREG(r_base)));
268
269 X86OpCode opcode = kX86Nop;
270 switch (move_type) {
271 case kMov8GP:
272 CHECK(!X86_FPREG(r_src));
273 opcode = kX86Mov8MR;
274 break;
275 case kMov16GP:
276 CHECK(!X86_FPREG(r_src));
277 opcode = kX86Mov16MR;
278 break;
279 case kMov32GP:
280 CHECK(!X86_FPREG(r_src));
281 opcode = kX86Mov32MR;
282 break;
283 case kMov32FP:
284 CHECK(X86_FPREG(r_src));
285 opcode = kX86MovssMR;
286 break;
287 case kMov64FP:
288 CHECK(X86_FPREG(r_src));
289 opcode = kX86MovsdMR;
290 break;
291 case kMovU128FP:
292 CHECK(X86_FPREG(r_src));
293 opcode = kX86MovupsMR;
294 break;
295 case kMovA128FP:
296 CHECK(X86_FPREG(r_src));
297 opcode = kX86MovapsMR;
298 break;
299 case kMovLo128FP:
300 CHECK(X86_FPREG(r_src));
301 opcode = kX86MovlpsMR;
302 break;
303 case kMovHi128FP:
304 CHECK(X86_FPREG(r_src));
305 opcode = kX86MovhpsMR;
306 break;
307 case kMov64GP:
308 case kMovLo64FP:
309 case kMovHi64FP:
310 default:
311 LOG(FATAL) << "Bad case in OpMovMemReg";
312 break;
313 }
314
315 return NewLIR3(opcode, r_base, offset, r_src);
316}
317
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800318LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, int r_dest, int r_src) {
319 // The only conditional reg to reg operation supported is Cmov
320 DCHECK_EQ(op, kOpCmov);
321 return NewLIR3(kX86Cmov32RRC, r_dest, r_src, X86ConditionEncoding(cc));
322}
323
Brian Carlstrom7940e442013-07-12 13:46:57 -0700324LIR* X86Mir2Lir::OpRegMem(OpKind op, int r_dest, int rBase,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700325 int offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700326 X86OpCode opcode = kX86Nop;
327 switch (op) {
328 // X86 binary opcodes
329 case kOpSub: opcode = kX86Sub32RM; break;
330 case kOpMov: opcode = kX86Mov32RM; break;
331 case kOpCmp: opcode = kX86Cmp32RM; break;
332 case kOpAdd: opcode = kX86Add32RM; break;
333 case kOpAnd: opcode = kX86And32RM; break;
334 case kOpOr: opcode = kX86Or32RM; break;
335 case kOpXor: opcode = kX86Xor32RM; break;
336 case kOp2Byte: opcode = kX86Movsx8RM; break;
337 case kOp2Short: opcode = kX86Movsx16RM; break;
338 case kOp2Char: opcode = kX86Movzx16RM; break;
339 case kOpMul:
340 default:
341 LOG(FATAL) << "Bad case in OpRegMem " << op;
342 break;
343 }
Mark Mendellfeb2b4e2014-01-28 12:59:49 -0800344 LIR *l = NewLIR3(opcode, r_dest, rBase, offset);
345 if (rBase == rX86_SP) {
346 AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
347 }
348 return l;
349}
350
351LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
352 DCHECK_NE(rl_dest.location, kLocPhysReg);
353 int displacement = SRegOffset(rl_dest.s_reg_low);
354 X86OpCode opcode = kX86Nop;
355 switch (op) {
356 case kOpSub: opcode = kX86Sub32MR; break;
357 case kOpMov: opcode = kX86Mov32MR; break;
358 case kOpCmp: opcode = kX86Cmp32MR; break;
359 case kOpAdd: opcode = kX86Add32MR; break;
360 case kOpAnd: opcode = kX86And32MR; break;
361 case kOpOr: opcode = kX86Or32MR; break;
362 case kOpXor: opcode = kX86Xor32MR; break;
363 case kOpLsl: opcode = kX86Sal32MC; break;
364 case kOpLsr: opcode = kX86Shr32MC; break;
365 case kOpAsr: opcode = kX86Sar32MC; break;
366 default:
367 LOG(FATAL) << "Bad case in OpMemReg " << op;
368 break;
369 }
370 LIR *l = NewLIR3(opcode, rX86_SP, displacement, r_value);
371 AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, false /* is_64bit */);
372 return l;
373}
374
375LIR* X86Mir2Lir::OpRegMem(OpKind op, int r_dest, RegLocation rl_value) {
376 DCHECK_NE(rl_value.location, kLocPhysReg);
377 int displacement = SRegOffset(rl_value.s_reg_low);
378 X86OpCode opcode = kX86Nop;
379 switch (op) {
380 case kOpSub: opcode = kX86Sub32RM; break;
381 case kOpMov: opcode = kX86Mov32RM; break;
382 case kOpCmp: opcode = kX86Cmp32RM; break;
383 case kOpAdd: opcode = kX86Add32RM; break;
384 case kOpAnd: opcode = kX86And32RM; break;
385 case kOpOr: opcode = kX86Or32RM; break;
386 case kOpXor: opcode = kX86Xor32RM; break;
387 case kOpMul: opcode = kX86Imul32RM; break;
388 default:
389 LOG(FATAL) << "Bad case in OpRegMem " << op;
390 break;
391 }
392 LIR *l = NewLIR3(opcode, r_dest, rX86_SP, displacement);
393 AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, false /* is_64bit */);
394 return l;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700395}
396
397LIR* X86Mir2Lir::OpRegRegReg(OpKind op, int r_dest, int r_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700398 int r_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700399 if (r_dest != r_src1 && r_dest != r_src2) {
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700400 if (op == kOpAdd) { // lea special case, except can't encode rbp as base
Brian Carlstrom7940e442013-07-12 13:46:57 -0700401 if (r_src1 == r_src2) {
402 OpRegCopy(r_dest, r_src1);
403 return OpRegImm(kOpLsl, r_dest, 1);
404 } else if (r_src1 != rBP) {
405 return NewLIR5(kX86Lea32RA, r_dest, r_src1 /* base */,
406 r_src2 /* index */, 0 /* scale */, 0 /* disp */);
407 } else {
408 return NewLIR5(kX86Lea32RA, r_dest, r_src2 /* base */,
409 r_src1 /* index */, 0 /* scale */, 0 /* disp */);
410 }
411 } else {
412 OpRegCopy(r_dest, r_src1);
413 return OpRegReg(op, r_dest, r_src2);
414 }
415 } else if (r_dest == r_src1) {
416 return OpRegReg(op, r_dest, r_src2);
417 } else { // r_dest == r_src2
418 switch (op) {
419 case kOpSub: // non-commutative
420 OpReg(kOpNeg, r_dest);
421 op = kOpAdd;
422 break;
423 case kOpSbc:
424 case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
425 int t_reg = AllocTemp();
426 OpRegCopy(t_reg, r_src1);
427 OpRegReg(op, t_reg, r_src2);
428 LIR* res = OpRegCopy(r_dest, t_reg);
429 FreeTemp(t_reg);
430 return res;
431 }
432 case kOpAdd: // commutative
433 case kOpOr:
434 case kOpAdc:
435 case kOpAnd:
436 case kOpXor:
437 break;
438 default:
439 LOG(FATAL) << "Bad case in OpRegRegReg " << op;
440 }
441 return OpRegReg(op, r_dest, r_src1);
442 }
443}
444
445LIR* X86Mir2Lir::OpRegRegImm(OpKind op, int r_dest, int r_src,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700446 int value) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700447 if (op == kOpMul) {
448 X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
449 return NewLIR3(opcode, r_dest, r_src, value);
450 } else if (op == kOpAnd) {
451 if (value == 0xFF && r_src < 4) {
452 return NewLIR2(kX86Movzx8RR, r_dest, r_src);
453 } else if (value == 0xFFFF) {
454 return NewLIR2(kX86Movzx16RR, r_dest, r_src);
455 }
456 }
457 if (r_dest != r_src) {
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700458 if (false && op == kOpLsl && value >= 0 && value <= 3) { // lea shift special case
Brian Carlstrom7940e442013-07-12 13:46:57 -0700459 // TODO: fix bug in LEA encoding when disp == 0
460 return NewLIR5(kX86Lea32RA, r_dest, r5sib_no_base /* base */,
461 r_src /* index */, value /* scale */, 0 /* disp */);
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700462 } else if (op == kOpAdd) { // lea add special case
Brian Carlstrom7940e442013-07-12 13:46:57 -0700463 return NewLIR5(kX86Lea32RA, r_dest, r_src /* base */,
464 r4sib_no_index /* index */, 0 /* scale */, value /* disp */);
465 }
466 OpRegCopy(r_dest, r_src);
467 }
468 return OpRegImm(op, r_dest, value);
469}
470
Ian Rogers468532e2013-08-05 10:56:33 -0700471LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset thread_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700472 X86OpCode opcode = kX86Bkpt;
473 switch (op) {
474 case kOpBlx: opcode = kX86CallT; break;
475 default:
476 LOG(FATAL) << "Bad opcode: " << op;
477 break;
478 }
Ian Rogers468532e2013-08-05 10:56:33 -0700479 return NewLIR1(opcode, thread_offset.Int32Value());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700480}
481
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700482LIR* X86Mir2Lir::OpMem(OpKind op, int rBase, int disp) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700483 X86OpCode opcode = kX86Bkpt;
484 switch (op) {
485 case kOpBlx: opcode = kX86CallM; break;
486 default:
487 LOG(FATAL) << "Bad opcode: " << op;
488 break;
489 }
490 return NewLIR2(opcode, rBase, disp);
491}
492
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700493LIR* X86Mir2Lir::LoadConstantWide(int r_dest_lo, int r_dest_hi, int64_t value) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700494 int32_t val_lo = Low32Bits(value);
495 int32_t val_hi = High32Bits(value);
496 LIR *res;
497 if (X86_FPREG(r_dest_lo)) {
498 DCHECK(X86_FPREG(r_dest_hi)); // ignore r_dest_hi
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000499 DCHECK_EQ(r_dest_lo, r_dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700500 if (value == 0) {
501 return NewLIR2(kX86XorpsRR, r_dest_lo, r_dest_lo);
Mark Mendell67c39c42014-01-31 17:28:00 -0800502 } else if (base_of_code_ != nullptr) {
503 // We will load the value from the literal area.
504 LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
505 if (data_target == NULL) {
506 data_target = AddWideData(&literal_list_, val_lo, val_hi);
507 }
508
509 // Address the start of the method
510 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
511 rl_method = LoadValue(rl_method, kCoreReg);
512
513 // Load the proper value from the literal area.
514 // We don't know the proper offset for the value, so pick one that will force
515 // 4 byte offset. We will fix this up in the assembler later to have the right
516 // value.
517 res = LoadBaseDisp(rl_method.low_reg, 256 /* bogus */, r_dest_lo, kDouble, INVALID_SREG);
518 res->target = data_target;
519 res->flags.fixup = kFixupLoad;
520 SetMemRefType(res, true, kLiteral);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800521 store_method_addr_used_ = true;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700522 } else {
523 if (val_lo == 0) {
524 res = NewLIR2(kX86XorpsRR, r_dest_lo, r_dest_lo);
525 } else {
526 res = LoadConstantNoClobber(r_dest_lo, val_lo);
527 }
528 if (val_hi != 0) {
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000529 r_dest_hi = AllocTempDouble();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700530 LoadConstantNoClobber(r_dest_hi, val_hi);
Razvan A Lupusorud3266bc2014-01-24 12:55:31 -0800531 NewLIR2(kX86PunpckldqRR, r_dest_lo, r_dest_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000532 FreeTemp(r_dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700533 }
534 }
535 } else {
536 res = LoadConstantNoClobber(r_dest_lo, val_lo);
537 LoadConstantNoClobber(r_dest_hi, val_hi);
538 }
539 return res;
540}
541
542LIR* X86Mir2Lir::LoadBaseIndexedDisp(int rBase, int r_index, int scale,
543 int displacement, int r_dest, int r_dest_hi, OpSize size,
544 int s_reg) {
545 LIR *load = NULL;
546 LIR *load2 = NULL;
547 bool is_array = r_index != INVALID_REG;
548 bool pair = false;
549 bool is64bit = false;
550 X86OpCode opcode = kX86Nop;
551 switch (size) {
552 case kLong:
553 case kDouble:
554 is64bit = true;
555 if (X86_FPREG(r_dest)) {
556 opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700557 } else {
558 pair = true;
559 opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
560 }
561 // TODO: double store is to unaligned address
562 DCHECK_EQ((displacement & 0x3), 0);
563 break;
564 case kWord:
565 case kSingle:
566 opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
567 if (X86_FPREG(r_dest)) {
568 opcode = is_array ? kX86MovssRA : kX86MovssRM;
569 DCHECK(X86_SINGLEREG(r_dest));
570 }
571 DCHECK_EQ((displacement & 0x3), 0);
572 break;
573 case kUnsignedHalf:
574 opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
575 DCHECK_EQ((displacement & 0x1), 0);
576 break;
577 case kSignedHalf:
578 opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
579 DCHECK_EQ((displacement & 0x1), 0);
580 break;
581 case kUnsignedByte:
582 opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
583 break;
584 case kSignedByte:
585 opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
586 break;
587 default:
588 LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
589 }
590
591 if (!is_array) {
592 if (!pair) {
593 load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
594 } else {
595 if (rBase == r_dest) {
596 load2 = NewLIR3(opcode, r_dest_hi, rBase,
597 displacement + HIWORD_OFFSET);
598 load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
599 } else {
600 load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
601 load2 = NewLIR3(opcode, r_dest_hi, rBase,
602 displacement + HIWORD_OFFSET);
603 }
604 }
605 if (rBase == rX86_SP) {
606 AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
607 true /* is_load */, is64bit);
608 if (pair) {
609 AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
610 true /* is_load */, is64bit);
611 }
612 }
613 } else {
614 if (!pair) {
615 load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
616 displacement + LOWORD_OFFSET);
617 } else {
618 if (rBase == r_dest) {
Mark Mendellae427c32014-01-24 09:17:22 -0800619 if (r_dest_hi == r_index) {
620 // We can't use either register for the first load.
621 int temp = AllocTemp();
622 load2 = NewLIR5(opcode, temp, rBase, r_index, scale,
623 displacement + HIWORD_OFFSET);
624 load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
625 displacement + LOWORD_OFFSET);
626 OpRegCopy(r_dest_hi, temp);
627 FreeTemp(temp);
628 } else {
629 load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
630 displacement + HIWORD_OFFSET);
631 load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
632 displacement + LOWORD_OFFSET);
633 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700634 } else {
Mark Mendellae427c32014-01-24 09:17:22 -0800635 if (r_dest == r_index) {
636 // We can't use either register for the first load.
637 int temp = AllocTemp();
638 load = NewLIR5(opcode, temp, rBase, r_index, scale,
639 displacement + LOWORD_OFFSET);
640 load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
641 displacement + HIWORD_OFFSET);
642 OpRegCopy(r_dest, temp);
643 FreeTemp(temp);
644 } else {
645 load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
646 displacement + LOWORD_OFFSET);
647 load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
648 displacement + HIWORD_OFFSET);
649 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700650 }
651 }
652 }
653
654 return load;
655}
656
657/* Load value from base + scaled index. */
658LIR* X86Mir2Lir::LoadBaseIndexed(int rBase,
659 int r_index, int r_dest, int scale, OpSize size) {
660 return LoadBaseIndexedDisp(rBase, r_index, scale, 0,
661 r_dest, INVALID_REG, size, INVALID_SREG);
662}
663
664LIR* X86Mir2Lir::LoadBaseDisp(int rBase, int displacement,
665 int r_dest, OpSize size, int s_reg) {
666 return LoadBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
667 r_dest, INVALID_REG, size, s_reg);
668}
669
670LIR* X86Mir2Lir::LoadBaseDispWide(int rBase, int displacement,
671 int r_dest_lo, int r_dest_hi, int s_reg) {
672 return LoadBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
673 r_dest_lo, r_dest_hi, kLong, s_reg);
674}
675
676LIR* X86Mir2Lir::StoreBaseIndexedDisp(int rBase, int r_index, int scale,
677 int displacement, int r_src, int r_src_hi, OpSize size,
678 int s_reg) {
679 LIR *store = NULL;
680 LIR *store2 = NULL;
681 bool is_array = r_index != INVALID_REG;
682 bool pair = false;
683 bool is64bit = false;
684 X86OpCode opcode = kX86Nop;
685 switch (size) {
686 case kLong:
687 case kDouble:
688 is64bit = true;
689 if (X86_FPREG(r_src)) {
690 opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700691 } else {
692 pair = true;
693 opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
694 }
695 // TODO: double store is to unaligned address
696 DCHECK_EQ((displacement & 0x3), 0);
697 break;
698 case kWord:
699 case kSingle:
700 opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
701 if (X86_FPREG(r_src)) {
702 opcode = is_array ? kX86MovssAR : kX86MovssMR;
703 DCHECK(X86_SINGLEREG(r_src));
704 }
705 DCHECK_EQ((displacement & 0x3), 0);
706 break;
707 case kUnsignedHalf:
708 case kSignedHalf:
709 opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
710 DCHECK_EQ((displacement & 0x1), 0);
711 break;
712 case kUnsignedByte:
713 case kSignedByte:
714 opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
715 break;
716 default:
717 LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
718 }
719
720 if (!is_array) {
721 if (!pair) {
722 store = NewLIR3(opcode, rBase, displacement + LOWORD_OFFSET, r_src);
723 } else {
724 store = NewLIR3(opcode, rBase, displacement + LOWORD_OFFSET, r_src);
725 store2 = NewLIR3(opcode, rBase, displacement + HIWORD_OFFSET, r_src_hi);
726 }
727 if (rBase == rX86_SP) {
728 AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
729 false /* is_load */, is64bit);
730 if (pair) {
731 AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
732 false /* is_load */, is64bit);
733 }
734 }
735 } else {
736 if (!pair) {
737 store = NewLIR5(opcode, rBase, r_index, scale,
738 displacement + LOWORD_OFFSET, r_src);
739 } else {
740 store = NewLIR5(opcode, rBase, r_index, scale,
741 displacement + LOWORD_OFFSET, r_src);
742 store2 = NewLIR5(opcode, rBase, r_index, scale,
743 displacement + HIWORD_OFFSET, r_src_hi);
744 }
745 }
746
747 return store;
748}
749
750/* store value base base + scaled index. */
751LIR* X86Mir2Lir::StoreBaseIndexed(int rBase, int r_index, int r_src,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700752 int scale, OpSize size) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700753 return StoreBaseIndexedDisp(rBase, r_index, scale, 0,
754 r_src, INVALID_REG, size, INVALID_SREG);
755}
756
757LIR* X86Mir2Lir::StoreBaseDisp(int rBase, int displacement,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700758 int r_src, OpSize size) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700759 return StoreBaseIndexedDisp(rBase, INVALID_REG, 0,
760 displacement, r_src, INVALID_REG, size,
761 INVALID_SREG);
762}
763
764LIR* X86Mir2Lir::StoreBaseDispWide(int rBase, int displacement,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700765 int r_src_lo, int r_src_hi) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700766 return StoreBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
767 r_src_lo, r_src_hi, kLong, INVALID_SREG);
768}
769
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000770/*
771 * Copy a long value in Core registers to an XMM register
772 *
773 */
774void X86Mir2Lir::OpVectorRegCopyWide(uint8_t fp_reg, uint8_t low_reg, uint8_t high_reg) {
775 NewLIR2(kX86MovdxrRR, fp_reg, low_reg);
776 int tmp_reg = AllocTempDouble();
777 NewLIR2(kX86MovdxrRR, tmp_reg, high_reg);
Razvan A Lupusorud3266bc2014-01-24 12:55:31 -0800778 NewLIR2(kX86PunpckldqRR, fp_reg, tmp_reg);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000779 FreeTemp(tmp_reg);
780}
781
Mark Mendell766e9292014-01-27 07:55:47 -0800782LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, int temp_reg, int base_reg,
783 int offset, int check_value, LIR* target) {
784 NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg, offset,
785 check_value);
786 LIR* branch = OpCondBranch(cond, target);
787 return branch;
788}
789
Mark Mendell67c39c42014-01-31 17:28:00 -0800790void X86Mir2Lir::AnalyzeMIR() {
791 // Assume we don't need a pointer to the base of the code.
792 cu_->NewTimingSplit("X86 MIR Analysis");
793 store_method_addr_ = false;
794
795 // Walk the MIR looking for interesting items.
796 PreOrderDfsIterator iter(mir_graph_);
797 BasicBlock* curr_bb = iter.Next();
798 while (curr_bb != NULL) {
799 AnalyzeBB(curr_bb);
800 curr_bb = iter.Next();
801 }
802
803 // Did we need a pointer to the method code?
804 if (store_method_addr_) {
805 base_of_code_ = mir_graph_->GetNewCompilerTemp(kCompilerTempVR, false);
806 } else {
807 base_of_code_ = nullptr;
808 }
809}
810
811void X86Mir2Lir::AnalyzeBB(BasicBlock * bb) {
812 if (bb->block_type == kDead) {
813 // Ignore dead blocks
814 return;
815 }
816
817 for (MIR *mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
818 int opcode = mir->dalvikInsn.opcode;
819 if (opcode >= kMirOpFirst) {
820 AnalyzeExtendedMIR(opcode, bb, mir);
821 } else {
822 AnalyzeMIR(opcode, bb, mir);
823 }
824 }
825}
826
827
828void X86Mir2Lir::AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir) {
829 switch (opcode) {
830 // Instructions referencing doubles.
831 case kMirOpFusedCmplDouble:
832 case kMirOpFusedCmpgDouble:
833 AnalyzeFPInstruction(opcode, bb, mir);
834 break;
835 default:
836 // Ignore the rest.
837 break;
838 }
839}
840
841void X86Mir2Lir::AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir) {
842 // Looking for
843 // - Do we need a pointer to the code (used for packed switches and double lits)?
844
845 switch (opcode) {
846 // Instructions referencing doubles.
847 case Instruction::CMPL_DOUBLE:
848 case Instruction::CMPG_DOUBLE:
849 case Instruction::NEG_DOUBLE:
850 case Instruction::ADD_DOUBLE:
851 case Instruction::SUB_DOUBLE:
852 case Instruction::MUL_DOUBLE:
853 case Instruction::DIV_DOUBLE:
854 case Instruction::REM_DOUBLE:
855 case Instruction::ADD_DOUBLE_2ADDR:
856 case Instruction::SUB_DOUBLE_2ADDR:
857 case Instruction::MUL_DOUBLE_2ADDR:
858 case Instruction::DIV_DOUBLE_2ADDR:
859 case Instruction::REM_DOUBLE_2ADDR:
860 AnalyzeFPInstruction(opcode, bb, mir);
861 break;
Mark Mendell55d0eac2014-02-06 11:02:52 -0800862
Mark Mendell67c39c42014-01-31 17:28:00 -0800863 // Packed switches and array fills need a pointer to the base of the method.
864 case Instruction::FILL_ARRAY_DATA:
865 case Instruction::PACKED_SWITCH:
866 store_method_addr_ = true;
867 break;
868 default:
869 // Other instructions are not interesting yet.
870 break;
871 }
872}
873
874void X86Mir2Lir::AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir) {
875 // Look at all the uses, and see if they are double constants.
876 uint64_t attrs = mir_graph_->oat_data_flow_attributes_[opcode];
877 int next_sreg = 0;
878 if (attrs & DF_UA) {
879 if (attrs & DF_A_WIDE) {
880 AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
881 next_sreg += 2;
882 } else {
883 next_sreg++;
884 }
885 }
886 if (attrs & DF_UB) {
887 if (attrs & DF_B_WIDE) {
888 AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
889 next_sreg += 2;
890 } else {
891 next_sreg++;
892 }
893 }
894 if (attrs & DF_UC) {
895 if (attrs & DF_C_WIDE) {
896 AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
897 }
898 }
899}
900
901void X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
902 // If this is a double literal, we will want it in the literal pool.
903 if (use.is_const) {
904 store_method_addr_ = true;
905 }
906}
907
Brian Carlstrom7940e442013-07-12 13:46:57 -0700908} // namespace art