Squashed mnc-dev changes:

This contains all of the changes from b54aa51 to
791e51a on mnc-dev, except the changes
to tests/tests/security.

Bug: 24846656
Change-Id: I01f53a1a238ac49f86928e0e22796dc73e0e34af
diff --git a/apps/CameraITS/pymodules/its/device.py b/apps/CameraITS/pymodules/its/device.py
index 756f959..835a4a4 100644
--- a/apps/CameraITS/pymodules/its/device.py
+++ b/apps/CameraITS/pymodules/its/device.py
@@ -448,8 +448,8 @@
 
         The out_surfaces field can specify the width(s), height(s), and
         format(s) of the captured image. The formats may be "yuv", "jpeg",
-        "dng", "raw", "raw10", or "raw12". The default is a YUV420 frame ("yuv")
-        corresponding to a full sensor frame.
+        "dng", "raw", "raw10", "raw12", or "rawStats". The default is a YUV420
+        frame ("yuv") corresponding to a full sensor frame.
 
         Note that one or more surfaces can be specified, allowing a capture to
         request images back in multiple formats (e.g.) raw+yuv, raw+jpeg,
@@ -536,6 +536,25 @@
             yuv_caps           = do_capture( [req1,req2], yuv_fmt           )
             yuv_caps, raw_caps = do_capture( [req1,req2], [yuv_fmt,raw_fmt] )
 
+        The "rawStats" format processes the raw image and returns a new image
+        of statistics from the raw image. The format takes additional keys,
+        "gridWidth" and "gridHeight" which are size of grid cells in a 2D grid
+        of the raw image. For each grid cell, the mean and variance of each raw
+        channel is computed, and the do_capture call returns two 4-element float
+        images of dimensions (rawWidth / gridWidth, rawHeight / gridHeight),
+        concatenated back-to-back, where the first iamge contains the 4-channel
+        means and the second contains the 4-channel variances.
+
+        For the rawStats format, if the gridWidth is not provided then the raw
+        image width is used as the default, and similarly for gridHeight. With
+        this, the following is an example of a output description that computes
+        the mean and variance across each image row:
+
+            {
+                "gridHeight": 1,
+                "format": "rawStats"
+            }
+
         Args:
             cap_request: The Python dict/list specifying the capture(s), which
                 will be converted to JSON and sent to the device.
@@ -550,7 +569,8 @@
             * data: the image data as a numpy array of bytes.
             * width: the width of the captured image.
             * height: the height of the captured image.
-            * format: image the format, in ["yuv","jpeg","raw","raw10","dng"].
+            * format: image the format, in [
+                        "yuv","jpeg","raw","raw10","raw12","rawStats","dng"].
             * metadata: the capture result object (Python dictionary).
         """
         cmd = {}
@@ -577,9 +597,13 @@
         nsurf = 1 if out_surfaces is None else len(cmd["outputSurfaces"])
         if len(formats) > len(set(formats)):
             raise its.error.Error('Duplicate format requested')
-        if "dng" in formats and "raw" in formats or \
-                "dng" in formats and "raw10" in formats or \
-                "raw" in formats and "raw10" in formats:
+        raw_formats = 0;
+        raw_formats += 1 if "dng" in formats else 0
+        raw_formats += 1 if "raw" in formats else 0
+        raw_formats += 1 if "raw10" in formats else 0
+        raw_formats += 1 if "raw12" in formats else 0
+        raw_formats += 1 if "rawStats" in formats else 0
+        if raw_formats > 1:
             raise its.error.Error('Different raw formats not supported')
 
         # Detect long exposure time and set timeout accordingly
@@ -603,14 +627,16 @@
         # the burst, however individual images of different formats can come
         # out in any order for that capture.
         nbufs = 0
-        bufs = {"yuv":[], "raw":[], "raw10":[], "dng":[], "jpeg":[]}
+        bufs = {"yuv":[], "raw":[], "raw10":[], "raw12":[],
+                "rawStats":[], "dng":[], "jpeg":[]}
         mds = []
         widths = None
         heights = None
         while nbufs < ncap*nsurf or len(mds) < ncap:
             jsonObj,buf = self.__read_response_from_socket()
             if jsonObj['tag'] in ['jpegImage', 'yuvImage', 'rawImage', \
-                    'raw10Image', 'dngImage'] and buf is not None:
+                    'raw10Image', 'raw12Image', 'rawStatsImage', 'dngImage'] \
+                    and buf is not None:
                 fmt = jsonObj['tag'][:-5]
                 bufs[fmt].append(buf)
                 nbufs += 1
diff --git a/apps/CameraITS/pymodules/its/image.py b/apps/CameraITS/pymodules/its/image.py
index ea01a3e..a5ac60b 100644
--- a/apps/CameraITS/pymodules/its/image.py
+++ b/apps/CameraITS/pymodules/its/image.py
@@ -81,6 +81,25 @@
     else:
         raise its.error.Error('Invalid format %s' % (cap["format"]))
 
+def unpack_rawstats_capture(cap):
+    """Unpack a rawStats capture to the mean and variance images.
+
+    Args:
+        cap: A capture object as returned by its.device.do_capture.
+
+    Returns:
+        Tuple (mean_image var_image) of float-4 images, with non-normalized
+        pixel values computed from the RAW16 images on the device
+    """
+    assert(cap["format"] == "rawStats")
+    w = cap["width"]
+    h = cap["height"]
+    img = numpy.ndarray(shape=(2*h*w*4,), dtype='<f', buffer=cap["data"])
+    analysis_image = img.reshape(2,h,w,4)
+    mean_image = analysis_image[0,:,:,:].reshape(h,w,4)
+    var_image = analysis_image[1,:,:,:].reshape(h,w,4)
+    return mean_image, var_image
+
 def unpack_raw10_capture(cap, props):
     """Unpack a raw-10 capture to a raw-16 capture.
 
@@ -604,6 +623,21 @@
         variances.append(numpy.var(img[:,:,i], dtype=numpy.float64))
     return variances
 
+def compute_image_snrs(img):
+    """Calculate the SNR (db) of each color channel in the image.
+
+    Args:
+        img: Numpy float image array, with pixel values in [0,1].
+
+    Returns:
+        A list of SNR value, one per color channel in the image.
+    """
+    means = compute_image_means(img)
+    variances = compute_image_variances(img)
+    std_devs = [math.sqrt(v) for v in variances]
+    snr = [20 * math.log10(m/s) for m,s in zip(means, std_devs)]
+    return snr
+
 def write_image(img, fname, apply_gamma=False):
     """Save a float-3 numpy array image to a file.
 
diff --git a/apps/CameraITS/pymodules/its/objects.py b/apps/CameraITS/pymodules/its/objects.py
index 82346ec..ac384fb 100644
--- a/apps/CameraITS/pymodules/its/objects.py
+++ b/apps/CameraITS/pymodules/its/objects.py
@@ -152,24 +152,37 @@
 
     return req
 
-def get_available_output_sizes(fmt, props):
+def get_available_output_sizes(fmt, props, max_size=None, match_ar_size=None):
     """Return a sorted list of available output sizes for a given format.
 
     Args:
         fmt: the output format, as a string in
             ["jpg", "yuv", "raw", "raw10", "raw12"].
         props: the object returned from its.device.get_camera_properties().
+        max_size: (Optional) A (w,h) tuple.
+            Sizes larger than max_size (either w or h)  will be discarded.
+        match_ar_size: (Optional) A (w,h) tuple.
+            Sizes not matching the aspect ratio of match_ar_size will be
+            discarded.
 
     Returns:
         A sorted list of (w,h) tuples (sorted large-to-small).
     """
-    fmt_codes = {"raw":0x20, "raw10":0x25, "raw12":0x26, "yuv":0x23,
+    AR_TOLERANCE = 0.03
+    fmt_codes = {"raw":0x20, "raw10":0x25, "raw12":0x26,"yuv":0x23,
                  "jpg":0x100, "jpeg":0x100}
     configs = props['android.scaler.streamConfigurationMap']\
                    ['availableStreamConfigurations']
     fmt_configs = [cfg for cfg in configs if cfg['format'] == fmt_codes[fmt]]
     out_configs = [cfg for cfg in fmt_configs if cfg['input'] == False]
     out_sizes = [(cfg['width'],cfg['height']) for cfg in out_configs]
+    if max_size:
+        out_sizes = [s for s in out_sizes if
+                s[0] <= max_size[0] and s[1] <= max_size[1]]
+    if match_ar_size:
+        ar = match_ar_size[0] / float(match_ar_size[1])
+        out_sizes = [s for s in out_sizes if
+                abs(ar - s[0] / float(s[1])) <= AR_TOLERANCE]
     out_sizes.sort(reverse=True)
     return out_sizes