Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 1 | # Copyright 2013 The Android Open Source Project |
| 2 | # |
| 3 | # Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | # you may not use this file except in compliance with the License. |
| 5 | # You may obtain a copy of the License at |
| 6 | # |
| 7 | # http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | # |
| 9 | # Unless required by applicable law or agreed to in writing, software |
| 10 | # distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | # See the License for the specific language governing permissions and |
| 13 | # limitations under the License. |
| 14 | |
| 15 | import matplotlib |
| 16 | matplotlib.use('Agg') |
| 17 | |
| 18 | import its.error |
| 19 | import pylab |
| 20 | import sys |
| 21 | import Image |
| 22 | import numpy |
| 23 | import math |
| 24 | import unittest |
| 25 | import cStringIO |
| 26 | import scipy.stats |
| 27 | import copy |
| 28 | |
| 29 | DEFAULT_YUV_TO_RGB_CCM = numpy.matrix([ |
| 30 | [1.000, 0.000, 1.402], |
| 31 | [1.000, -0.344, -0.714], |
| 32 | [1.000, 1.772, 0.000]]) |
| 33 | |
| 34 | DEFAULT_YUV_OFFSETS = numpy.array([0, 128, 128]) |
| 35 | |
| 36 | DEFAULT_GAMMA_LUT = numpy.array( |
| 37 | [math.floor(65535 * math.pow(i/65535.0, 1/2.2) + 0.5) |
| 38 | for i in xrange(65536)]) |
| 39 | |
| 40 | DEFAULT_INVGAMMA_LUT = numpy.array( |
| 41 | [math.floor(65535 * math.pow(i/65535.0, 2.2) + 0.5) |
| 42 | for i in xrange(65536)]) |
| 43 | |
| 44 | MAX_LUT_SIZE = 65536 |
| 45 | |
| 46 | def convert_capture_to_rgb_image(cap, |
| 47 | ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM, |
| 48 | yuv_off=DEFAULT_YUV_OFFSETS, |
| 49 | props=None): |
| 50 | """Convert a captured image object to a RGB image. |
| 51 | |
| 52 | Args: |
| 53 | cap: A capture object as returned by its.device.do_capture. |
| 54 | ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB. |
| 55 | yuv_off: (Optional) offsets to subtract from each of Y,U,V values. |
| 56 | props: (Optional) camera properties object (of static values); |
| 57 | required for processing raw images. |
| 58 | |
| 59 | Returns: |
| 60 | RGB float-3 image array, with pixel values in [0.0, 1.0]. |
| 61 | """ |
| 62 | w = cap["width"] |
| 63 | h = cap["height"] |
| 64 | if cap["format"] == "raw10": |
| 65 | assert(props is not None) |
| 66 | cap = unpack_raw10_capture(cap, props) |
Yin-Chia Yeh | 76dd143 | 2015-04-27 16:42:03 -0700 | [diff] [blame] | 67 | if cap["format"] == "raw12": |
| 68 | assert(props is not None) |
| 69 | cap = unpack_raw12_capture(cap, props) |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 70 | if cap["format"] == "yuv": |
| 71 | y = cap["data"][0:w*h] |
| 72 | u = cap["data"][w*h:w*h*5/4] |
| 73 | v = cap["data"][w*h*5/4:w*h*6/4] |
Timothy Knight | e102590 | 2015-07-07 12:46:24 -0700 | [diff] [blame] | 74 | return convert_yuv420_planar_to_rgb_image(y, u, v, w, h) |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 75 | elif cap["format"] == "jpeg": |
| 76 | return decompress_jpeg_to_rgb_image(cap["data"]) |
| 77 | elif cap["format"] == "raw": |
| 78 | assert(props is not None) |
| 79 | r,gr,gb,b = convert_capture_to_planes(cap, props) |
| 80 | return convert_raw_to_rgb_image(r,gr,gb,b, props, cap["metadata"]) |
| 81 | else: |
| 82 | raise its.error.Error('Invalid format %s' % (cap["format"])) |
| 83 | |
Timothy Knight | 67d8ec9 | 2015-08-31 13:14:46 -0700 | [diff] [blame] | 84 | def unpack_rawstats_capture(cap): |
| 85 | """Unpack a rawStats capture to the mean and variance images. |
| 86 | |
| 87 | Args: |
| 88 | cap: A capture object as returned by its.device.do_capture. |
| 89 | |
| 90 | Returns: |
| 91 | Tuple (mean_image var_image) of float-4 images, with non-normalized |
| 92 | pixel values computed from the RAW16 images on the device |
| 93 | """ |
| 94 | assert(cap["format"] == "rawStats") |
| 95 | w = cap["width"] |
| 96 | h = cap["height"] |
| 97 | img = numpy.ndarray(shape=(2*h*w*4,), dtype='<f', buffer=cap["data"]) |
| 98 | analysis_image = img.reshape(2,h,w,4) |
| 99 | mean_image = analysis_image[0,:,:,:].reshape(h,w,4) |
| 100 | var_image = analysis_image[1,:,:,:].reshape(h,w,4) |
| 101 | return mean_image, var_image |
| 102 | |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 103 | def unpack_raw10_capture(cap, props): |
| 104 | """Unpack a raw-10 capture to a raw-16 capture. |
| 105 | |
| 106 | Args: |
| 107 | cap: A raw-10 capture object. |
Chien-Yu Chen | 682faa2 | 2014-10-22 17:34:44 -0700 | [diff] [blame] | 108 | props: Camera properties object. |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 109 | |
| 110 | Returns: |
| 111 | New capture object with raw-16 data. |
| 112 | """ |
| 113 | # Data is packed as 4x10b pixels in 5 bytes, with the first 4 bytes holding |
| 114 | # the MSPs of the pixels, and the 5th byte holding 4x2b LSBs. |
| 115 | w,h = cap["width"], cap["height"] |
| 116 | if w % 4 != 0: |
| 117 | raise its.error.Error('Invalid raw-10 buffer width') |
| 118 | cap = copy.deepcopy(cap) |
| 119 | cap["data"] = unpack_raw10_image(cap["data"].reshape(h,w*5/4)) |
| 120 | cap["format"] = "raw" |
| 121 | return cap |
| 122 | |
| 123 | def unpack_raw10_image(img): |
| 124 | """Unpack a raw-10 image to a raw-16 image. |
| 125 | |
| 126 | Output image will have the 10 LSBs filled in each 16b word, and the 6 MSBs |
| 127 | will be set to zero. |
| 128 | |
| 129 | Args: |
| 130 | img: A raw-10 image, as a uint8 numpy array. |
| 131 | |
| 132 | Returns: |
| 133 | Image as a uint16 numpy array, with all row padding stripped. |
| 134 | """ |
| 135 | if img.shape[1] % 5 != 0: |
| 136 | raise its.error.Error('Invalid raw-10 buffer width') |
| 137 | w = img.shape[1]*4/5 |
| 138 | h = img.shape[0] |
Yin-Chia Yeh | 76dd143 | 2015-04-27 16:42:03 -0700 | [diff] [blame] | 139 | # Cut out the 4x8b MSBs and shift to bits [9:2] in 16b words. |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 140 | msbs = numpy.delete(img, numpy.s_[4::5], 1) |
| 141 | msbs = msbs.astype(numpy.uint16) |
| 142 | msbs = numpy.left_shift(msbs, 2) |
| 143 | msbs = msbs.reshape(h,w) |
Yin-Chia Yeh | 76dd143 | 2015-04-27 16:42:03 -0700 | [diff] [blame] | 144 | # Cut out the 4x2b LSBs and put each in bits [1:0] of their own 8b words. |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 145 | lsbs = img[::, 4::5].reshape(h,w/4) |
| 146 | lsbs = numpy.right_shift( |
| 147 | numpy.packbits(numpy.unpackbits(lsbs).reshape(h,w/4,4,2),3), 6) |
| 148 | lsbs = lsbs.reshape(h,w) |
| 149 | # Fuse the MSBs and LSBs back together |
| 150 | img16 = numpy.bitwise_or(msbs, lsbs).reshape(h,w) |
| 151 | return img16 |
| 152 | |
Yin-Chia Yeh | 76dd143 | 2015-04-27 16:42:03 -0700 | [diff] [blame] | 153 | def unpack_raw12_capture(cap, props): |
| 154 | """Unpack a raw-12 capture to a raw-16 capture. |
| 155 | |
| 156 | Args: |
| 157 | cap: A raw-12 capture object. |
| 158 | props: Camera properties object. |
| 159 | |
| 160 | Returns: |
| 161 | New capture object with raw-16 data. |
| 162 | """ |
| 163 | # Data is packed as 4x10b pixels in 5 bytes, with the first 4 bytes holding |
| 164 | # the MSBs of the pixels, and the 5th byte holding 4x2b LSBs. |
| 165 | w,h = cap["width"], cap["height"] |
| 166 | if w % 2 != 0: |
| 167 | raise its.error.Error('Invalid raw-12 buffer width') |
| 168 | cap = copy.deepcopy(cap) |
| 169 | cap["data"] = unpack_raw12_image(cap["data"].reshape(h,w*3/2)) |
| 170 | cap["format"] = "raw" |
| 171 | return cap |
| 172 | |
| 173 | def unpack_raw12_image(img): |
| 174 | """Unpack a raw-12 image to a raw-16 image. |
| 175 | |
| 176 | Output image will have the 12 LSBs filled in each 16b word, and the 4 MSBs |
| 177 | will be set to zero. |
| 178 | |
| 179 | Args: |
| 180 | img: A raw-12 image, as a uint8 numpy array. |
| 181 | |
| 182 | Returns: |
| 183 | Image as a uint16 numpy array, with all row padding stripped. |
| 184 | """ |
| 185 | if img.shape[1] % 3 != 0: |
| 186 | raise its.error.Error('Invalid raw-12 buffer width') |
| 187 | w = img.shape[1]*2/3 |
| 188 | h = img.shape[0] |
| 189 | # Cut out the 2x8b MSBs and shift to bits [11:4] in 16b words. |
| 190 | msbs = numpy.delete(img, numpy.s_[2::3], 1) |
| 191 | msbs = msbs.astype(numpy.uint16) |
| 192 | msbs = numpy.left_shift(msbs, 4) |
| 193 | msbs = msbs.reshape(h,w) |
| 194 | # Cut out the 2x4b LSBs and put each in bits [3:0] of their own 8b words. |
| 195 | lsbs = img[::, 2::3].reshape(h,w/2) |
| 196 | lsbs = numpy.right_shift( |
| 197 | numpy.packbits(numpy.unpackbits(lsbs).reshape(h,w/2,2,4),3), 4) |
| 198 | lsbs = lsbs.reshape(h,w) |
| 199 | # Fuse the MSBs and LSBs back together |
| 200 | img16 = numpy.bitwise_or(msbs, lsbs).reshape(h,w) |
| 201 | return img16 |
| 202 | |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 203 | def convert_capture_to_planes(cap, props=None): |
| 204 | """Convert a captured image object to separate image planes. |
| 205 | |
| 206 | Decompose an image into multiple images, corresponding to different planes. |
| 207 | |
| 208 | For YUV420 captures ("yuv"): |
| 209 | Returns Y,U,V planes, where the Y plane is full-res and the U,V planes |
| 210 | are each 1/2 x 1/2 of the full res. |
| 211 | |
| 212 | For Bayer captures ("raw" or "raw10"): |
| 213 | Returns planes in the order R,Gr,Gb,B, regardless of the Bayer pattern |
| 214 | layout. Each plane is 1/2 x 1/2 of the full res. |
| 215 | |
| 216 | For JPEG captures ("jpeg"): |
| 217 | Returns R,G,B full-res planes. |
| 218 | |
| 219 | Args: |
| 220 | cap: A capture object as returned by its.device.do_capture. |
| 221 | props: (Optional) camera properties object (of static values); |
| 222 | required for processing raw images. |
| 223 | |
| 224 | Returns: |
| 225 | A tuple of float numpy arrays (one per plane), consisting of pixel |
| 226 | values in the range [0.0, 1.0]. |
| 227 | """ |
| 228 | w = cap["width"] |
| 229 | h = cap["height"] |
| 230 | if cap["format"] == "raw10": |
| 231 | assert(props is not None) |
| 232 | cap = unpack_raw10_capture(cap, props) |
Timothy Knight | ac70242 | 2015-07-01 21:33:34 -0700 | [diff] [blame] | 233 | if cap["format"] == "raw12": |
| 234 | assert(props is not None) |
| 235 | cap = unpack_raw12_capture(cap, props) |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 236 | if cap["format"] == "yuv": |
| 237 | y = cap["data"][0:w*h] |
| 238 | u = cap["data"][w*h:w*h*5/4] |
| 239 | v = cap["data"][w*h*5/4:w*h*6/4] |
| 240 | return ((y.astype(numpy.float32) / 255.0).reshape(h, w, 1), |
| 241 | (u.astype(numpy.float32) / 255.0).reshape(h/2, w/2, 1), |
| 242 | (v.astype(numpy.float32) / 255.0).reshape(h/2, w/2, 1)) |
| 243 | elif cap["format"] == "jpeg": |
| 244 | rgb = decompress_jpeg_to_rgb_image(cap["data"]).reshape(w*h*3) |
| 245 | return (rgb[::3].reshape(h,w,1), |
| 246 | rgb[1::3].reshape(h,w,1), |
| 247 | rgb[2::3].reshape(h,w,1)) |
| 248 | elif cap["format"] == "raw": |
| 249 | assert(props is not None) |
| 250 | white_level = float(props['android.sensor.info.whiteLevel']) |
| 251 | img = numpy.ndarray(shape=(h*w,), dtype='<u2', |
| 252 | buffer=cap["data"][0:w*h*2]) |
| 253 | img = img.astype(numpy.float32).reshape(h,w) / white_level |
Timothy Knight | ac70242 | 2015-07-01 21:33:34 -0700 | [diff] [blame] | 254 | # Crop the raw image to the active array region. |
| 255 | if props.has_key("android.sensor.info.activeArraySize") \ |
| 256 | and props["android.sensor.info.activeArraySize"] is not None \ |
| 257 | and props.has_key("android.sensor.info.pixelArraySize") \ |
| 258 | and props["android.sensor.info.pixelArraySize"] is not None: |
| 259 | # Note that the Rect class is defined such that the left,top values |
| 260 | # are "inside" while the right,bottom values are "outside"; that is, |
| 261 | # it's inclusive of the top,left sides only. So, the width is |
| 262 | # computed as right-left, rather than right-left+1, etc. |
| 263 | wfull = props["android.sensor.info.pixelArraySize"]["width"] |
| 264 | hfull = props["android.sensor.info.pixelArraySize"]["height"] |
| 265 | xcrop = props["android.sensor.info.activeArraySize"]["left"] |
| 266 | ycrop = props["android.sensor.info.activeArraySize"]["top"] |
| 267 | wcrop = props["android.sensor.info.activeArraySize"]["right"]-xcrop |
| 268 | hcrop = props["android.sensor.info.activeArraySize"]["bottom"]-ycrop |
| 269 | assert(wfull >= wcrop >= 0) |
| 270 | assert(hfull >= hcrop >= 0) |
| 271 | assert(wfull - wcrop >= xcrop >= 0) |
| 272 | assert(hfull - hcrop >= ycrop >= 0) |
| 273 | if w == wfull and h == hfull: |
| 274 | # Crop needed; extract the center region. |
| 275 | img = img[ycrop:ycrop+hcrop,xcrop:xcrop+wcrop] |
| 276 | w = wcrop |
| 277 | h = hcrop |
| 278 | elif w == wcrop and h == hcrop: |
| 279 | # No crop needed; image is already cropped to the active array. |
| 280 | None |
| 281 | else: |
| 282 | raise its.error.Error('Invalid image size metadata') |
| 283 | # Separate the image planes. |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 284 | imgs = [img[::2].reshape(w*h/2)[::2].reshape(h/2,w/2,1), |
| 285 | img[::2].reshape(w*h/2)[1::2].reshape(h/2,w/2,1), |
| 286 | img[1::2].reshape(w*h/2)[::2].reshape(h/2,w/2,1), |
| 287 | img[1::2].reshape(w*h/2)[1::2].reshape(h/2,w/2,1)] |
| 288 | idxs = get_canonical_cfa_order(props) |
| 289 | return [imgs[i] for i in idxs] |
| 290 | else: |
| 291 | raise its.error.Error('Invalid format %s' % (cap["format"])) |
| 292 | |
| 293 | def get_canonical_cfa_order(props): |
| 294 | """Returns a mapping from the Bayer 2x2 top-left grid in the CFA to |
| 295 | the standard order R,Gr,Gb,B. |
| 296 | |
| 297 | Args: |
| 298 | props: Camera properties object. |
| 299 | |
| 300 | Returns: |
| 301 | List of 4 integers, corresponding to the positions in the 2x2 top- |
| 302 | left Bayer grid of R,Gr,Gb,B, where the 2x2 grid is labeled as |
| 303 | 0,1,2,3 in row major order. |
| 304 | """ |
| 305 | # Note that raw streams aren't croppable, so the cropRegion doesn't need |
| 306 | # to be considered when determining the top-left pixel color. |
| 307 | cfa_pat = props['android.sensor.info.colorFilterArrangement'] |
| 308 | if cfa_pat == 0: |
| 309 | # RGGB |
| 310 | return [0,1,2,3] |
| 311 | elif cfa_pat == 1: |
| 312 | # GRBG |
| 313 | return [1,0,3,2] |
| 314 | elif cfa_pat == 2: |
| 315 | # GBRG |
| 316 | return [2,3,0,1] |
| 317 | elif cfa_pat == 3: |
| 318 | # BGGR |
| 319 | return [3,2,1,0] |
| 320 | else: |
| 321 | raise its.error.Error("Not supported") |
| 322 | |
| 323 | def get_gains_in_canonical_order(props, gains): |
| 324 | """Reorders the gains tuple to the canonical R,Gr,Gb,B order. |
| 325 | |
| 326 | Args: |
| 327 | props: Camera properties object. |
| 328 | gains: List of 4 values, in R,G_even,G_odd,B order. |
| 329 | |
| 330 | Returns: |
| 331 | List of gains values, in R,Gr,Gb,B order. |
| 332 | """ |
| 333 | cfa_pat = props['android.sensor.info.colorFilterArrangement'] |
| 334 | if cfa_pat in [0,1]: |
| 335 | # RGGB or GRBG, so G_even is Gr |
| 336 | return gains |
| 337 | elif cfa_pat in [2,3]: |
| 338 | # GBRG or BGGR, so G_even is Gb |
| 339 | return [gains[0], gains[2], gains[1], gains[3]] |
| 340 | else: |
| 341 | raise its.error.Error("Not supported") |
| 342 | |
| 343 | def convert_raw_to_rgb_image(r_plane, gr_plane, gb_plane, b_plane, |
| 344 | props, cap_res): |
| 345 | """Convert a Bayer raw-16 image to an RGB image. |
| 346 | |
| 347 | Includes some extremely rudimentary demosaicking and color processing |
| 348 | operations; the output of this function shouldn't be used for any image |
| 349 | quality analysis. |
| 350 | |
| 351 | Args: |
| 352 | r_plane,gr_plane,gb_plane,b_plane: Numpy arrays for each color plane |
| 353 | in the Bayer image, with pixels in the [0.0, 1.0] range. |
| 354 | props: Camera properties object. |
| 355 | cap_res: Capture result (metadata) object. |
| 356 | |
| 357 | Returns: |
| 358 | RGB float-3 image array, with pixel values in [0.0, 1.0] |
| 359 | """ |
| 360 | # Values required for the RAW to RGB conversion. |
| 361 | assert(props is not None) |
| 362 | white_level = float(props['android.sensor.info.whiteLevel']) |
| 363 | black_levels = props['android.sensor.blackLevelPattern'] |
| 364 | gains = cap_res['android.colorCorrection.gains'] |
| 365 | ccm = cap_res['android.colorCorrection.transform'] |
| 366 | |
| 367 | # Reorder black levels and gains to R,Gr,Gb,B, to match the order |
| 368 | # of the planes. |
| 369 | idxs = get_canonical_cfa_order(props) |
| 370 | black_levels = [black_levels[i] for i in idxs] |
| 371 | gains = get_gains_in_canonical_order(props, gains) |
| 372 | |
| 373 | # Convert CCM from rational to float, as numpy arrays. |
| 374 | ccm = numpy.array(its.objects.rational_to_float(ccm)).reshape(3,3) |
| 375 | |
| 376 | # Need to scale the image back to the full [0,1] range after subtracting |
| 377 | # the black level from each pixel. |
| 378 | scale = white_level / (white_level - max(black_levels)) |
| 379 | |
| 380 | # Three-channel black levels, normalized to [0,1] by white_level. |
| 381 | black_levels = numpy.array([b/white_level for b in [ |
| 382 | black_levels[i] for i in [0,1,3]]]) |
| 383 | |
| 384 | # Three-channel gains. |
| 385 | gains = numpy.array([gains[i] for i in [0,1,3]]) |
| 386 | |
| 387 | h,w = r_plane.shape[:2] |
| 388 | img = numpy.dstack([r_plane,(gr_plane+gb_plane)/2.0,b_plane]) |
| 389 | img = (((img.reshape(h,w,3) - black_levels) * scale) * gains).clip(0.0,1.0) |
| 390 | img = numpy.dot(img.reshape(w*h,3), ccm.T).reshape(h,w,3).clip(0.0,1.0) |
| 391 | return img |
| 392 | |
Timothy Knight | e102590 | 2015-07-07 12:46:24 -0700 | [diff] [blame] | 393 | def convert_yuv420_planar_to_rgb_image(y_plane, u_plane, v_plane, |
| 394 | w, h, |
| 395 | ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM, |
| 396 | yuv_off=DEFAULT_YUV_OFFSETS): |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 397 | """Convert a YUV420 8-bit planar image to an RGB image. |
| 398 | |
| 399 | Args: |
| 400 | y_plane: The packed 8-bit Y plane. |
| 401 | u_plane: The packed 8-bit U plane. |
| 402 | v_plane: The packed 8-bit V plane. |
| 403 | w: The width of the image. |
| 404 | h: The height of the image. |
| 405 | ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB. |
| 406 | yuv_off: (Optional) offsets to subtract from each of Y,U,V values. |
| 407 | |
| 408 | Returns: |
| 409 | RGB float-3 image array, with pixel values in [0.0, 1.0]. |
| 410 | """ |
| 411 | y = numpy.subtract(y_plane, yuv_off[0]) |
| 412 | u = numpy.subtract(u_plane, yuv_off[1]).view(numpy.int8) |
| 413 | v = numpy.subtract(v_plane, yuv_off[2]).view(numpy.int8) |
| 414 | u = u.reshape(h/2, w/2).repeat(2, axis=1).repeat(2, axis=0) |
| 415 | v = v.reshape(h/2, w/2).repeat(2, axis=1).repeat(2, axis=0) |
| 416 | yuv = numpy.dstack([y, u.reshape(w*h), v.reshape(w*h)]) |
| 417 | flt = numpy.empty([h, w, 3], dtype=numpy.float32) |
| 418 | flt.reshape(w*h*3)[:] = yuv.reshape(h*w*3)[:] |
| 419 | flt = numpy.dot(flt.reshape(w*h,3), ccm_yuv_to_rgb.T).clip(0, 255) |
| 420 | rgb = numpy.empty([h, w, 3], dtype=numpy.uint8) |
| 421 | rgb.reshape(w*h*3)[:] = flt.reshape(w*h*3)[:] |
| 422 | return rgb.astype(numpy.float32) / 255.0 |
| 423 | |
Timothy Knight | 36fba9c | 2015-06-22 14:46:38 -0700 | [diff] [blame] | 424 | def load_rgb_image(fname): |
| 425 | """Load a standard image file (JPG, PNG, etc.). |
| 426 | |
| 427 | Args: |
| 428 | fname: The path of the file to load. |
| 429 | |
| 430 | Returns: |
| 431 | RGB float-3 image array, with pixel values in [0.0, 1.0]. |
| 432 | """ |
| 433 | img = Image.open(fname) |
| 434 | w = img.size[0] |
| 435 | h = img.size[1] |
| 436 | a = numpy.array(img) |
| 437 | if len(a.shape) == 3 and a.shape[2] == 3: |
| 438 | # RGB |
| 439 | return a.reshape(h,w,3) / 255.0 |
| 440 | elif len(a.shape) == 2 or len(a.shape) == 3 and a.shape[2] == 1: |
| 441 | # Greyscale; convert to RGB |
| 442 | return a.reshape(h*w).repeat(3).reshape(h,w,3) / 255.0 |
| 443 | else: |
| 444 | raise its.error.Error('Unsupported image type') |
| 445 | |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 446 | def load_yuv420_to_rgb_image(yuv_fname, |
| 447 | w, h, |
Timothy Knight | e102590 | 2015-07-07 12:46:24 -0700 | [diff] [blame] | 448 | layout="planar", |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 449 | ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM, |
| 450 | yuv_off=DEFAULT_YUV_OFFSETS): |
| 451 | """Load a YUV420 image file, and return as an RGB image. |
| 452 | |
Timothy Knight | e102590 | 2015-07-07 12:46:24 -0700 | [diff] [blame] | 453 | Supported layouts include "planar" and "nv21". The "yuv" formatted captures |
| 454 | returned from the device via do_capture are in the "planar" layout; other |
| 455 | layouts may only be needed for loading files from other sources. |
| 456 | |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 457 | Args: |
| 458 | yuv_fname: The path of the YUV420 file. |
| 459 | w: The width of the image. |
| 460 | h: The height of the image. |
Timothy Knight | e102590 | 2015-07-07 12:46:24 -0700 | [diff] [blame] | 461 | layout: (Optional) the layout of the YUV data (as a string). |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 462 | ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB. |
| 463 | yuv_off: (Optional) offsets to subtract from each of Y,U,V values. |
| 464 | |
| 465 | Returns: |
| 466 | RGB float-3 image array, with pixel values in [0.0, 1.0]. |
| 467 | """ |
| 468 | with open(yuv_fname, "rb") as f: |
Timothy Knight | e102590 | 2015-07-07 12:46:24 -0700 | [diff] [blame] | 469 | if layout == "planar": |
| 470 | # Plane of Y, plane of V, plane of U. |
| 471 | y = numpy.fromfile(f, numpy.uint8, w*h, "") |
| 472 | v = numpy.fromfile(f, numpy.uint8, w*h/4, "") |
| 473 | u = numpy.fromfile(f, numpy.uint8, w*h/4, "") |
| 474 | elif layout == "nv21": |
| 475 | # Plane of Y, plane of interleaved VUVUVU... |
| 476 | y = numpy.fromfile(f, numpy.uint8, w*h, "") |
| 477 | vu = numpy.fromfile(f, numpy.uint8, w*h/2, "") |
| 478 | v = vu[0::2] |
| 479 | u = vu[1::2] |
| 480 | else: |
| 481 | raise its.error.Error('Unsupported image layout') |
| 482 | return convert_yuv420_planar_to_rgb_image( |
| 483 | y,u,v,w,h,ccm_yuv_to_rgb,yuv_off) |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 484 | |
Timothy Knight | e102590 | 2015-07-07 12:46:24 -0700 | [diff] [blame] | 485 | def load_yuv420_planar_to_yuv_planes(yuv_fname, w, h): |
| 486 | """Load a YUV420 planar image file, and return Y, U, and V plane images. |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 487 | |
| 488 | Args: |
| 489 | yuv_fname: The path of the YUV420 file. |
| 490 | w: The width of the image. |
| 491 | h: The height of the image. |
| 492 | |
| 493 | Returns: |
| 494 | Separate Y, U, and V images as float-1 Numpy arrays, pixels in [0,1]. |
| 495 | Note that pixel (0,0,0) is not black, since U,V pixels are centered at |
| 496 | 0.5, and also that the Y and U,V plane images returned are different |
| 497 | sizes (due to chroma subsampling in the YUV420 format). |
| 498 | """ |
| 499 | with open(yuv_fname, "rb") as f: |
| 500 | y = numpy.fromfile(f, numpy.uint8, w*h, "") |
| 501 | v = numpy.fromfile(f, numpy.uint8, w*h/4, "") |
| 502 | u = numpy.fromfile(f, numpy.uint8, w*h/4, "") |
| 503 | return ((y.astype(numpy.float32) / 255.0).reshape(h, w, 1), |
| 504 | (u.astype(numpy.float32) / 255.0).reshape(h/2, w/2, 1), |
| 505 | (v.astype(numpy.float32) / 255.0).reshape(h/2, w/2, 1)) |
| 506 | |
| 507 | def decompress_jpeg_to_rgb_image(jpeg_buffer): |
| 508 | """Decompress a JPEG-compressed image, returning as an RGB image. |
| 509 | |
| 510 | Args: |
| 511 | jpeg_buffer: The JPEG stream. |
| 512 | |
| 513 | Returns: |
| 514 | A numpy array for the RGB image, with pixels in [0,1]. |
| 515 | """ |
| 516 | img = Image.open(cStringIO.StringIO(jpeg_buffer)) |
| 517 | w = img.size[0] |
| 518 | h = img.size[1] |
| 519 | return numpy.array(img).reshape(h,w,3) / 255.0 |
| 520 | |
| 521 | def apply_lut_to_image(img, lut): |
| 522 | """Applies a LUT to every pixel in a float image array. |
| 523 | |
| 524 | Internally converts to a 16b integer image, since the LUT can work with up |
| 525 | to 16b->16b mappings (i.e. values in the range [0,65535]). The lut can also |
| 526 | have fewer than 65536 entries, however it must be sized as a power of 2 |
| 527 | (and for smaller luts, the scale must match the bitdepth). |
| 528 | |
| 529 | For a 16b lut of 65536 entries, the operation performed is: |
| 530 | |
| 531 | lut[r * 65535] / 65535 -> r' |
| 532 | lut[g * 65535] / 65535 -> g' |
| 533 | lut[b * 65535] / 65535 -> b' |
| 534 | |
| 535 | For a 10b lut of 1024 entries, the operation becomes: |
| 536 | |
| 537 | lut[r * 1023] / 1023 -> r' |
| 538 | lut[g * 1023] / 1023 -> g' |
| 539 | lut[b * 1023] / 1023 -> b' |
| 540 | |
| 541 | Args: |
| 542 | img: Numpy float image array, with pixel values in [0,1]. |
| 543 | lut: Numpy table encoding a LUT, mapping 16b integer values. |
| 544 | |
| 545 | Returns: |
| 546 | Float image array after applying LUT to each pixel. |
| 547 | """ |
| 548 | n = len(lut) |
| 549 | if n <= 0 or n > MAX_LUT_SIZE or (n & (n - 1)) != 0: |
| 550 | raise its.error.Error('Invalid arg LUT size: %d' % (n)) |
| 551 | m = float(n-1) |
| 552 | return (lut[(img * m).astype(numpy.uint16)] / m).astype(numpy.float32) |
| 553 | |
| 554 | def apply_matrix_to_image(img, mat): |
| 555 | """Multiplies a 3x3 matrix with each float-3 image pixel. |
| 556 | |
| 557 | Each pixel is considered a column vector, and is left-multiplied by |
| 558 | the given matrix: |
| 559 | |
| 560 | [ ] r r' |
| 561 | [ mat ] * g -> g' |
| 562 | [ ] b b' |
| 563 | |
| 564 | Args: |
| 565 | img: Numpy float image array, with pixel values in [0,1]. |
| 566 | mat: Numpy 3x3 matrix. |
| 567 | |
| 568 | Returns: |
| 569 | The numpy float-3 image array resulting from the matrix mult. |
| 570 | """ |
| 571 | h = img.shape[0] |
| 572 | w = img.shape[1] |
| 573 | img2 = numpy.empty([h, w, 3], dtype=numpy.float32) |
| 574 | img2.reshape(w*h*3)[:] = (numpy.dot(img.reshape(h*w, 3), mat.T) |
| 575 | ).reshape(w*h*3)[:] |
| 576 | return img2 |
| 577 | |
| 578 | def get_image_patch(img, xnorm, ynorm, wnorm, hnorm): |
| 579 | """Get a patch (tile) of an image. |
| 580 | |
| 581 | Args: |
| 582 | img: Numpy float image array, with pixel values in [0,1]. |
| 583 | xnorm,ynorm,wnorm,hnorm: Normalized (in [0,1]) coords for the tile. |
| 584 | |
| 585 | Returns: |
| 586 | Float image array of the patch. |
| 587 | """ |
| 588 | hfull = img.shape[0] |
| 589 | wfull = img.shape[1] |
| 590 | xtile = math.ceil(xnorm * wfull) |
| 591 | ytile = math.ceil(ynorm * hfull) |
| 592 | wtile = math.floor(wnorm * wfull) |
| 593 | htile = math.floor(hnorm * hfull) |
| 594 | return img[ytile:ytile+htile,xtile:xtile+wtile,:].copy() |
| 595 | |
| 596 | def compute_image_means(img): |
| 597 | """Calculate the mean of each color channel in the image. |
| 598 | |
| 599 | Args: |
| 600 | img: Numpy float image array, with pixel values in [0,1]. |
| 601 | |
| 602 | Returns: |
| 603 | A list of mean values, one per color channel in the image. |
| 604 | """ |
| 605 | means = [] |
| 606 | chans = img.shape[2] |
| 607 | for i in xrange(chans): |
| 608 | means.append(numpy.mean(img[:,:,i], dtype=numpy.float64)) |
| 609 | return means |
| 610 | |
| 611 | def compute_image_variances(img): |
| 612 | """Calculate the variance of each color channel in the image. |
| 613 | |
| 614 | Args: |
| 615 | img: Numpy float image array, with pixel values in [0,1]. |
| 616 | |
| 617 | Returns: |
| 618 | A list of mean values, one per color channel in the image. |
| 619 | """ |
| 620 | variances = [] |
| 621 | chans = img.shape[2] |
| 622 | for i in xrange(chans): |
| 623 | variances.append(numpy.var(img[:,:,i], dtype=numpy.float64)) |
| 624 | return variances |
| 625 | |
Yin-Chia Yeh | 619f2eb | 2015-09-17 17:13:09 -0700 | [diff] [blame] | 626 | def compute_image_snrs(img): |
| 627 | """Calculate the SNR (db) of each color channel in the image. |
| 628 | |
| 629 | Args: |
| 630 | img: Numpy float image array, with pixel values in [0,1]. |
| 631 | |
| 632 | Returns: |
| 633 | A list of SNR value, one per color channel in the image. |
| 634 | """ |
| 635 | means = compute_image_means(img) |
| 636 | variances = compute_image_variances(img) |
| 637 | std_devs = [math.sqrt(v) for v in variances] |
| 638 | snr = [20 * math.log10(m/s) for m,s in zip(means, std_devs)] |
| 639 | return snr |
| 640 | |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 641 | def write_image(img, fname, apply_gamma=False): |
| 642 | """Save a float-3 numpy array image to a file. |
| 643 | |
| 644 | Supported formats: PNG, JPEG, and others; see PIL docs for more. |
| 645 | |
| 646 | Image can be 3-channel, which is interpreted as RGB, or can be 1-channel, |
| 647 | which is greyscale. |
| 648 | |
| 649 | Can optionally specify that the image should be gamma-encoded prior to |
| 650 | writing it out; this should be done if the image contains linear pixel |
| 651 | values, to make the image look "normal". |
| 652 | |
| 653 | Args: |
| 654 | img: Numpy image array data. |
| 655 | fname: Path of file to save to; the extension specifies the format. |
| 656 | apply_gamma: (Optional) apply gamma to the image prior to writing it. |
| 657 | """ |
| 658 | if apply_gamma: |
| 659 | img = apply_lut_to_image(img, DEFAULT_GAMMA_LUT) |
| 660 | (h, w, chans) = img.shape |
| 661 | if chans == 3: |
| 662 | Image.fromarray((img * 255.0).astype(numpy.uint8), "RGB").save(fname) |
| 663 | elif chans == 1: |
| 664 | img3 = (img * 255.0).astype(numpy.uint8).repeat(3).reshape(h,w,3) |
| 665 | Image.fromarray(img3, "RGB").save(fname) |
| 666 | else: |
| 667 | raise its.error.Error('Unsupported image type') |
| 668 | |
| 669 | def downscale_image(img, f): |
| 670 | """Shrink an image by a given integer factor. |
| 671 | |
| 672 | This function computes output pixel values by averaging over rectangular |
| 673 | regions of the input image; it doesn't skip or sample pixels, and all input |
| 674 | image pixels are evenly weighted. |
| 675 | |
| 676 | If the downscaling factor doesn't cleanly divide the width and/or height, |
| 677 | then the remaining pixels on the right or bottom edge are discarded prior |
| 678 | to the downscaling. |
| 679 | |
| 680 | Args: |
| 681 | img: The input image as an ndarray. |
| 682 | f: The downscaling factor, which should be an integer. |
| 683 | |
| 684 | Returns: |
| 685 | The new (downscaled) image, as an ndarray. |
| 686 | """ |
| 687 | h,w,chans = img.shape |
| 688 | f = int(f) |
| 689 | assert(f >= 1) |
| 690 | h = (h/f)*f |
| 691 | w = (w/f)*f |
| 692 | img = img[0:h:,0:w:,::] |
| 693 | chs = [] |
| 694 | for i in xrange(chans): |
| 695 | ch = img.reshape(h*w*chans)[i::chans].reshape(h,w) |
| 696 | ch = ch.reshape(h,w/f,f).mean(2).reshape(h,w/f) |
| 697 | ch = ch.T.reshape(w/f,h/f,f).mean(2).T.reshape(h/f,w/f) |
| 698 | chs.append(ch.reshape(h*w/(f*f))) |
| 699 | img = numpy.vstack(chs).T.reshape(h/f,w/f,chans) |
| 700 | return img |
| 701 | |
Chien-Yu Chen | 3267860 | 2015-06-25 15:10:52 -0700 | [diff] [blame] | 702 | def compute_image_sharpness(img): |
| 703 | """Calculate the sharpness of input image. |
| 704 | |
| 705 | Args: |
| 706 | img: Numpy float RGB/luma image array, with pixel values in [0,1]. |
| 707 | |
| 708 | Returns: |
| 709 | A sharpness estimation value based on the average of gradient magnitude. |
| 710 | Larger value means the image is sharper. |
| 711 | """ |
| 712 | chans = img.shape[2] |
| 713 | assert(chans == 1 or chans == 3) |
| 714 | luma = img |
| 715 | if (chans == 3): |
| 716 | luma = 0.299 * img[:,:,0] + 0.587 * img[:,:,1] + 0.114 * img[:,:,2] |
| 717 | |
| 718 | [gy, gx] = numpy.gradient(luma) |
| 719 | return numpy.average(numpy.sqrt(gy*gy + gx*gx)) |
| 720 | |
Ruben Brunk | 370e243 | 2014-10-14 18:33:23 -0700 | [diff] [blame] | 721 | class __UnitTest(unittest.TestCase): |
| 722 | """Run a suite of unit tests on this module. |
| 723 | """ |
| 724 | |
| 725 | # TODO: Add more unit tests. |
| 726 | |
| 727 | def test_apply_matrix_to_image(self): |
| 728 | """Unit test for apply_matrix_to_image. |
| 729 | |
| 730 | Test by using a canned set of values on a 1x1 pixel image. |
| 731 | |
| 732 | [ 1 2 3 ] [ 0.1 ] [ 1.4 ] |
| 733 | [ 4 5 6 ] * [ 0.2 ] = [ 3.2 ] |
| 734 | [ 7 8 9 ] [ 0.3 ] [ 5.0 ] |
| 735 | mat x y |
| 736 | """ |
| 737 | mat = numpy.array([[1,2,3],[4,5,6],[7,8,9]]) |
| 738 | x = numpy.array([0.1,0.2,0.3]).reshape(1,1,3) |
| 739 | y = apply_matrix_to_image(x, mat).reshape(3).tolist() |
| 740 | y_ref = [1.4,3.2,5.0] |
| 741 | passed = all([math.fabs(y[i] - y_ref[i]) < 0.001 for i in xrange(3)]) |
| 742 | self.assertTrue(passed) |
| 743 | |
| 744 | def test_apply_lut_to_image(self): |
| 745 | """ Unit test for apply_lut_to_image. |
| 746 | |
| 747 | Test by using a canned set of values on a 1x1 pixel image. The LUT will |
| 748 | simply double the value of the index: |
| 749 | |
| 750 | lut[x] = 2*x |
| 751 | """ |
| 752 | lut = numpy.array([2*i for i in xrange(65536)]) |
| 753 | x = numpy.array([0.1,0.2,0.3]).reshape(1,1,3) |
| 754 | y = apply_lut_to_image(x, lut).reshape(3).tolist() |
| 755 | y_ref = [0.2,0.4,0.6] |
| 756 | passed = all([math.fabs(y[i] - y_ref[i]) < 0.001 for i in xrange(3)]) |
| 757 | self.assertTrue(passed) |
| 758 | |
| 759 | if __name__ == '__main__': |
| 760 | unittest.main() |
| 761 | |