blob: 9e9f1cc350441546fe7ed5e63d8ff86ccb3e6c97 [file] [log] [blame]
Ruben Brunk370e2432014-10-14 18:33:23 -07001# Copyright 2013 The Android Open Source Project
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14
15import its.image
16import its.caps
17import its.device
18import its.objects
19import its.target
20import numpy
21import math
22import pylab
23import os.path
24import matplotlib
25import matplotlib.pyplot
26
27def main():
28 """Test that device processing can be inverted to linear pixels.
29
30 Captures a sequence of shots with the device pointed at a uniform
31 target. Attempts to invert all the ISP processing to get back to
32 linear R,G,B pixel data.
33 """
34 NAME = os.path.basename(__file__).split(".")[0]
35
Yin-Chia Yehea2566c2014-12-15 13:49:35 -080036 RESIDUAL_THRESHOLD = 0.0003 # approximately each sample is off by 2/255
Ruben Brunk370e2432014-10-14 18:33:23 -070037
38 # The HAL3.2 spec requires that curves up to 64 control points in length
39 # must be supported.
40 L = 64
41 LM1 = float(L-1)
42
43 gamma_lut = numpy.array(
44 sum([[i/LM1, math.pow(i/LM1, 1/2.2)] for i in xrange(L)], []))
45 inv_gamma_lut = numpy.array(
46 sum([[i/LM1, math.pow(i/LM1, 2.2)] for i in xrange(L)], []))
47
48 with its.device.ItsSession() as cam:
49 props = cam.get_camera_properties()
Chien-Yu Chen34fa85d2014-10-22 16:58:08 -070050 its.caps.skip_unless(its.caps.compute_target_exposure(props) and
51 its.caps.per_frame_control(props))
Ruben Brunk370e2432014-10-14 18:33:23 -070052
Clemenz Portmann210b89e2017-01-30 13:46:22 -080053 debug = its.caps.debug_mode()
54 if debug:
55 fmt = its.objects.get_largest_yuv_format(props)
56 else:
57 fmt = its.objects.get_smallest_yuv_format(props)
58
Ruben Brunk370e2432014-10-14 18:33:23 -070059 e,s = its.target.get_target_exposure_combos(cam)["midSensitivity"]
60 s /= 2
61 sens_range = props['android.sensor.info.sensitivityRange']
62 sensitivities = [s*1.0/3.0, s*2.0/3.0, s, s*4.0/3.0, s*5.0/3.0]
63 sensitivities = [s for s in sensitivities
64 if s > sens_range[0] and s < sens_range[1]]
65
66 req = its.objects.manual_capture_request(0, e)
67 req["android.blackLevel.lock"] = True
68 req["android.tonemap.mode"] = 0
69 req["android.tonemap.curveRed"] = gamma_lut.tolist()
70 req["android.tonemap.curveGreen"] = gamma_lut.tolist()
71 req["android.tonemap.curveBlue"] = gamma_lut.tolist()
72
73 r_means = []
74 g_means = []
75 b_means = []
76
77 for sens in sensitivities:
78 req["android.sensor.sensitivity"] = sens
Clemenz Portmann210b89e2017-01-30 13:46:22 -080079 cap = cam.do_capture(req, fmt)
Ruben Brunk370e2432014-10-14 18:33:23 -070080 img = its.image.convert_capture_to_rgb_image(cap)
81 its.image.write_image(
82 img, "%s_sens=%04d.jpg" % (NAME, sens))
83 img = its.image.apply_lut_to_image(img, inv_gamma_lut[1::2] * LM1)
84 tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1)
85 rgb_means = its.image.compute_image_means(tile)
86 r_means.append(rgb_means[0])
87 g_means.append(rgb_means[1])
88 b_means.append(rgb_means[2])
89
90 pylab.plot(sensitivities, r_means, 'r')
91 pylab.plot(sensitivities, g_means, 'g')
92 pylab.plot(sensitivities, b_means, 'b')
93 pylab.ylim([0,1])
94 matplotlib.pyplot.savefig("%s_plot_means.png" % (NAME))
95
96 # Check that each plot is actually linear.
97 for means in [r_means, g_means, b_means]:
98 line,residuals,_,_,_ = numpy.polyfit(range(5),means,1,full=True)
99 print "Line: m=%f, b=%f, resid=%f"%(line[0], line[1], residuals[0])
100 assert(residuals[0] < RESIDUAL_THRESHOLD)
101
102if __name__ == '__main__':
103 main()
104