| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * Dalvik bytecode structural verifier. The only public entry point |
| * (except for a few shared utility functions) is dvmVerifyCodeFlow(). |
| * |
| * TODO: might benefit from a signature-->class lookup cache. Could avoid |
| * some string-peeling and wouldn't need to compute hashes. |
| */ |
| #include "Dalvik.h" |
| #include "analysis/Liveness.h" |
| #include "analysis/CodeVerify.h" |
| #include "analysis/Optimize.h" |
| #include "analysis/RegisterMap.h" |
| #include "libdex/DexCatch.h" |
| #include "libdex/InstrUtils.h" |
| |
| #include <stddef.h> |
| |
| |
| /* |
| * We don't need to store the register data for many instructions, because |
| * we either only need it at branch points (for verification) or GC points |
| * and branches (for verification + type-precise register analysis). |
| */ |
| enum RegisterTrackingMode { |
| kTrackRegsBranches, |
| kTrackRegsGcPoints, |
| kTrackRegsAll |
| }; |
| |
| /* |
| * Set this to enable dead code scanning. This is not required, but it's |
| * very useful when testing changes to the verifier (to make sure we're not |
| * skipping over stuff) and for checking the optimized output from "dx". |
| * The only reason not to do it is that it slightly increases the time |
| * required to perform verification. |
| */ |
| #ifndef NDEBUG |
| # define DEAD_CODE_SCAN true |
| #else |
| # define DEAD_CODE_SCAN false |
| #endif |
| |
| static bool gDebugVerbose = false; |
| |
| #define SHOW_REG_DETAILS \ |
| (0 | DRT_SHOW_LIVENESS /*| DRT_SHOW_REF_TYPES | DRT_SHOW_LOCALS*/) |
| |
| /* |
| * We need an extra "pseudo register" to hold the return type briefly. It |
| * can be category 1 or 2, so we need two slots. |
| */ |
| #define kExtraRegs 2 |
| #define RESULT_REGISTER(_insnRegCount) (_insnRegCount) |
| |
| /* |
| * Big fat collection of register data. |
| */ |
| typedef struct RegisterTable { |
| /* |
| * Array of RegisterLine structs, one per address in the method. We only |
| * set the pointers for certain addresses, based on instruction widths |
| * and what we're trying to accomplish. |
| */ |
| RegisterLine* registerLines; |
| |
| /* |
| * Number of registers we track for each instruction. This is equal |
| * to the method's declared "registersSize" plus kExtraRegs. |
| */ |
| size_t insnRegCountPlus; |
| |
| /* |
| * Storage for a register line we're currently working on. |
| */ |
| RegisterLine workLine; |
| |
| /* |
| * Storage for a register line we're saving for later. |
| */ |
| RegisterLine savedLine; |
| |
| /* |
| * A single large alloc, with all of the storage needed for RegisterLine |
| * data (RegType array, MonitorEntries array, monitor stack). |
| */ |
| void* lineAlloc; |
| } RegisterTable; |
| |
| |
| /* fwd */ |
| #ifndef NDEBUG |
| static void checkMergeTab(); |
| #endif |
| static bool isInitMethod(const Method* meth); |
| static RegType getInvocationThis(const RegisterLine* registerLine,\ |
| const DecodedInstruction* pDecInsn, VerifyError* pFailure); |
| static void verifyRegisterType(RegisterLine* registerLine, \ |
| u4 vsrc, RegType checkType, VerifyError* pFailure); |
| static bool doCodeVerification(VerifierData* vdata, RegisterTable* regTable); |
| static bool verifyInstruction(const Method* meth, InsnFlags* insnFlags,\ |
| RegisterTable* regTable, int insnIdx, UninitInstanceMap* uninitMap, |
| int* pStartGuess); |
| static ClassObject* findCommonSuperclass(ClassObject* c1, ClassObject* c2); |
| static void dumpRegTypes(const VerifierData* vdata, \ |
| const RegisterLine* registerLine, int addr, const char* addrName, |
| const UninitInstanceMap* uninitMap, int displayFlags); |
| |
| /* bit values for dumpRegTypes() "displayFlags" */ |
| enum { |
| DRT_SIMPLE = 0, |
| DRT_SHOW_REF_TYPES = 0x01, |
| DRT_SHOW_LOCALS = 0x02, |
| DRT_SHOW_LIVENESS = 0x04, |
| }; |
| |
| |
| /* |
| * =========================================================================== |
| * RegType and UninitInstanceMap utility functions |
| * =========================================================================== |
| */ |
| |
| #define __ kRegTypeUnknown |
| #define _U kRegTypeUninit |
| #define _X kRegTypeConflict |
| #define _0 kRegTypeZero |
| #define _1 kRegTypeOne |
| #define _Z kRegTypeBoolean |
| #define _y kRegTypeConstPosByte |
| #define _Y kRegTypeConstByte |
| #define _h kRegTypeConstPosShort |
| #define _H kRegTypeConstShort |
| #define _c kRegTypeConstChar |
| #define _i kRegTypeConstInteger |
| #define _b kRegTypePosByte |
| #define _B kRegTypeByte |
| #define _s kRegTypePosShort |
| #define _S kRegTypeShort |
| #define _C kRegTypeChar |
| #define _I kRegTypeInteger |
| #define _F kRegTypeFloat |
| #define _N kRegTypeConstLo |
| #define _n kRegTypeConstHi |
| #define _J kRegTypeLongLo |
| #define _j kRegTypeLongHi |
| #define _D kRegTypeDoubleLo |
| #define _d kRegTypeDoubleHi |
| |
| /* |
| * Merge result table for primitive values. The table is symmetric along |
| * the diagonal. |
| * |
| * Note that 32-bit int/float do not merge into 64-bit long/double. This |
| * is a register merge, not a widening conversion. Only the "implicit" |
| * widening within a category, e.g. byte to short, is allowed. |
| * |
| * Dalvik does not draw a distinction between int and float, but we enforce |
| * that once a value is used as int, it can't be used as float, and vice |
| * versa. We do not allow free exchange between 32-bit int/float and 64-bit |
| * long/double. |
| * |
| * Note that Uninit+Uninit=Uninit. This holds true because we only |
| * use this when the RegType value is exactly equal to kRegTypeUninit, which |
| * can only happen for the zeroeth entry in the table. |
| * |
| * "Unknown" never merges with anything known. The only time a register |
| * transitions from "unknown" to "known" is when we're executing code |
| * for the first time, and we handle that with a simple copy. |
| */ |
| const char gDvmMergeTab[kRegTypeMAX][kRegTypeMAX] = |
| { |
| /* chk: _ U X 0 1 Z y Y h H c i b B s S C I F N n J j D d */ |
| { /*_*/ __,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X }, |
| { /*U*/ _X,_U,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X }, |
| { /*X*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X }, |
| { /*0*/ _X,_X,_X,_0,_Z,_Z,_y,_Y,_h,_H,_c,_i,_b,_B,_s,_S,_C,_I,_F,_X,_X,_X,_X,_X,_X }, |
| { /*1*/ _X,_X,_X,_Z,_1,_Z,_y,_Y,_h,_H,_c,_i,_b,_B,_s,_S,_C,_I,_F,_X,_X,_X,_X,_X,_X }, |
| { /*Z*/ _X,_X,_X,_Z,_Z,_Z,_y,_Y,_h,_H,_c,_i,_b,_B,_s,_S,_C,_I,_F,_X,_X,_X,_X,_X,_X }, |
| { /*y*/ _X,_X,_X,_y,_y,_y,_y,_Y,_h,_H,_c,_i,_b,_B,_s,_S,_C,_I,_F,_X,_X,_X,_X,_X,_X }, |
| { /*Y*/ _X,_X,_X,_Y,_Y,_Y,_Y,_Y,_h,_H,_c,_i,_B,_B,_S,_S,_I,_I,_F,_X,_X,_X,_X,_X,_X }, |
| { /*h*/ _X,_X,_X,_h,_h,_h,_h,_h,_h,_H,_c,_i,_s,_S,_s,_S,_C,_I,_F,_X,_X,_X,_X,_X,_X }, |
| { /*H*/ _X,_X,_X,_H,_H,_H,_H,_H,_H,_H,_c,_i,_S,_S,_S,_S,_I,_I,_F,_X,_X,_X,_X,_X,_X }, |
| { /*c*/ _X,_X,_X,_c,_c,_c,_c,_c,_c,_c,_c,_i,_C,_I,_C,_I,_C,_I,_F,_X,_X,_X,_X,_X,_X }, |
| { /*i*/ _X,_X,_X,_i,_i,_i,_i,_i,_i,_i,_i,_i,_I,_I,_I,_I,_I,_I,_F,_X,_X,_X,_X,_X,_X }, |
| { /*b*/ _X,_X,_X,_b,_b,_b,_b,_B,_s,_S,_C,_I,_b,_B,_s,_S,_C,_I,_X,_X,_X,_X,_X,_X,_X }, |
| { /*B*/ _X,_X,_X,_B,_B,_B,_B,_B,_S,_S,_I,_I,_B,_B,_S,_S,_I,_I,_X,_X,_X,_X,_X,_X,_X }, |
| { /*s*/ _X,_X,_X,_s,_s,_s,_s,_S,_s,_S,_C,_I,_s,_S,_s,_S,_C,_I,_X,_X,_X,_X,_X,_X,_X }, |
| { /*S*/ _X,_X,_X,_S,_S,_S,_S,_S,_S,_S,_I,_I,_S,_S,_S,_S,_I,_I,_X,_X,_X,_X,_X,_X,_X }, |
| { /*C*/ _X,_X,_X,_C,_C,_C,_C,_I,_C,_I,_C,_I,_C,_I,_C,_I,_C,_I,_X,_X,_X,_X,_X,_X,_X }, |
| { /*I*/ _X,_X,_X,_I,_I,_I,_I,_I,_I,_I,_I,_I,_I,_I,_I,_I,_I,_I,_X,_X,_X,_X,_X,_X,_X }, |
| { /*F*/ _X,_X,_X,_F,_F,_F,_F,_F,_F,_F,_F,_F,_X,_X,_X,_X,_X,_X,_F,_X,_X,_X,_X,_X,_X }, |
| { /*N*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_N,_X,_J,_X,_D,_X }, |
| { /*n*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_n,_X,_j,_X,_d }, |
| { /*J*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_J,_X,_J,_X,_X,_X }, |
| { /*j*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_j,_X,_j,_X,_X }, |
| { /*D*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_D,_X,_X,_X,_D,_X }, |
| { /*d*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_d,_X,_X,_X,_d }, |
| }; |
| |
| #undef __ |
| #undef _U |
| #undef _X |
| #undef _0 |
| #undef _1 |
| #undef _Z |
| #undef _y |
| #undef _Y |
| #undef _h |
| #undef _H |
| #undef _c |
| #undef _i |
| #undef _b |
| #undef _B |
| #undef _s |
| #undef _S |
| #undef _C |
| #undef _I |
| #undef _F |
| #undef _N |
| #undef _n |
| #undef _J |
| #undef _j |
| #undef _D |
| #undef _d |
| |
| #ifndef NDEBUG |
| /* |
| * Verify symmetry in the conversion table. |
| */ |
| static void checkMergeTab() |
| { |
| int i, j; |
| |
| for (i = 0; i < kRegTypeMAX; i++) { |
| for (j = i; j < kRegTypeMAX; j++) { |
| if (gDvmMergeTab[i][j] != gDvmMergeTab[j][i]) { |
| ALOGE("Symmetry violation: %d,%d vs %d,%d", i, j, j, i); |
| dvmAbort(); |
| } |
| } |
| } |
| } |
| #endif |
| |
| /* |
| * Determine whether we can convert "srcType" to "checkType", where |
| * "checkType" is one of the category-1 non-reference types. |
| * |
| * Constant derived types may become floats, but other values may not. |
| */ |
| static bool canConvertTo1nr(RegType srcType, RegType checkType) |
| { |
| static const char convTab |
| [kRegType1nrEND-kRegType1nrSTART+1][kRegType1nrEND-kRegType1nrSTART+1] = |
| { |
| /* chk: 0 1 Z y Y h H c i b B s S C I F */ |
| { /*0*/ 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| { /*1*/ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| { /*Z*/ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| { /*y*/ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| { /*Y*/ 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1 }, |
| { /*h*/ 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1 }, |
| { /*H*/ 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1 }, |
| { /*c*/ 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1 }, |
| { /*i*/ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1 }, |
| { /*b*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0 }, |
| { /*B*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0 }, |
| { /*s*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0 }, |
| { /*S*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0 }, |
| { /*C*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0 }, |
| { /*I*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 }, |
| { /*F*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }, |
| }; |
| |
| assert(checkType >= kRegType1nrSTART && checkType <= kRegType1nrEND); |
| #if 0 |
| if (checkType < kRegType1nrSTART || checkType > kRegType1nrEND) { |
| LOG_VFY("Unexpected checkType %d (srcType=%d)", checkType, srcType); |
| assert(false); |
| return false; |
| } |
| #endif |
| |
| //printf("convTab[%d][%d] = %d\n", srcType, checkType, |
| // convTab[srcType-kRegType1nrSTART][checkType-kRegType1nrSTART]); |
| if (srcType >= kRegType1nrSTART && srcType <= kRegType1nrEND) |
| return (bool) convTab[srcType-kRegType1nrSTART][checkType-kRegType1nrSTART]; |
| |
| return false; |
| } |
| |
| /* |
| * Determine whether the category-2 types are compatible. |
| */ |
| static bool canConvertTo2(RegType srcType, RegType checkType) |
| { |
| return ((srcType == kRegTypeConstLo || srcType == checkType) && |
| (checkType == kRegTypeLongLo || checkType == kRegTypeDoubleLo)); |
| } |
| |
| /* |
| * Determine whether or not "instrType" and "targetType" are compatible, |
| * for purposes of getting or setting a value in a field or array. The |
| * idea is that an instruction with a category 1nr type (say, aget-short |
| * or iput-boolean) is accessing a static field, instance field, or array |
| * entry, and we want to make sure sure that the operation is legal. |
| * |
| * At a minimum, source and destination must have the same width. We |
| * further refine this to assert that "short" and "char" are not |
| * compatible, because the sign-extension is different on the "get" |
| * operations. |
| * |
| * We're not considering the actual contents of the register, so we'll |
| * never get "pseudo-types" like kRegTypeZero or kRegTypePosShort. We |
| * could get kRegTypeUnknown in "targetType" if a field or array class |
| * lookup failed. Category 2 types and references are checked elsewhere. |
| */ |
| static bool checkFieldArrayStore1nr(RegType instrType, RegType targetType) |
| { |
| return (instrType == targetType); |
| } |
| |
| /* |
| * Convert a VM PrimitiveType enum value to the equivalent RegType value. |
| */ |
| static RegType primitiveTypeToRegType(PrimitiveType primType) |
| { |
| switch (primType) { |
| case PRIM_BOOLEAN: return kRegTypeBoolean; |
| case PRIM_BYTE: return kRegTypeByte; |
| case PRIM_SHORT: return kRegTypeShort; |
| case PRIM_CHAR: return kRegTypeChar; |
| case PRIM_INT: return kRegTypeInteger; |
| case PRIM_LONG: return kRegTypeLongLo; |
| case PRIM_FLOAT: return kRegTypeFloat; |
| case PRIM_DOUBLE: return kRegTypeDoubleLo; |
| case PRIM_VOID: |
| default: { |
| assert(false); |
| return kRegTypeUnknown; |
| } |
| } |
| } |
| |
| /* |
| * Convert a const derived RegType to the equivalent non-const RegType value. |
| * Does nothing if the argument type isn't const derived. |
| */ |
| static RegType constTypeToRegType(RegType constType) |
| { |
| switch (constType) { |
| case kRegTypeConstPosByte: return kRegTypePosByte; |
| case kRegTypeConstByte: return kRegTypeByte; |
| case kRegTypeConstPosShort: return kRegTypePosShort; |
| case kRegTypeConstShort: return kRegTypeShort; |
| case kRegTypeConstChar: return kRegTypeChar; |
| case kRegTypeConstInteger: return kRegTypeInteger; |
| default: { |
| return constType; |
| } |
| } |
| } |
| |
| /* |
| * Given a 32-bit constant, return the most-restricted RegType enum entry |
| * that can hold the value. The types used here indicate the value came |
| * from a const instruction, and may not correctly represent the real type |
| * of the value. Upon use, a constant derived type is updated with the |
| * type from the use, which will be unambiguous. |
| */ |
| static char determineCat1Const(s4 value) |
| { |
| if (value < -32768) |
| return kRegTypeConstInteger; |
| else if (value < -128) |
| return kRegTypeConstShort; |
| else if (value < 0) |
| return kRegTypeConstByte; |
| else if (value == 0) |
| return kRegTypeZero; |
| else if (value == 1) |
| return kRegTypeOne; |
| else if (value < 128) |
| return kRegTypeConstPosByte; |
| else if (value < 32768) |
| return kRegTypeConstPosShort; |
| else if (value < 65536) |
| return kRegTypeConstChar; |
| else |
| return kRegTypeConstInteger; |
| } |
| |
| /* |
| * Create a new uninitialized instance map. |
| * |
| * The map is allocated and populated with address entries. The addresses |
| * appear in ascending order to allow binary searching. |
| * |
| * Very few methods have 10 or more new-instance instructions; the |
| * majority have 0 or 1. Occasionally a static initializer will have 200+. |
| * |
| * TODO: merge this into the static pass or initRegisterTable; want to |
| * avoid walking through the instructions yet again just to set up this table |
| */ |
| UninitInstanceMap* dvmCreateUninitInstanceMap(const Method* meth, |
| const InsnFlags* insnFlags, int newInstanceCount) |
| { |
| const int insnsSize = dvmGetMethodInsnsSize(meth); |
| const u2* insns = meth->insns; |
| UninitInstanceMap* uninitMap; |
| bool isInit = false; |
| int idx, addr; |
| |
| if (isInitMethod(meth)) { |
| newInstanceCount++; |
| isInit = true; |
| } |
| |
| /* |
| * Allocate the header and map as a single unit. |
| * |
| * TODO: consider having a static instance so we can avoid allocations. |
| * I don't think the verifier is guaranteed to be single-threaded when |
| * running in the VM (rather than dexopt), so that must be taken into |
| * account. |
| */ |
| int size = offsetof(UninitInstanceMap, map) + |
| newInstanceCount * sizeof(uninitMap->map[0]); |
| uninitMap = (UninitInstanceMap*)calloc(1, size); |
| if (uninitMap == NULL) |
| return NULL; |
| uninitMap->numEntries = newInstanceCount; |
| |
| idx = 0; |
| if (isInit) { |
| uninitMap->map[idx++].addr = kUninitThisArgAddr; |
| } |
| |
| /* |
| * Run through and find the new-instance instructions. |
| */ |
| for (addr = 0; addr < insnsSize; /**/) { |
| int width = dvmInsnGetWidth(insnFlags, addr); |
| |
| Opcode opcode = dexOpcodeFromCodeUnit(*insns); |
| if (opcode == OP_NEW_INSTANCE) |
| uninitMap->map[idx++].addr = addr; |
| |
| addr += width; |
| insns += width; |
| } |
| |
| assert(idx == newInstanceCount); |
| return uninitMap; |
| } |
| |
| /* |
| * Free the map. |
| */ |
| void dvmFreeUninitInstanceMap(UninitInstanceMap* uninitMap) |
| { |
| free(uninitMap); |
| } |
| |
| /* |
| * Set the class object associated with the instruction at "addr". |
| * |
| * Returns the map slot index, or -1 if the address isn't listed in the map |
| * (shouldn't happen) or if a class is already associated with the address |
| * (bad bytecode). |
| * |
| * Entries, once set, do not change -- a given address can only allocate |
| * one type of object. |
| */ |
| static int setUninitInstance(UninitInstanceMap* uninitMap, int addr, |
| ClassObject* clazz) |
| { |
| int idx; |
| |
| assert(clazz != NULL); |
| |
| #ifdef VERIFIER_STATS |
| gDvm.verifierStats.uninitSearches++; |
| #endif |
| |
| /* TODO: binary search when numEntries > 8 */ |
| for (idx = uninitMap->numEntries - 1; idx >= 0; idx--) { |
| if (uninitMap->map[idx].addr == addr) { |
| if (uninitMap->map[idx].clazz != NULL && |
| uninitMap->map[idx].clazz != clazz) |
| { |
| LOG_VFY("VFY: addr %d already set to %p, not setting to %p", |
| addr, uninitMap->map[idx].clazz, clazz); |
| return -1; // already set to something else?? |
| } |
| uninitMap->map[idx].clazz = clazz; |
| return idx; |
| } |
| } |
| |
| LOG_VFY("VFY: addr %d not found in uninit map", addr); |
| assert(false); // shouldn't happen |
| return -1; |
| } |
| |
| /* |
| * Get the class object at the specified index. |
| */ |
| static ClassObject* getUninitInstance(const UninitInstanceMap* uninitMap, |
| int idx) |
| { |
| assert(idx >= 0 && idx < uninitMap->numEntries); |
| return uninitMap->map[idx].clazz; |
| } |
| |
| /* determine if "type" is actually an object reference (init/uninit/zero) */ |
| static inline bool regTypeIsReference(RegType type) { |
| return (type > kRegTypeMAX || type == kRegTypeUninit || |
| type == kRegTypeZero); |
| } |
| |
| /* determine if "type" is an uninitialized object reference */ |
| static inline bool regTypeIsUninitReference(RegType type) { |
| return ((type & kRegTypeUninitMask) == kRegTypeUninit); |
| } |
| |
| /* convert the initialized reference "type" to a ClassObject pointer */ |
| /* (does not expect uninit ref types or "zero") */ |
| static ClassObject* regTypeInitializedReferenceToClass(RegType type) |
| { |
| assert(regTypeIsReference(type) && type != kRegTypeZero); |
| if ((type & 0x01) == 0) { |
| return (ClassObject*) type; |
| } else { |
| //LOG_VFY("VFY: attempted to use uninitialized reference"); |
| return NULL; |
| } |
| } |
| |
| /* extract the index into the uninitialized instance map table */ |
| static inline int regTypeToUninitIndex(RegType type) { |
| assert(regTypeIsUninitReference(type)); |
| return (type & ~kRegTypeUninitMask) >> kRegTypeUninitShift; |
| } |
| |
| /* convert the reference "type" to a ClassObject pointer */ |
| static ClassObject* regTypeReferenceToClass(RegType type, |
| const UninitInstanceMap* uninitMap) |
| { |
| assert(regTypeIsReference(type) && type != kRegTypeZero); |
| if (regTypeIsUninitReference(type)) { |
| assert(uninitMap != NULL); |
| return getUninitInstance(uninitMap, regTypeToUninitIndex(type)); |
| } else { |
| return (ClassObject*) type; |
| } |
| } |
| |
| /* convert the ClassObject pointer to an (initialized) register type */ |
| static inline RegType regTypeFromClass(ClassObject* clazz) { |
| return (u4) clazz; |
| } |
| |
| /* return the RegType for the uninitialized reference in slot "uidx" */ |
| static RegType regTypeFromUninitIndex(int uidx) { |
| return (u4) (kRegTypeUninit | (uidx << kRegTypeUninitShift)); |
| } |
| |
| |
| /* |
| * =========================================================================== |
| * Signature operations |
| * =========================================================================== |
| */ |
| |
| /* |
| * Is this method a constructor? |
| */ |
| static bool isInitMethod(const Method* meth) |
| { |
| return (*meth->name == '<' && strcmp(meth->name+1, "init>") == 0); |
| } |
| |
| /* |
| * Is this method a class initializer? |
| */ |
| #if 0 |
| static bool isClassInitMethod(const Method* meth) |
| { |
| return (*meth->name == '<' && strcmp(meth->name+1, "clinit>") == 0); |
| } |
| #endif |
| |
| /* |
| * Look up a class reference given as a simple string descriptor. |
| * |
| * If we can't find it, return a generic substitute when possible. |
| */ |
| static ClassObject* lookupClassByDescriptor(const Method* meth, |
| const char* pDescriptor, VerifyError* pFailure) |
| { |
| /* |
| * The javac compiler occasionally puts references to nonexistent |
| * classes in signatures. For example, if you have a non-static |
| * inner class with no constructor, the compiler provides |
| * a private <init> for you. Constructing the class |
| * requires <init>(parent), but the outer class can't call |
| * that because the method is private. So the compiler |
| * generates a package-scope <init>(parent,bogus) method that |
| * just calls the regular <init> (the "bogus" part being necessary |
| * to distinguish the signature of the synthetic method). |
| * Treating the bogus class as an instance of java.lang.Object |
| * allows the verifier to process the class successfully. |
| */ |
| |
| //ALOGI("Looking up '%s'", typeStr); |
| ClassObject* clazz; |
| clazz = dvmFindClassNoInit(pDescriptor, meth->clazz->classLoader); |
| if (clazz == NULL) { |
| dvmClearOptException(dvmThreadSelf()); |
| if (strchr(pDescriptor, '$') != NULL) { |
| ALOGV("VFY: unable to find class referenced in signature (%s)", |
| pDescriptor); |
| } else { |
| LOG_VFY("VFY: unable to find class referenced in signature (%s)", |
| pDescriptor); |
| } |
| |
| if (pDescriptor[0] == '[') { |
| /* We are looking at an array descriptor. */ |
| |
| /* |
| * There should never be a problem loading primitive arrays. |
| */ |
| if (pDescriptor[1] != 'L' && pDescriptor[1] != '[') { |
| LOG_VFY("VFY: invalid char in signature in '%s'", |
| pDescriptor); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| } |
| |
| /* |
| * Try to continue with base array type. This will let |
| * us pass basic stuff (e.g. get array len) that wouldn't |
| * fly with an Object. This is NOT correct if the |
| * missing type is a primitive array, but we should never |
| * have a problem loading those. (I'm not convinced this |
| * is correct or even useful. Just use Object here?) |
| */ |
| clazz = dvmFindClassNoInit("[Ljava/lang/Object;", |
| meth->clazz->classLoader); |
| } else if (pDescriptor[0] == 'L') { |
| /* |
| * We are looking at a non-array reference descriptor; |
| * try to continue with base reference type. |
| */ |
| clazz = gDvm.classJavaLangObject; |
| } else { |
| /* We are looking at a primitive type. */ |
| LOG_VFY("VFY: invalid char in signature in '%s'", pDescriptor); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| } |
| |
| if (clazz == NULL) { |
| *pFailure = VERIFY_ERROR_GENERIC; |
| } |
| } |
| |
| if (dvmIsPrimitiveClass(clazz)) { |
| LOG_VFY("VFY: invalid use of primitive type '%s'", pDescriptor); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| clazz = NULL; |
| } |
| |
| return clazz; |
| } |
| |
| /* |
| * Look up a class reference in a signature. Could be an arg or the |
| * return value. |
| * |
| * Advances "*pSig" to the last character in the signature (that is, to |
| * the ';'). |
| * |
| * NOTE: this is also expected to verify the signature. |
| */ |
| static ClassObject* lookupSignatureClass(const Method* meth, const char** pSig, |
| VerifyError* pFailure) |
| { |
| const char* sig = *pSig; |
| const char* endp = sig; |
| |
| assert(sig != NULL && *sig == 'L'); |
| |
| while (*++endp != ';' && *endp != '\0') |
| ; |
| if (*endp != ';') { |
| LOG_VFY("VFY: bad signature component '%s' (missing ';')", sig); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| return NULL; |
| } |
| |
| endp++; /* Advance past the ';'. */ |
| int typeLen = endp - sig; |
| char typeStr[typeLen+1]; /* +1 for the '\0' */ |
| memcpy(typeStr, sig, typeLen); |
| typeStr[typeLen] = '\0'; |
| |
| *pSig = endp - 1; /* - 1 so that *pSig points at, not past, the ';' */ |
| |
| return lookupClassByDescriptor(meth, typeStr, pFailure); |
| } |
| |
| /* |
| * Look up an array class reference in a signature. Could be an arg or the |
| * return value. |
| * |
| * Advances "*pSig" to the last character in the signature. |
| * |
| * NOTE: this is also expected to verify the signature. |
| */ |
| static ClassObject* lookupSignatureArrayClass(const Method* meth, |
| const char** pSig, VerifyError* pFailure) |
| { |
| const char* sig = *pSig; |
| const char* endp = sig; |
| |
| assert(sig != NULL && *sig == '['); |
| |
| /* find the end */ |
| while (*++endp == '[' && *endp != '\0') |
| ; |
| |
| if (*endp == 'L') { |
| while (*++endp != ';' && *endp != '\0') |
| ; |
| if (*endp != ';') { |
| LOG_VFY("VFY: bad signature component '%s' (missing ';')", sig); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| return NULL; |
| } |
| } |
| |
| int typeLen = endp - sig +1; |
| char typeStr[typeLen+1]; |
| memcpy(typeStr, sig, typeLen); |
| typeStr[typeLen] = '\0'; |
| |
| *pSig = endp; |
| |
| return lookupClassByDescriptor(meth, typeStr, pFailure); |
| } |
| |
| /* |
| * Set the register types for the first instruction in the method based on |
| * the method signature. |
| * |
| * This has the side-effect of validating the signature. |
| * |
| * Returns "true" on success. |
| */ |
| static bool setTypesFromSignature(const Method* meth, RegType* regTypes, |
| UninitInstanceMap* uninitMap) |
| { |
| DexParameterIterator iterator; |
| int actualArgs, expectedArgs, argStart; |
| VerifyError failure = VERIFY_ERROR_NONE; |
| const char* descriptor; |
| |
| dexParameterIteratorInit(&iterator, &meth->prototype); |
| argStart = meth->registersSize - meth->insSize; |
| expectedArgs = meth->insSize; /* long/double count as two */ |
| actualArgs = 0; |
| |
| assert(argStart >= 0); /* should have been verified earlier */ |
| |
| /* |
| * Include the "this" pointer. |
| */ |
| if (!dvmIsStaticMethod(meth)) { |
| /* |
| * If this is a constructor for a class other than java.lang.Object, |
| * mark the first ("this") argument as uninitialized. This restricts |
| * field access until the superclass constructor is called. |
| */ |
| if (isInitMethod(meth) && meth->clazz != gDvm.classJavaLangObject) { |
| int uidx = setUninitInstance(uninitMap, kUninitThisArgAddr, |
| meth->clazz); |
| assert(uidx == 0); |
| regTypes[argStart + actualArgs] = regTypeFromUninitIndex(uidx); |
| } else { |
| regTypes[argStart + actualArgs] = regTypeFromClass(meth->clazz); |
| } |
| actualArgs++; |
| } |
| |
| for (;;) { |
| descriptor = dexParameterIteratorNextDescriptor(&iterator); |
| |
| if (descriptor == NULL) { |
| break; |
| } |
| |
| if (actualArgs >= expectedArgs) { |
| LOG_VFY("VFY: expected %d args, found more (%s)", |
| expectedArgs, descriptor); |
| goto bad_sig; |
| } |
| |
| switch (*descriptor) { |
| case 'L': |
| case '[': |
| /* |
| * We assume that reference arguments are initialized. The |
| * only way it could be otherwise (assuming the caller was |
| * verified) is if the current method is <init>, but in that |
| * case it's effectively considered initialized the instant |
| * we reach here (in the sense that we can return without |
| * doing anything or call virtual methods). |
| */ |
| { |
| ClassObject* clazz = |
| lookupClassByDescriptor(meth, descriptor, &failure); |
| if (!VERIFY_OK(failure)) |
| goto bad_sig; |
| regTypes[argStart + actualArgs] = regTypeFromClass(clazz); |
| } |
| actualArgs++; |
| break; |
| case 'Z': |
| regTypes[argStart + actualArgs] = kRegTypeBoolean; |
| actualArgs++; |
| break; |
| case 'C': |
| regTypes[argStart + actualArgs] = kRegTypeChar; |
| actualArgs++; |
| break; |
| case 'B': |
| regTypes[argStart + actualArgs] = kRegTypeByte; |
| actualArgs++; |
| break; |
| case 'I': |
| regTypes[argStart + actualArgs] = kRegTypeInteger; |
| actualArgs++; |
| break; |
| case 'S': |
| regTypes[argStart + actualArgs] = kRegTypeShort; |
| actualArgs++; |
| break; |
| case 'F': |
| regTypes[argStart + actualArgs] = kRegTypeFloat; |
| actualArgs++; |
| break; |
| case 'D': |
| regTypes[argStart + actualArgs] = kRegTypeDoubleLo; |
| regTypes[argStart + actualArgs +1] = kRegTypeDoubleHi; |
| actualArgs += 2; |
| break; |
| case 'J': |
| regTypes[argStart + actualArgs] = kRegTypeLongLo; |
| regTypes[argStart + actualArgs +1] = kRegTypeLongHi; |
| actualArgs += 2; |
| break; |
| default: |
| LOG_VFY("VFY: unexpected signature type char '%c'", *descriptor); |
| goto bad_sig; |
| } |
| } |
| |
| if (actualArgs != expectedArgs) { |
| LOG_VFY("VFY: expected %d args, found %d", expectedArgs, actualArgs); |
| goto bad_sig; |
| } |
| |
| descriptor = dexProtoGetReturnType(&meth->prototype); |
| |
| /* |
| * Validate return type. We don't do the type lookup; just want to make |
| * sure that it has the right format. Only major difference from the |
| * method argument format is that 'V' is supported. |
| */ |
| switch (*descriptor) { |
| case 'I': |
| case 'C': |
| case 'S': |
| case 'B': |
| case 'Z': |
| case 'V': |
| case 'F': |
| case 'D': |
| case 'J': |
| if (*(descriptor+1) != '\0') |
| goto bad_sig; |
| break; |
| case '[': |
| /* single/multi, object/primitive */ |
| while (*++descriptor == '[') |
| ; |
| if (*descriptor == 'L') { |
| while (*++descriptor != ';' && *descriptor != '\0') |
| ; |
| if (*descriptor != ';') |
| goto bad_sig; |
| } else { |
| if (*(descriptor+1) != '\0') |
| goto bad_sig; |
| } |
| break; |
| case 'L': |
| /* could be more thorough here, but shouldn't be required */ |
| while (*++descriptor != ';' && *descriptor != '\0') |
| ; |
| if (*descriptor != ';') |
| goto bad_sig; |
| break; |
| default: |
| goto bad_sig; |
| } |
| |
| return true; |
| |
| //fail: |
| // LOG_VFY_METH(meth, "VFY: bad sig"); |
| // return false; |
| |
| bad_sig: |
| { |
| char* desc = dexProtoCopyMethodDescriptor(&meth->prototype); |
| LOG_VFY("VFY: bad signature '%s' for %s.%s", |
| desc, meth->clazz->descriptor, meth->name); |
| free(desc); |
| } |
| return false; |
| } |
| |
| /* |
| * Return the register type for the method. We can't just use the |
| * already-computed DalvikJniReturnType, because if it's a reference type |
| * we need to do the class lookup. |
| * |
| * Returned references are assumed to be initialized. |
| * |
| * Returns kRegTypeUnknown for "void". |
| */ |
| static RegType getMethodReturnType(const Method* meth) |
| { |
| RegType type; |
| const char* descriptor = dexProtoGetReturnType(&meth->prototype); |
| |
| switch (*descriptor) { |
| case 'I': |
| type = kRegTypeInteger; |
| break; |
| case 'C': |
| type = kRegTypeChar; |
| break; |
| case 'S': |
| type = kRegTypeShort; |
| break; |
| case 'B': |
| type = kRegTypeByte; |
| break; |
| case 'Z': |
| type = kRegTypeBoolean; |
| break; |
| case 'V': |
| type = kRegTypeUnknown; |
| break; |
| case 'F': |
| type = kRegTypeFloat; |
| break; |
| case 'D': |
| type = kRegTypeDoubleLo; |
| break; |
| case 'J': |
| type = kRegTypeLongLo; |
| break; |
| case 'L': |
| case '[': |
| { |
| VerifyError failure = VERIFY_ERROR_NONE; |
| ClassObject* clazz = |
| lookupClassByDescriptor(meth, descriptor, &failure); |
| assert(VERIFY_OK(failure)); |
| type = regTypeFromClass(clazz); |
| } |
| break; |
| default: |
| /* we verified signature return type earlier, so this is impossible */ |
| assert(false); |
| type = kRegTypeConflict; |
| break; |
| } |
| |
| return type; |
| } |
| |
| /* |
| * Convert a single-character signature value (i.e. a primitive type) to |
| * the corresponding RegType. This is intended for access to object fields |
| * holding primitive types. |
| * |
| * Returns kRegTypeUnknown for objects, arrays, and void. |
| */ |
| static RegType primSigCharToRegType(char sigChar) |
| { |
| RegType type; |
| |
| switch (sigChar) { |
| case 'I': |
| type = kRegTypeInteger; |
| break; |
| case 'C': |
| type = kRegTypeChar; |
| break; |
| case 'S': |
| type = kRegTypeShort; |
| break; |
| case 'B': |
| type = kRegTypeByte; |
| break; |
| case 'Z': |
| type = kRegTypeBoolean; |
| break; |
| case 'F': |
| type = kRegTypeFloat; |
| break; |
| case 'D': |
| type = kRegTypeDoubleLo; |
| break; |
| case 'J': |
| type = kRegTypeLongLo; |
| break; |
| case 'V': |
| case 'L': |
| case '[': |
| type = kRegTypeUnknown; |
| break; |
| default: |
| assert(false); |
| type = kRegTypeUnknown; |
| break; |
| } |
| |
| return type; |
| } |
| |
| /* |
| * See if the method matches the MethodType. |
| */ |
| static bool isCorrectInvokeKind(MethodType methodType, Method* resMethod) |
| { |
| switch (methodType) { |
| case METHOD_DIRECT: |
| return dvmIsDirectMethod(resMethod); |
| case METHOD_STATIC: |
| return dvmIsStaticMethod(resMethod); |
| case METHOD_VIRTUAL: |
| case METHOD_INTERFACE: |
| return !dvmIsDirectMethod(resMethod); |
| default: |
| return false; |
| } |
| } |
| |
| /* |
| * Verify the arguments to a method. We're executing in "method", making |
| * a call to the method reference in vB. |
| * |
| * If this is a "direct" invoke, we allow calls to <init>. For calls to |
| * <init>, the first argument may be an uninitialized reference. Otherwise, |
| * calls to anything starting with '<' will be rejected, as will any |
| * uninitialized reference arguments. |
| * |
| * For non-static method calls, this will verify that the method call is |
| * appropriate for the "this" argument. |
| * |
| * The method reference is in vBBBB. The "isRange" parameter determines |
| * whether we use 0-4 "args" values or a range of registers defined by |
| * vAA and vCCCC. |
| * |
| * Widening conversions on integers and references are allowed, but |
| * narrowing conversions are not. |
| * |
| * Returns the resolved method on success, NULL on failure (with *pFailure |
| * set appropriately). |
| */ |
| static Method* verifyInvocationArgs(const Method* meth, |
| RegisterLine* registerLine, const int insnRegCount, |
| const DecodedInstruction* pDecInsn, UninitInstanceMap* uninitMap, |
| MethodType methodType, bool isRange, bool isSuper, VerifyError* pFailure) |
| { |
| Method* resMethod; |
| char* sigOriginal = NULL; |
| const char* sig; |
| int expectedArgs; |
| int actualArgs; |
| |
| /* |
| * Resolve the method. This could be an abstract or concrete method |
| * depending on what sort of call we're making. |
| */ |
| if (methodType == METHOD_INTERFACE) { |
| resMethod = dvmOptResolveInterfaceMethod(meth->clazz, pDecInsn->vB); |
| } else { |
| resMethod = dvmOptResolveMethod(meth->clazz, pDecInsn->vB, methodType, |
| pFailure); |
| } |
| if (resMethod == NULL) { |
| /* failed; print a meaningful failure message */ |
| DexFile* pDexFile = meth->clazz->pDvmDex->pDexFile; |
| |
| const DexMethodId* pMethodId = dexGetMethodId(pDexFile, pDecInsn->vB); |
| const char* methodName = dexStringById(pDexFile, pMethodId->nameIdx); |
| char* methodDesc = dexCopyDescriptorFromMethodId(pDexFile, pMethodId); |
| const char* classDescriptor = dexStringByTypeIdx(pDexFile, pMethodId->classIdx); |
| |
| if (!gDvm.optimizing) { |
| std::string dotMissingClass = |
| dvmHumanReadableDescriptor(classDescriptor); |
| std::string dotMethClass = |
| dvmHumanReadableDescriptor(meth->clazz->descriptor); |
| |
| ALOGI("Could not find method %s.%s, referenced from method %s.%s", |
| dotMissingClass.c_str(), methodName, |
| dotMethClass.c_str(), meth->name); |
| } |
| |
| LOG_VFY("VFY: unable to resolve %s method %u: %s.%s %s", |
| dvmMethodTypeStr(methodType), pDecInsn->vB, |
| classDescriptor, methodName, methodDesc); |
| free(methodDesc); |
| if (VERIFY_OK(*pFailure)) /* not set for interface resolve */ |
| *pFailure = VERIFY_ERROR_NO_METHOD; |
| goto fail; |
| } |
| |
| /* |
| * Only time you can explicitly call a method starting with '<' is when |
| * making a "direct" invocation on "<init>". There are additional |
| * restrictions but we don't enforce them here. |
| */ |
| if (resMethod->name[0] == '<') { |
| if (methodType != METHOD_DIRECT || !isInitMethod(resMethod)) { |
| LOG_VFY("VFY: invalid call to %s.%s", |
| resMethod->clazz->descriptor, resMethod->name); |
| goto bad_sig; |
| } |
| } |
| |
| /* |
| * See if the method type implied by the invoke instruction matches the |
| * access flags for the target method. |
| */ |
| if (!isCorrectInvokeKind(methodType, resMethod)) { |
| LOG_VFY("VFY: invoke type does not match method type of %s.%s", |
| resMethod->clazz->descriptor, resMethod->name); |
| goto fail; |
| } |
| |
| /* |
| * If we're using invoke-super(method), make sure that the executing |
| * method's class' superclass has a vtable entry for the target method. |
| */ |
| if (isSuper) { |
| assert(methodType == METHOD_VIRTUAL); |
| ClassObject* super = meth->clazz->super; |
| if (super == NULL || resMethod->methodIndex > super->vtableCount) { |
| char* desc = dexProtoCopyMethodDescriptor(&resMethod->prototype); |
| LOG_VFY("VFY: invalid invoke-super from %s.%s to super %s.%s %s", |
| meth->clazz->descriptor, meth->name, |
| (super == NULL) ? "-" : super->descriptor, |
| resMethod->name, desc); |
| free(desc); |
| *pFailure = VERIFY_ERROR_NO_METHOD; |
| goto fail; |
| } |
| } |
| |
| /* |
| * We use vAA as our expected arg count, rather than resMethod->insSize, |
| * because we need to match the call to the signature. Also, we might |
| * might be calling through an abstract method definition (which doesn't |
| * have register count values). |
| */ |
| sigOriginal = dexProtoCopyMethodDescriptor(&resMethod->prototype); |
| sig = sigOriginal; |
| expectedArgs = pDecInsn->vA; |
| actualArgs = 0; |
| |
| /* caught by static verifier */ |
| assert(isRange || expectedArgs <= 5); |
| |
| if (expectedArgs > meth->outsSize) { |
| LOG_VFY("VFY: invalid arg count (%d) exceeds outsSize (%d)", |
| expectedArgs, meth->outsSize); |
| goto fail; |
| } |
| |
| if (*sig++ != '(') |
| goto bad_sig; |
| |
| /* |
| * Check the "this" argument, which must be an instance of the class |
| * that declared the method. For an interface class, we don't do the |
| * full interface merge, so we can't do a rigorous check here (which |
| * is okay since we have to do it at runtime). |
| */ |
| if (!dvmIsStaticMethod(resMethod)) { |
| ClassObject* actualThisRef; |
| RegType actualArgType; |
| |
| actualArgType = getInvocationThis(registerLine, pDecInsn, pFailure); |
| if (!VERIFY_OK(*pFailure)) |
| goto fail; |
| |
| if (regTypeIsUninitReference(actualArgType) && resMethod->name[0] != '<') |
| { |
| LOG_VFY("VFY: 'this' arg must be initialized"); |
| goto fail; |
| } |
| if (methodType != METHOD_INTERFACE && actualArgType != kRegTypeZero) { |
| actualThisRef = regTypeReferenceToClass(actualArgType, uninitMap); |
| if (!dvmInstanceof(actualThisRef, resMethod->clazz)) { |
| LOG_VFY("VFY: 'this' arg '%s' not instance of '%s'", |
| actualThisRef->descriptor, |
| resMethod->clazz->descriptor); |
| goto fail; |
| } |
| } |
| actualArgs++; |
| } |
| |
| /* |
| * Process the target method's signature. This signature may or may not |
| * have been verified, so we can't assume it's properly formed. |
| */ |
| while (*sig != '\0' && *sig != ')') { |
| if (actualArgs >= expectedArgs) { |
| LOG_VFY("VFY: expected %d args, found more (%c)", |
| expectedArgs, *sig); |
| goto bad_sig; |
| } |
| |
| u4 getReg; |
| if (isRange) |
| getReg = pDecInsn->vC + actualArgs; |
| else |
| getReg = pDecInsn->arg[actualArgs]; |
| |
| switch (*sig) { |
| case 'L': |
| { |
| ClassObject* clazz = lookupSignatureClass(meth, &sig, pFailure); |
| if (!VERIFY_OK(*pFailure)) |
| goto bad_sig; |
| verifyRegisterType(registerLine, getReg, |
| regTypeFromClass(clazz), pFailure); |
| if (!VERIFY_OK(*pFailure)) { |
| LOG_VFY("VFY: bad arg %d (into %s)", |
| actualArgs, clazz->descriptor); |
| goto bad_sig; |
| } |
| } |
| actualArgs++; |
| break; |
| case '[': |
| { |
| ClassObject* clazz = |
| lookupSignatureArrayClass(meth, &sig, pFailure); |
| if (!VERIFY_OK(*pFailure)) |
| goto bad_sig; |
| verifyRegisterType(registerLine, getReg, |
| regTypeFromClass(clazz), pFailure); |
| if (!VERIFY_OK(*pFailure)) { |
| LOG_VFY("VFY: bad arg %d (into %s)", |
| actualArgs, clazz->descriptor); |
| goto bad_sig; |
| } |
| } |
| actualArgs++; |
| break; |
| case 'Z': |
| verifyRegisterType(registerLine, getReg, kRegTypeBoolean, pFailure); |
| actualArgs++; |
| break; |
| case 'C': |
| verifyRegisterType(registerLine, getReg, kRegTypeChar, pFailure); |
| actualArgs++; |
| break; |
| case 'B': |
| verifyRegisterType(registerLine, getReg, kRegTypeByte, pFailure); |
| actualArgs++; |
| break; |
| case 'I': |
| verifyRegisterType(registerLine, getReg, kRegTypeInteger, pFailure); |
| actualArgs++; |
| break; |
| case 'S': |
| verifyRegisterType(registerLine, getReg, kRegTypeShort, pFailure); |
| actualArgs++; |
| break; |
| case 'F': |
| verifyRegisterType(registerLine, getReg, kRegTypeFloat, pFailure); |
| actualArgs++; |
| break; |
| case 'D': |
| verifyRegisterType(registerLine, getReg, kRegTypeDoubleLo, pFailure); |
| actualArgs += 2; |
| break; |
| case 'J': |
| verifyRegisterType(registerLine, getReg, kRegTypeLongLo, pFailure); |
| actualArgs += 2; |
| break; |
| default: |
| LOG_VFY("VFY: invocation target: bad signature type char '%c'", |
| *sig); |
| goto bad_sig; |
| } |
| |
| sig++; |
| } |
| if (*sig != ')') { |
| char* desc = dexProtoCopyMethodDescriptor(&resMethod->prototype); |
| LOG_VFY("VFY: invocation target: bad signature '%s'", desc); |
| free(desc); |
| goto bad_sig; |
| } |
| |
| if (actualArgs != expectedArgs) { |
| LOG_VFY("VFY: expected %d args, found %d", expectedArgs, actualArgs); |
| goto bad_sig; |
| } |
| |
| free(sigOriginal); |
| return resMethod; |
| |
| bad_sig: |
| if (resMethod != NULL) { |
| char* desc = dexProtoCopyMethodDescriptor(&resMethod->prototype); |
| LOG_VFY("VFY: rejecting call to %s.%s %s", |
| resMethod->clazz->descriptor, resMethod->name, desc); |
| free(desc); |
| } |
| |
| fail: |
| free(sigOriginal); |
| if (*pFailure == VERIFY_ERROR_NONE) |
| *pFailure = VERIFY_ERROR_GENERIC; |
| return NULL; |
| } |
| |
| /* |
| * Get the class object for the type of data stored in a field. This isn't |
| * stored in the Field struct, so we have to recover it from the signature. |
| * |
| * This only works for reference types. Don't call this for primitive types. |
| * |
| * If we can't find the class, we return java.lang.Object, so that |
| * verification can continue if a field is only accessed in trivial ways. |
| */ |
| static ClassObject* getFieldClass(const Method* meth, const Field* field) |
| { |
| ClassObject* fieldClass; |
| const char* signature = field->signature; |
| |
| if ((*signature == 'L') || (*signature == '[')) { |
| fieldClass = dvmFindClassNoInit(signature, |
| meth->clazz->classLoader); |
| } else { |
| return NULL; |
| } |
| |
| if (fieldClass == NULL) { |
| dvmClearOptException(dvmThreadSelf()); |
| ALOGV("VFY: unable to find class '%s' for field %s.%s, trying Object", |
| field->signature, meth->clazz->descriptor, field->name); |
| fieldClass = gDvm.classJavaLangObject; |
| } else { |
| assert(!dvmIsPrimitiveClass(fieldClass)); |
| } |
| return fieldClass; |
| } |
| |
| |
| /* |
| * =========================================================================== |
| * Register operations |
| * =========================================================================== |
| */ |
| |
| /* |
| * Get the type of register N. |
| * |
| * The register index was validated during the static pass, so we don't |
| * need to check it here. |
| */ |
| static inline RegType getRegisterType(const RegisterLine* registerLine, u4 vsrc) |
| { |
| return registerLine->regTypes[vsrc]; |
| } |
| |
| /* |
| * Get the value from a register, and cast it to a ClassObject. Sets |
| * "*pFailure" if something fails. |
| * |
| * This fails if the register holds an uninitialized class. |
| * |
| * If the register holds kRegTypeZero, this returns a NULL pointer. |
| */ |
| static ClassObject* getClassFromRegister(const RegisterLine* registerLine, |
| u4 vsrc, VerifyError* pFailure) |
| { |
| ClassObject* clazz = NULL; |
| RegType type; |
| |
| /* get the element type of the array held in vsrc */ |
| type = getRegisterType(registerLine, vsrc); |
| |
| /* if "always zero", we allow it to fail at runtime */ |
| if (type == kRegTypeZero) |
| goto bail; |
| |
| if (!regTypeIsReference(type)) { |
| LOG_VFY("VFY: tried to get class from non-ref register v%d (type=%d)", |
| vsrc, type); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| goto bail; |
| } |
| if (regTypeIsUninitReference(type)) { |
| LOG_VFY("VFY: register %u holds uninitialized reference", vsrc); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| goto bail; |
| } |
| |
| clazz = regTypeInitializedReferenceToClass(type); |
| |
| bail: |
| return clazz; |
| } |
| |
| /* |
| * Get the "this" pointer from a non-static method invocation. This |
| * returns the RegType so the caller can decide whether it needs the |
| * reference to be initialized or not. (Can also return kRegTypeZero |
| * if the reference can only be zero at this point.) |
| * |
| * The argument count is in vA, and the first argument is in vC, for both |
| * "simple" and "range" versions. We just need to make sure vA is >= 1 |
| * and then return vC. |
| */ |
| static RegType getInvocationThis(const RegisterLine* registerLine, |
| const DecodedInstruction* pDecInsn, VerifyError* pFailure) |
| { |
| RegType thisType = kRegTypeUnknown; |
| |
| if (pDecInsn->vA < 1) { |
| LOG_VFY("VFY: invoke lacks 'this'"); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| goto bail; |
| } |
| |
| /* get the element type of the array held in vsrc */ |
| thisType = getRegisterType(registerLine, pDecInsn->vC); |
| if (!regTypeIsReference(thisType)) { |
| LOG_VFY("VFY: tried to get class from non-ref register v%d (type=%d)", |
| pDecInsn->vC, thisType); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| goto bail; |
| } |
| |
| bail: |
| return thisType; |
| } |
| |
| /* |
| * Set the type of register N, verifying that the register is valid. If |
| * "newType" is the "Lo" part of a 64-bit value, register N+1 will be |
| * set to "newType+1". |
| * |
| * The register index was validated during the static pass, so we don't |
| * need to check it here. |
| * |
| * TODO: clear mon stack bits |
| */ |
| static void setRegisterType(RegisterLine* registerLine, u4 vdst, |
| RegType newType) |
| { |
| RegType* insnRegs = registerLine->regTypes; |
| |
| switch (newType) { |
| case kRegTypeUnknown: |
| case kRegTypeBoolean: |
| case kRegTypeOne: |
| case kRegTypeConstByte: |
| case kRegTypeConstPosByte: |
| case kRegTypeConstShort: |
| case kRegTypeConstPosShort: |
| case kRegTypeConstChar: |
| case kRegTypeConstInteger: |
| case kRegTypeByte: |
| case kRegTypePosByte: |
| case kRegTypeShort: |
| case kRegTypePosShort: |
| case kRegTypeChar: |
| case kRegTypeInteger: |
| case kRegTypeFloat: |
| case kRegTypeZero: |
| case kRegTypeUninit: |
| insnRegs[vdst] = newType; |
| break; |
| case kRegTypeConstLo: |
| case kRegTypeLongLo: |
| case kRegTypeDoubleLo: |
| insnRegs[vdst] = newType; |
| insnRegs[vdst+1] = newType+1; |
| break; |
| case kRegTypeConstHi: |
| case kRegTypeLongHi: |
| case kRegTypeDoubleHi: |
| /* should never set these explicitly */ |
| ALOGE("BUG: explicit set of high register type"); |
| dvmAbort(); |
| break; |
| |
| default: |
| /* can't switch for ref types, so we check explicitly */ |
| if (regTypeIsReference(newType)) { |
| insnRegs[vdst] = newType; |
| |
| /* |
| * In most circumstances we won't see a reference to a primitive |
| * class here (e.g. "D"), since that would mean the object in the |
| * register is actually a primitive type. It can happen as the |
| * result of an assumed-successful check-cast instruction in |
| * which the second argument refers to a primitive class. (In |
| * practice, such an instruction will always throw an exception.) |
| * |
| * This is not an issue for instructions like const-class, where |
| * the object in the register is a java.lang.Class instance. |
| */ |
| break; |
| } |
| /* bad type - fall through */ |
| |
| case kRegTypeConflict: // should only be set during a merge |
| ALOGE("BUG: set register to unknown type %d", newType); |
| dvmAbort(); |
| break; |
| } |
| |
| /* |
| * Clear the monitor entry bits for this register. |
| */ |
| if (registerLine->monitorEntries != NULL) |
| registerLine->monitorEntries[vdst] = 0; |
| } |
| |
| /* |
| * Verify that the contents of the specified register have the specified |
| * type (or can be converted to it through an implicit widening conversion). |
| * |
| * This will modify the type of the source register if it was originally |
| * derived from a constant to prevent mixing of int/float and long/double. |
| * |
| * If "vsrc" is a reference, both it and the "vsrc" register must be |
| * initialized ("vsrc" may be Zero). This will verify that the value in |
| * the register is an instance of checkType, or if checkType is an |
| * interface, verify that the register implements checkType. |
| */ |
| static void verifyRegisterType(RegisterLine* registerLine, u4 vsrc, |
| RegType checkType, VerifyError* pFailure) |
| { |
| const RegType* insnRegs = registerLine->regTypes; |
| RegType srcType = insnRegs[vsrc]; |
| |
| //ALOGD("check-reg v%u = %d", vsrc, checkType); |
| switch (checkType) { |
| case kRegTypeFloat: |
| case kRegTypeBoolean: |
| case kRegTypePosByte: |
| case kRegTypeByte: |
| case kRegTypePosShort: |
| case kRegTypeShort: |
| case kRegTypeChar: |
| case kRegTypeInteger: |
| if (!canConvertTo1nr(srcType, checkType)) { |
| LOG_VFY("VFY: register1 v%u type %d, wanted %d", |
| vsrc, srcType, checkType); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| /* Update type if result is float */ |
| if (checkType == kRegTypeFloat) { |
| setRegisterType(registerLine, vsrc, checkType); |
| } else { |
| /* Update const type to actual type after use */ |
| setRegisterType(registerLine, vsrc, constTypeToRegType(srcType)); |
| } |
| break; |
| case kRegTypeLongLo: |
| case kRegTypeDoubleLo: |
| if (insnRegs[vsrc+1] != srcType+1) { |
| LOG_VFY("VFY: register2 v%u-%u values %d,%d", |
| vsrc, vsrc+1, insnRegs[vsrc], insnRegs[vsrc+1]); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| break; |
| } else if (!canConvertTo2(srcType, checkType)) { |
| LOG_VFY("VFY: register2 v%u type %d, wanted %d", |
| vsrc, srcType, checkType); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| /* Update type if source is from const */ |
| if (srcType == kRegTypeConstLo) { |
| setRegisterType(registerLine, vsrc, checkType); |
| } |
| break; |
| case kRegTypeConstLo: |
| case kRegTypeConstHi: |
| case kRegTypeLongHi: |
| case kRegTypeDoubleHi: |
| case kRegTypeZero: |
| case kRegTypeOne: |
| case kRegTypeUnknown: |
| case kRegTypeConflict: |
| /* should never be checking for these explicitly */ |
| assert(false); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| return; |
| case kRegTypeUninit: |
| default: |
| /* make sure checkType is initialized reference */ |
| if (!regTypeIsReference(checkType)) { |
| LOG_VFY("VFY: unexpected check type %d", checkType); |
| assert(false); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (regTypeIsUninitReference(checkType)) { |
| LOG_VFY("VFY: uninitialized ref not expected as reg check"); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| /* make sure srcType is initialized reference or always-NULL */ |
| if (!regTypeIsReference(srcType)) { |
| LOG_VFY("VFY: register1 v%u type %d, wanted ref", vsrc, srcType); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (regTypeIsUninitReference(srcType)) { |
| LOG_VFY("VFY: register1 v%u holds uninitialized ref", vsrc); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| /* if the register isn't Zero, make sure it's an instance of check */ |
| if (srcType != kRegTypeZero) { |
| ClassObject* srcClass = regTypeInitializedReferenceToClass(srcType); |
| ClassObject* checkClass = regTypeInitializedReferenceToClass(checkType); |
| assert(srcClass != NULL); |
| assert(checkClass != NULL); |
| |
| if (dvmIsInterfaceClass(checkClass)) { |
| /* |
| * All objects implement all interfaces as far as the |
| * verifier is concerned. The runtime has to sort it out. |
| * See comments above findCommonSuperclass. |
| */ |
| /* |
| if (srcClass != checkClass && |
| !dvmImplements(srcClass, checkClass)) |
| { |
| LOG_VFY("VFY: %s does not implement %s", |
| srcClass->descriptor, checkClass->descriptor); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| } |
| */ |
| } else { |
| if (!dvmInstanceof(srcClass, checkClass)) { |
| LOG_VFY("VFY: %s is not instance of %s", |
| srcClass->descriptor, checkClass->descriptor); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| } |
| } |
| } |
| break; |
| } |
| } |
| |
| /* |
| * Set the type of the "result" register. |
| */ |
| static void setResultRegisterType(RegisterLine* registerLine, |
| const int insnRegCount, RegType newType) |
| { |
| setRegisterType(registerLine, RESULT_REGISTER(insnRegCount), newType); |
| } |
| |
| |
| /* |
| * Update all registers holding "uninitType" to instead hold the |
| * corresponding initialized reference type. This is called when an |
| * appropriate <init> method is invoked -- all copies of the reference |
| * must be marked as initialized. |
| */ |
| static void markRefsAsInitialized(RegisterLine* registerLine, int insnRegCount, |
| UninitInstanceMap* uninitMap, RegType uninitType, VerifyError* pFailure) |
| { |
| RegType* insnRegs = registerLine->regTypes; |
| ClassObject* clazz; |
| RegType initType; |
| int i, changed; |
| |
| clazz = getUninitInstance(uninitMap, regTypeToUninitIndex(uninitType)); |
| if (clazz == NULL) { |
| ALOGE("VFY: unable to find type=%#x (idx=%d)", |
| uninitType, regTypeToUninitIndex(uninitType)); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| return; |
| } |
| initType = regTypeFromClass(clazz); |
| |
| changed = 0; |
| for (i = 0; i < insnRegCount; i++) { |
| if (insnRegs[i] == uninitType) { |
| insnRegs[i] = initType; |
| changed++; |
| } |
| } |
| //ALOGD("VFY: marked %d registers as initialized", changed); |
| assert(changed > 0); |
| |
| return; |
| } |
| |
| /* |
| * We're creating a new instance of class C at address A. Any registers |
| * holding instances previously created at address A must be initialized |
| * by now. If not, we mark them as "conflict" to prevent them from being |
| * used (otherwise, markRefsAsInitialized would mark the old ones and the |
| * new ones at the same time). |
| */ |
| static void markUninitRefsAsInvalid(RegisterLine* registerLine, |
| int insnRegCount, UninitInstanceMap* uninitMap, RegType uninitType) |
| { |
| RegType* insnRegs = registerLine->regTypes; |
| int i, changed; |
| |
| changed = 0; |
| for (i = 0; i < insnRegCount; i++) { |
| if (insnRegs[i] == uninitType) { |
| insnRegs[i] = kRegTypeConflict; |
| if (registerLine->monitorEntries != NULL) |
| registerLine->monitorEntries[i] = 0; |
| changed++; |
| } |
| } |
| |
| //if (changed) |
| // ALOGD("VFY: marked %d uninitialized registers as invalid", changed); |
| } |
| |
| /* |
| * Find the register line for the specified instruction in the current method. |
| */ |
| static inline RegisterLine* getRegisterLine(const RegisterTable* regTable, |
| int insnIdx) |
| { |
| return ®Table->registerLines[insnIdx]; |
| } |
| |
| /* |
| * Copy a register line. |
| */ |
| static inline void copyRegisterLine(RegisterLine* dst, const RegisterLine* src, |
| size_t numRegs) |
| { |
| memcpy(dst->regTypes, src->regTypes, numRegs * sizeof(RegType)); |
| |
| assert((src->monitorEntries == NULL && dst->monitorEntries == NULL) || |
| (src->monitorEntries != NULL && dst->monitorEntries != NULL)); |
| if (dst->monitorEntries != NULL) { |
| assert(dst->monitorStack != NULL); |
| memcpy(dst->monitorEntries, src->monitorEntries, |
| numRegs * sizeof(MonitorEntries)); |
| memcpy(dst->monitorStack, src->monitorStack, |
| kMaxMonitorStackDepth * sizeof(u4)); |
| dst->monitorStackTop = src->monitorStackTop; |
| } |
| } |
| |
| /* |
| * Copy a register line into the table. |
| */ |
| static inline void copyLineToTable(RegisterTable* regTable, int insnIdx, |
| const RegisterLine* src) |
| { |
| RegisterLine* dst = getRegisterLine(regTable, insnIdx); |
| assert(dst->regTypes != NULL); |
| copyRegisterLine(dst, src, regTable->insnRegCountPlus); |
| } |
| |
| /* |
| * Copy a register line out of the table. |
| */ |
| static inline void copyLineFromTable(RegisterLine* dst, |
| const RegisterTable* regTable, int insnIdx) |
| { |
| RegisterLine* src = getRegisterLine(regTable, insnIdx); |
| assert(src->regTypes != NULL); |
| copyRegisterLine(dst, src, regTable->insnRegCountPlus); |
| } |
| |
| |
| #ifndef NDEBUG |
| /* |
| * Compare two register lines. Returns 0 if they match. |
| * |
| * Using this for a sort is unwise, since the value can change based on |
| * machine endianness. |
| */ |
| static inline int compareLineToTable(const RegisterTable* regTable, |
| int insnIdx, const RegisterLine* line2) |
| { |
| const RegisterLine* line1 = getRegisterLine(regTable, insnIdx); |
| if (line1->monitorEntries != NULL) { |
| int result; |
| |
| if (line2->monitorEntries == NULL) |
| return 1; |
| result = memcmp(line1->monitorEntries, line2->monitorEntries, |
| regTable->insnRegCountPlus * sizeof(MonitorEntries)); |
| if (result != 0) { |
| LOG_VFY("monitorEntries mismatch"); |
| return result; |
| } |
| result = line1->monitorStackTop - line2->monitorStackTop; |
| if (result != 0) { |
| LOG_VFY("monitorStackTop mismatch"); |
| return result; |
| } |
| result = memcmp(line1->monitorStack, line2->monitorStack, |
| line1->monitorStackTop); |
| if (result != 0) { |
| LOG_VFY("monitorStack mismatch"); |
| return result; |
| } |
| } |
| return memcmp(line1->regTypes, line2->regTypes, |
| regTable->insnRegCountPlus * sizeof(RegType)); |
| } |
| #endif |
| |
| /* |
| * Register type categories, for type checking. |
| * |
| * The spec says category 1 includes boolean, byte, char, short, int, float, |
| * reference, and returnAddress. Category 2 includes long and double. |
| * |
| * We treat object references separately, so we have "category1nr". We |
| * don't support jsr/ret, so there is no "returnAddress" type. |
| */ |
| enum TypeCategory { |
| kTypeCategoryUnknown = 0, |
| kTypeCategory1nr, // boolean, byte, char, short, int, float |
| kTypeCategory2, // long, double |
| kTypeCategoryRef, // object reference |
| }; |
| |
| /* |
| * See if "type" matches "cat". All we're really looking for here is that |
| * we're not mixing and matching 32-bit and 64-bit quantities, and we're |
| * not mixing references with numerics. (For example, the arguments to |
| * "a < b" could be integers of different sizes, but they must both be |
| * integers. Dalvik is less specific about int vs. float, so we treat them |
| * as equivalent here.) |
| * |
| * For category 2 values, "type" must be the "low" half of the value. |
| * |
| * Sets "*pFailure" if something looks wrong. |
| */ |
| static void checkTypeCategory(RegType type, TypeCategory cat, |
| VerifyError* pFailure) |
| { |
| switch (cat) { |
| case kTypeCategory1nr: |
| switch (type) { |
| case kRegTypeZero: |
| case kRegTypeOne: |
| case kRegTypeBoolean: |
| case kRegTypeConstPosByte: |
| case kRegTypeConstByte: |
| case kRegTypeConstPosShort: |
| case kRegTypeConstShort: |
| case kRegTypeConstChar: |
| case kRegTypeConstInteger: |
| case kRegTypePosByte: |
| case kRegTypeByte: |
| case kRegTypePosShort: |
| case kRegTypeShort: |
| case kRegTypeChar: |
| case kRegTypeInteger: |
| case kRegTypeFloat: |
| break; |
| default: |
| *pFailure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| break; |
| |
| case kTypeCategory2: |
| switch (type) { |
| case kRegTypeConstLo: |
| case kRegTypeLongLo: |
| case kRegTypeDoubleLo: |
| break; |
| default: |
| *pFailure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| break; |
| |
| case kTypeCategoryRef: |
| if (type != kRegTypeZero && !regTypeIsReference(type)) |
| *pFailure = VERIFY_ERROR_GENERIC; |
| break; |
| |
| default: |
| assert(false); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| |
| /* |
| * For a category 2 register pair, verify that "typeh" is the appropriate |
| * high part for "typel". |
| * |
| * Does not verify that "typel" is in fact the low part of a 64-bit |
| * register pair. |
| */ |
| static void checkWidePair(RegType typel, RegType typeh, VerifyError* pFailure) |
| { |
| if ((typeh != typel+1)) |
| *pFailure = VERIFY_ERROR_GENERIC; |
| } |
| |
| /* |
| * Implement category-1 "move" instructions. Copy a 32-bit value from |
| * "vsrc" to "vdst". |
| */ |
| static void copyRegister1(RegisterLine* registerLine, u4 vdst, u4 vsrc, |
| TypeCategory cat, VerifyError* pFailure) |
| { |
| assert(cat == kTypeCategory1nr || cat == kTypeCategoryRef); |
| RegType type = getRegisterType(registerLine, vsrc); |
| checkTypeCategory(type, cat, pFailure); |
| if (!VERIFY_OK(*pFailure)) { |
| LOG_VFY("VFY: copy1 v%u<-v%u type=%d cat=%d", vdst, vsrc, type, cat); |
| } else { |
| setRegisterType(registerLine, vdst, type); |
| if (cat == kTypeCategoryRef && registerLine->monitorEntries != NULL) { |
| registerLine->monitorEntries[vdst] = |
| registerLine->monitorEntries[vsrc]; |
| } |
| } |
| } |
| |
| /* |
| * Implement category-2 "move" instructions. Copy a 64-bit value from |
| * "vsrc" to "vdst". This copies both halves of the register. |
| */ |
| static void copyRegister2(RegisterLine* registerLine, u4 vdst, u4 vsrc, |
| VerifyError* pFailure) |
| { |
| RegType typel = getRegisterType(registerLine, vsrc); |
| RegType typeh = getRegisterType(registerLine, vsrc+1); |
| |
| checkTypeCategory(typel, kTypeCategory2, pFailure); |
| checkWidePair(typel, typeh, pFailure); |
| if (!VERIFY_OK(*pFailure)) { |
| LOG_VFY("VFY: copy2 v%u<-v%u type=%d/%d", vdst, vsrc, typel, typeh); |
| } else { |
| setRegisterType(registerLine, vdst, typel); |
| /* target monitor stack bits will be cleared */ |
| } |
| } |
| |
| /* |
| * Implement "move-result". Copy the category-1 value from the result |
| * register to another register, and reset the result register. |
| */ |
| static void copyResultRegister1(RegisterLine* registerLine, |
| const int insnRegCount, u4 vdst, TypeCategory cat, VerifyError* pFailure) |
| { |
| RegType type; |
| u4 vsrc; |
| |
| assert(vdst < (u4) insnRegCount); |
| |
| vsrc = RESULT_REGISTER(insnRegCount); |
| type = getRegisterType(registerLine, vsrc); |
| checkTypeCategory(type, cat, pFailure); |
| if (!VERIFY_OK(*pFailure)) { |
| LOG_VFY("VFY: copyRes1 v%u<-v%u cat=%d type=%d", |
| vdst, vsrc, cat, type); |
| } else { |
| setRegisterType(registerLine, vdst, type); |
| setRegisterType(registerLine, vsrc, kRegTypeUnknown); |
| /* target monitor stack bits will be cleared */ |
| } |
| } |
| |
| /* |
| * Implement "move-result-wide". Copy the category-2 value from the result |
| * register to another register, and reset the result register. |
| */ |
| static void copyResultRegister2(RegisterLine* registerLine, |
| const int insnRegCount, u4 vdst, VerifyError* pFailure) |
| { |
| RegType typel, typeh; |
| u4 vsrc; |
| |
| assert(vdst < (u4) insnRegCount); |
| |
| vsrc = RESULT_REGISTER(insnRegCount); |
| typel = getRegisterType(registerLine, vsrc); |
| typeh = getRegisterType(registerLine, vsrc+1); |
| checkTypeCategory(typel, kTypeCategory2, pFailure); |
| checkWidePair(typel, typeh, pFailure); |
| if (!VERIFY_OK(*pFailure)) { |
| LOG_VFY("VFY: copyRes2 v%u<-v%u type=%d/%d", |
| vdst, vsrc, typel, typeh); |
| } else { |
| setRegisterType(registerLine, vdst, typel); |
| setRegisterType(registerLine, vsrc, kRegTypeUnknown); |
| setRegisterType(registerLine, vsrc+1, kRegTypeUnknown); |
| /* target monitor stack bits will be cleared */ |
| } |
| } |
| |
| /* |
| * Verify types for a simple two-register instruction (e.g. "neg-int"). |
| * "dstType" is stored into vA, and "srcType" is verified against vB. |
| */ |
| static void checkUnop(RegisterLine* registerLine, DecodedInstruction* pDecInsn, |
| RegType dstType, RegType srcType, VerifyError* pFailure) |
| { |
| verifyRegisterType(registerLine, pDecInsn->vB, srcType, pFailure); |
| setRegisterType(registerLine, pDecInsn->vA, dstType); |
| } |
| |
| /* |
| * We're performing an operation like "and-int/2addr" that can be |
| * performed on booleans as well as integers. We get no indication of |
| * boolean-ness, but we can infer it from the types of the arguments. |
| * |
| * Assumes we've already validated reg1/reg2. |
| * |
| * TODO: consider generalizing this. The key principle is that the |
| * result of a bitwise operation can only be as wide as the widest of |
| * the operands. You can safely AND/OR/XOR two chars together and know |
| * you still have a char, so it's reasonable for the compiler or "dx" |
| * to skip the int-to-char instruction. (We need to do this for boolean |
| * because there is no int-to-boolean operation.) |
| * |
| * Returns true if both args are Boolean, Zero, or One. |
| */ |
| static bool upcastBooleanOp(RegisterLine* registerLine, u4 reg1, u4 reg2) |
| { |
| RegType type1, type2; |
| |
| type1 = getRegisterType(registerLine, reg1); |
| type2 = getRegisterType(registerLine, reg2); |
| |
| if ((type1 == kRegTypeBoolean || type1 == kRegTypeZero || |
| type1 == kRegTypeOne) && |
| (type2 == kRegTypeBoolean || type2 == kRegTypeZero || |
| type2 == kRegTypeOne)) |
| { |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Verify types for A two-register instruction with a literal constant |
| * (e.g. "add-int/lit8"). "dstType" is stored into vA, and "srcType" is |
| * verified against vB. |
| * |
| * If "checkBooleanOp" is set, we use the constant value in vC. |
| */ |
| static void checkLitop(RegisterLine* registerLine, DecodedInstruction* pDecInsn, |
| RegType dstType, RegType srcType, bool checkBooleanOp, |
| VerifyError* pFailure) |
| { |
| verifyRegisterType(registerLine, pDecInsn->vB, srcType, pFailure); |
| if (VERIFY_OK(*pFailure) && checkBooleanOp) { |
| assert(dstType == kRegTypeInteger); |
| /* check vB with the call, then check the constant manually */ |
| if (upcastBooleanOp(registerLine, pDecInsn->vB, pDecInsn->vB) |
| && (pDecInsn->vC == 0 || pDecInsn->vC == 1)) |
| { |
| dstType = kRegTypeBoolean; |
| } |
| } |
| setRegisterType(registerLine, pDecInsn->vA, dstType); |
| } |
| |
| /* |
| * Verify types for a simple three-register instruction (e.g. "add-int"). |
| * "dstType" is stored into vA, and "srcType1"/"srcType2" are verified |
| * against vB/vC. |
| */ |
| static void checkBinop(RegisterLine* registerLine, DecodedInstruction* pDecInsn, |
| RegType dstType, RegType srcType1, RegType srcType2, bool checkBooleanOp, |
| VerifyError* pFailure) |
| { |
| verifyRegisterType(registerLine, pDecInsn->vB, srcType1, pFailure); |
| verifyRegisterType(registerLine, pDecInsn->vC, srcType2, pFailure); |
| if (VERIFY_OK(*pFailure) && checkBooleanOp) { |
| assert(dstType == kRegTypeInteger); |
| if (upcastBooleanOp(registerLine, pDecInsn->vB, pDecInsn->vC)) |
| dstType = kRegTypeBoolean; |
| } |
| setRegisterType(registerLine, pDecInsn->vA, dstType); |
| } |
| |
| /* |
| * Verify types for a binary "2addr" operation. "srcType1"/"srcType2" |
| * are verified against vA/vB, then "dstType" is stored into vA. |
| */ |
| static void checkBinop2addr(RegisterLine* registerLine, |
| DecodedInstruction* pDecInsn, RegType dstType, RegType srcType1, |
| RegType srcType2, bool checkBooleanOp, VerifyError* pFailure) |
| { |
| verifyRegisterType(registerLine, pDecInsn->vA, srcType1, pFailure); |
| verifyRegisterType(registerLine, pDecInsn->vB, srcType2, pFailure); |
| if (VERIFY_OK(*pFailure) && checkBooleanOp) { |
| assert(dstType == kRegTypeInteger); |
| if (upcastBooleanOp(registerLine, pDecInsn->vA, pDecInsn->vB)) |
| dstType = kRegTypeBoolean; |
| } |
| setRegisterType(registerLine, pDecInsn->vA, dstType); |
| } |
| |
| /* |
| * Treat right-shifting as a narrowing conversion when possible. |
| * |
| * For example, right-shifting an int 24 times results in a value that can |
| * be treated as a byte. |
| * |
| * Things get interesting when contemplating sign extension. Right- |
| * shifting an integer by 16 yields a value that can be represented in a |
| * "short" but not a "char", but an unsigned right shift by 16 yields a |
| * value that belongs in a char rather than a short. (Consider what would |
| * happen if the result of the shift were cast to a char or short and then |
| * cast back to an int. If sign extension, or the lack thereof, causes |
| * a change in the 32-bit representation, then the conversion was lossy.) |
| * |
| * A signed right shift by 17 on an integer results in a short. An unsigned |
| * right shfit by 17 on an integer results in a posshort, which can be |
| * assigned to a short or a char. |
| * |
| * An unsigned right shift on a short can actually expand the result into |
| * a 32-bit integer. For example, 0xfffff123 >>> 8 becomes 0x00fffff1, |
| * which can't be represented in anything smaller than an int. |
| * |
| * javac does not generate code that takes advantage of this, but some |
| * of the code optimizers do. It's generally a peephole optimization |
| * that replaces a particular sequence, e.g. (bipush 24, ishr, i2b) is |
| * replaced by (bipush 24, ishr). Knowing that shifting a short 8 times |
| * to the right yields a byte is really more than we need to handle the |
| * code that's out there, but support is not much more complex than just |
| * handling integer. |
| * |
| * Right-shifting never yields a boolean value. |
| * |
| * Returns the new register type. |
| */ |
| static RegType adjustForRightShift(RegisterLine* registerLine, int reg, |
| unsigned int shiftCount, bool isUnsignedShift, VerifyError* pFailure) |
| { |
| RegType srcType = getRegisterType(registerLine, reg); |
| RegType newType; |
| |
| /* convert const derived types to their actual types */ |
| srcType = constTypeToRegType(srcType); |
| |
| /* no-op */ |
| if (shiftCount == 0) |
| return srcType; |
| |
| /* safe defaults */ |
| if (isUnsignedShift) |
| newType = kRegTypeInteger; |
| else |
| newType = srcType; |
| |
| if (shiftCount >= 32) { |
| LOG_VFY("Got unexpectedly large shift count %u", shiftCount); |
| /* fail? */ |
| return newType; |
| } |
| |
| switch (srcType) { |
| case kRegTypeInteger: /* 32-bit signed value */ |
| if (isUnsignedShift) { |
| if (shiftCount > 24) |
| newType = kRegTypePosByte; |
| else if (shiftCount >= 16) |
| newType = kRegTypeChar; |
| } else { |
| if (shiftCount >= 24) |
| newType = kRegTypeByte; |
| else if (shiftCount >= 16) |
| newType = kRegTypeShort; |
| } |
| break; |
| case kRegTypeShort: /* 16-bit signed value */ |
| if (isUnsignedShift) { |
| /* default (kRegTypeInteger) is correct */ |
| } else { |
| if (shiftCount >= 8) |
| newType = kRegTypeByte; |
| } |
| break; |
| case kRegTypePosShort: /* 15-bit unsigned value */ |
| if (shiftCount >= 8) |
| newType = kRegTypePosByte; |
| break; |
| case kRegTypeChar: /* 16-bit unsigned value */ |
| if (shiftCount > 8) |
| newType = kRegTypePosByte; |
| break; |
| case kRegTypeByte: /* 8-bit signed value */ |
| /* defaults (u=kRegTypeInteger / s=srcType) are correct */ |
| break; |
| case kRegTypePosByte: /* 7-bit unsigned value */ |
| /* always use newType=srcType */ |
| newType = srcType; |
| break; |
| case kRegTypeZero: /* 1-bit unsigned value */ |
| case kRegTypeOne: |
| case kRegTypeBoolean: |
| /* unnecessary? */ |
| newType = kRegTypeZero; |
| break; |
| default: |
| /* long, double, references; shouldn't be here! */ |
| assert(false); |
| break; |
| } |
| |
| if (newType != srcType) { |
| LOGVV("narrowing: %d(%d) --> %d to %d", |
| shiftCount, isUnsignedShift, srcType, newType); |
| } else { |
| LOGVV("not narrowed: %d(%d) --> %d", |
| shiftCount, isUnsignedShift, srcType); |
| } |
| return newType; |
| } |
| |
| |
| /* |
| * =========================================================================== |
| * Register merge |
| * =========================================================================== |
| */ |
| |
| /* |
| * Compute the "class depth" of a class. This is the distance from the |
| * class to the top of the tree, chasing superclass links. java.lang.Object |
| * has a class depth of 0. |
| */ |
| static int getClassDepth(ClassObject* clazz) |
| { |
| int depth = 0; |
| |
| while (clazz->super != NULL) { |
| clazz = clazz->super; |
| depth++; |
| } |
| return depth; |
| } |
| |
| /* |
| * Given two classes, walk up the superclass tree to find a common |
| * ancestor. (Called from findCommonSuperclass().) |
| * |
| * TODO: consider caching the class depth in the class object so we don't |
| * have to search for it here. |
| */ |
| static ClassObject* digForSuperclass(ClassObject* c1, ClassObject* c2) |
| { |
| int depth1, depth2; |
| |
| depth1 = getClassDepth(c1); |
| depth2 = getClassDepth(c2); |
| |
| if (gDebugVerbose) { |
| LOGVV("COMMON: %s(%d) + %s(%d)", |
| c1->descriptor, depth1, c2->descriptor, depth2); |
| } |
| |
| /* pull the deepest one up */ |
| if (depth1 > depth2) { |
| while (depth1 > depth2) { |
| c1 = c1->super; |
| depth1--; |
| } |
| } else { |
| while (depth2 > depth1) { |
| c2 = c2->super; |
| depth2--; |
| } |
| } |
| |
| /* walk up in lock-step */ |
| while (c1 != c2) { |
| c1 = c1->super; |
| c2 = c2->super; |
| |
| assert(c1 != NULL && c2 != NULL); |
| } |
| |
| if (gDebugVerbose) { |
| LOGVV(" : --> %s", c1->descriptor); |
| } |
| return c1; |
| } |
| |
| /* |
| * Merge two array classes. We can't use the general "walk up to the |
| * superclass" merge because the superclass of an array is always Object. |
| * We want String[] + Integer[] = Object[]. This works for higher dimensions |
| * as well, e.g. String[][] + Integer[][] = Object[][]. |
| * |
| * If Foo1 and Foo2 are subclasses of Foo, Foo1[] + Foo2[] = Foo[]. |
| * |
| * If Class implements Type, Class[] + Type[] = Type[]. |
| * |
| * If the dimensions don't match, we want to convert to an array of Object |
| * with the least dimension, e.g. String[][] + String[][][][] = Object[][]. |
| * |
| * Arrays of primitive types effectively have one less dimension when |
| * merging. int[] + float[] = Object, int[] + String[] = Object, |
| * int[][] + float[][] = Object[], int[][] + String[] = Object[]. (The |
| * only time this function doesn't return an array class is when one of |
| * the arguments is a 1-dimensional primitive array.) |
| * |
| * This gets a little awkward because we may have to ask the VM to create |
| * a new array type with the appropriate element and dimensions. However, we |
| * shouldn't be doing this often. |
| */ |
| static ClassObject* findCommonArraySuperclass(ClassObject* c1, ClassObject* c2) |
| { |
| ClassObject* arrayClass = NULL; |
| ClassObject* commonElem; |
| int arrayDim1, arrayDim2; |
| int i, numDims; |
| bool hasPrimitive = false; |
| |
| arrayDim1 = c1->arrayDim; |
| arrayDim2 = c2->arrayDim; |
| assert(c1->arrayDim > 0); |
| assert(c2->arrayDim > 0); |
| |
| if (dvmIsPrimitiveClass(c1->elementClass)) { |
| arrayDim1--; |
| hasPrimitive = true; |
| } |
| if (dvmIsPrimitiveClass(c2->elementClass)) { |
| arrayDim2--; |
| hasPrimitive = true; |
| } |
| |
| if (!hasPrimitive && arrayDim1 == arrayDim2) { |
| /* |
| * Two arrays of reference types with equal dimensions. Try to |
| * find a good match. |
| */ |
| commonElem = findCommonSuperclass(c1->elementClass, c2->elementClass); |
| numDims = arrayDim1; |
| } else { |
| /* |
| * Mismatched array depths and/or array(s) of primitives. We want |
| * Object, or an Object array with appropriate dimensions. |
| * |
| * We initialize arrayClass to Object here, because it's possible |
| * for us to set numDims=0. |
| */ |
| if (arrayDim1 < arrayDim2) |
| numDims = arrayDim1; |
| else |
| numDims = arrayDim2; |
| arrayClass = commonElem = c1->super; // == java.lang.Object |
| } |
| |
| /* |
| * Find an appropriately-dimensioned array class. This is easiest |
| * to do iteratively, using the array class found by the current round |
| * as the element type for the next round. |
| */ |
| for (i = 0; i < numDims; i++) { |
| arrayClass = dvmFindArrayClassForElement(commonElem); |
| commonElem = arrayClass; |
| } |
| assert(arrayClass != NULL); |
| |
| LOGVV("ArrayMerge '%s' + '%s' --> '%s'", |
| c1->descriptor, c2->descriptor, arrayClass->descriptor); |
| return arrayClass; |
| } |
| |
| /* |
| * Find the first common superclass of the two classes. We're not |
| * interested in common interfaces. |
| * |
| * The easiest way to do this for concrete classes is to compute the "class |
| * depth" of each, move up toward the root of the deepest one until they're |
| * at the same depth, then walk both up to the root until they match. |
| * |
| * If both classes are arrays, we need to merge based on array depth and |
| * element type. |
| * |
| * If one class is an interface, we check to see if the other class/interface |
| * (or one of its predecessors) implements the interface. If so, we return |
| * the interface; otherwise, we return Object. |
| * |
| * NOTE: we continue the tradition of "lazy interface handling". To wit, |
| * suppose we have three classes: |
| * One implements Fancy, Free |
| * Two implements Fancy, Free |
| * Three implements Free |
| * where Fancy and Free are unrelated interfaces. The code requires us |
| * to merge One into Two. Ideally we'd use a common interface, which |
| * gives us a choice between Fancy and Free, and no guidance on which to |
| * use. If we use Free, we'll be okay when Three gets merged in, but if |
| * we choose Fancy, we're hosed. The "ideal" solution is to create a |
| * set of common interfaces and carry that around, merging further references |
| * into it. This is a pain. The easy solution is to simply boil them |
| * down to Objects and let the runtime invokeinterface call fail, which |
| * is what we do. |
| */ |
| static ClassObject* findCommonSuperclass(ClassObject* c1, ClassObject* c2) |
| { |
| assert(!dvmIsPrimitiveClass(c1) && !dvmIsPrimitiveClass(c2)); |
| |
| if (c1 == c2) |
| return c1; |
| |
| if (dvmIsInterfaceClass(c1) && dvmImplements(c2, c1)) { |
| if (gDebugVerbose) |
| LOGVV("COMMON/I1: %s + %s --> %s", |
| c1->descriptor, c2->descriptor, c1->descriptor); |
| return c1; |
| } |
| if (dvmIsInterfaceClass(c2) && dvmImplements(c1, c2)) { |
| if (gDebugVerbose) |
| LOGVV("COMMON/I2: %s + %s --> %s", |
| c1->descriptor, c2->descriptor, c2->descriptor); |
| return c2; |
| } |
| |
| if (dvmIsArrayClass(c1) && dvmIsArrayClass(c2)) { |
| return findCommonArraySuperclass(c1, c2); |
| } |
| |
| return digForSuperclass(c1, c2); |
| } |
| |
| /* |
| * Merge two RegType values. |
| * |
| * Sets "*pChanged" to "true" if the result doesn't match "type1". |
| */ |
| static RegType mergeTypes(RegType type1, RegType type2, bool* pChanged) |
| { |
| RegType result; |
| |
| /* |
| * Check for trivial case so we don't have to hit memory. |
| */ |
| if (type1 == type2) |
| return type1; |
| |
| /* |
| * Use the table if we can, and reject any attempts to merge something |
| * from the table with a reference type. |
| * |
| * Uninitialized references are composed of the enum ORed with an |
| * index value. The uninitialized table entry at index zero *will* |
| * show up as a simple kRegTypeUninit value. Since this cannot be |
| * merged with anything but itself, the rules do the right thing. |
| */ |
| if (type1 < kRegTypeMAX) { |
| if (type2 < kRegTypeMAX) { |
| result = gDvmMergeTab[type1][type2]; |
| } else { |
| /* simple + reference == conflict, usually */ |
| if (type1 == kRegTypeZero) |
| result = type2; |
| else |
| result = kRegTypeConflict; |
| } |
| } else { |
| if (type2 < kRegTypeMAX) { |
| /* reference + simple == conflict, usually */ |
| if (type2 == kRegTypeZero) |
| result = type1; |
| else |
| result = kRegTypeConflict; |
| } else { |
| /* merging two references */ |
| if (regTypeIsUninitReference(type1) || |
| regTypeIsUninitReference(type2)) |
| { |
| /* can't merge uninit with anything but self */ |
| result = kRegTypeConflict; |
| } else { |
| ClassObject* clazz1 = regTypeInitializedReferenceToClass(type1); |
| ClassObject* clazz2 = regTypeInitializedReferenceToClass(type2); |
| ClassObject* mergedClass; |
| |
| mergedClass = findCommonSuperclass(clazz1, clazz2); |
| assert(mergedClass != NULL); |
| result = regTypeFromClass(mergedClass); |
| } |
| } |
| } |
| |
| if (result != type1) |
| *pChanged = true; |
| return result; |
| } |
| |
| /* |
| * Merge the bits that indicate which monitor entry addresses on the stack |
| * are associated with this register. |
| * |
| * The merge is a simple bitwise AND. |
| * |
| * Sets "*pChanged" to "true" if the result doesn't match "ents1". |
| */ |
| static MonitorEntries mergeMonitorEntries(MonitorEntries ents1, |
| MonitorEntries ents2, bool* pChanged) |
| { |
| MonitorEntries result = ents1 & ents2; |
| if (result != ents1) |
| *pChanged = true; |
| return result; |
| } |
| |
| /* |
| * Control can transfer to "nextInsn". |
| * |
| * Merge the registers from "workLine" into "regTable" at "nextInsn", and |
| * set the "changed" flag on the target address if any of the registers |
| * has changed. |
| * |
| * Returns "false" if we detect mis-matched monitor stacks. |
| */ |
| static bool updateRegisters(const Method* meth, InsnFlags* insnFlags, |
| RegisterTable* regTable, int nextInsn, const RegisterLine* workLine) |
| { |
| const size_t insnRegCountPlus = regTable->insnRegCountPlus; |
| assert(workLine != NULL); |
| const RegType* workRegs = workLine->regTypes; |
| |
| if (!dvmInsnIsVisitedOrChanged(insnFlags, nextInsn)) { |
| /* |
| * We haven't processed this instruction before, and we haven't |
| * touched the registers here, so there's nothing to "merge". Copy |
| * the registers over and mark it as changed. (This is the only |
| * way a register can transition out of "unknown", so this is not |
| * just an optimization.) |
| */ |
| LOGVV("COPY into 0x%04x", nextInsn); |
| copyLineToTable(regTable, nextInsn, workLine); |
| dvmInsnSetChanged(insnFlags, nextInsn, true); |
| #ifdef VERIFIER_STATS |
| gDvm.verifierStats.copyRegCount++; |
| #endif |
| } else { |
| if (gDebugVerbose) { |
| LOGVV("MERGE into 0x%04x", nextInsn); |
| //dumpRegTypes(vdata, targetRegs, 0, "targ", NULL, 0); |
| //dumpRegTypes(vdata, workRegs, 0, "work", NULL, 0); |
| } |
| /* merge registers, set Changed only if different */ |
| RegisterLine* targetLine = getRegisterLine(regTable, nextInsn); |
| RegType* targetRegs = targetLine->regTypes; |
| MonitorEntries* workMonEnts = workLine->monitorEntries; |
| MonitorEntries* targetMonEnts = targetLine->monitorEntries; |
| bool changed = false; |
| unsigned int idx; |
| |
| assert(targetRegs != NULL); |
| |
| if (targetMonEnts != NULL) { |
| /* |
| * Monitor stacks must be identical. |
| */ |
| if (targetLine->monitorStackTop != workLine->monitorStackTop) { |
| LOG_VFY_METH(meth, |
| "VFY: mismatched stack depth %d vs. %d at 0x%04x", |
| targetLine->monitorStackTop, workLine->monitorStackTop, |
| nextInsn); |
| return false; |
| } |
| if (memcmp(targetLine->monitorStack, workLine->monitorStack, |
| targetLine->monitorStackTop * sizeof(u4)) != 0) |
| { |
| LOG_VFY_METH(meth, "VFY: mismatched monitor stacks at 0x%04x", |
| nextInsn); |
| return false; |
| } |
| } |
| |
| for (idx = 0; idx < insnRegCountPlus; idx++) { |
| targetRegs[idx] = |
| mergeTypes(targetRegs[idx], workRegs[idx], &changed); |
| |
| if (targetMonEnts != NULL) { |
| targetMonEnts[idx] = mergeMonitorEntries(targetMonEnts[idx], |
| workMonEnts[idx], &changed); |
| } |
| } |
| |
| if (gDebugVerbose) { |
| //ALOGI(" RESULT (changed=%d)", changed); |
| //dumpRegTypes(vdata, targetRegs, 0, "rslt", NULL, 0); |
| } |
| #ifdef VERIFIER_STATS |
| gDvm.verifierStats.mergeRegCount++; |
| if (changed) |
| gDvm.verifierStats.mergeRegChanged++; |
| #endif |
| |
| if (changed) |
| dvmInsnSetChanged(insnFlags, nextInsn, true); |
| } |
| |
| return true; |
| } |
| |
| |
| /* |
| * =========================================================================== |
| * Utility functions |
| * =========================================================================== |
| */ |
| |
| /* |
| * Look up an instance field, specified by "fieldIdx", that is going to be |
| * accessed in object "objType". This resolves the field and then verifies |
| * that the class containing the field is an instance of the reference in |
| * "objType". |
| * |
| * It is possible for "objType" to be kRegTypeZero, meaning that we might |
| * have a null reference. This is a runtime problem, so we allow it, |
| * skipping some of the type checks. |
| * |
| * In general, "objType" must be an initialized reference. However, we |
| * allow it to be uninitialized if this is an "<init>" method and the field |
| * is declared within the "objType" class. |
| * |
| * Returns an InstField on success, returns NULL and sets "*pFailure" |
| * on failure. |
| */ |
| static InstField* getInstField(const Method* meth, |
| const UninitInstanceMap* uninitMap, RegType objType, int fieldIdx, |
| VerifyError* pFailure) |
| { |
| InstField* instField = NULL; |
| ClassObject* objClass; |
| bool mustBeLocal = false; |
| |
| if (!regTypeIsReference(objType)) { |
| LOG_VFY("VFY: attempt to access field in non-reference type %d", |
| objType); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| goto bail; |
| } |
| |
| instField = dvmOptResolveInstField(meth->clazz, fieldIdx, pFailure); |
| if (instField == NULL) { |
| LOG_VFY("VFY: unable to resolve instance field %u", fieldIdx); |
| assert(!VERIFY_OK(*pFailure)); |
| goto bail; |
| } |
| |
| if (objType == kRegTypeZero) |
| goto bail; |
| |
| /* |
| * Access to fields in uninitialized objects is allowed if this is |
| * the <init> method for the object and the field in question is |
| * declared by this class. |
| */ |
| objClass = regTypeReferenceToClass(objType, uninitMap); |
| assert(objClass != NULL); |
| if (regTypeIsUninitReference(objType)) { |
| if (!isInitMethod(meth) || meth->clazz != objClass) { |
| LOG_VFY("VFY: attempt to access field via uninitialized ref"); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| goto bail; |
| } |
| mustBeLocal = true; |
| } |
| |
| if (!dvmInstanceof(objClass, instField->clazz)) { |
| LOG_VFY("VFY: invalid field access (field %s.%s, through %s ref)", |
| instField->clazz->descriptor, instField->name, |
| objClass->descriptor); |
| *pFailure = VERIFY_ERROR_NO_FIELD; |
| goto bail; |
| } |
| |
| if (mustBeLocal) { |
| /* for uninit ref, make sure it's defined by this class, not super */ |
| if (instField < objClass->ifields || |
| instField >= objClass->ifields + objClass->ifieldCount) |
| { |
| LOG_VFY("VFY: invalid constructor field access (field %s in %s)", |
| instField->name, objClass->descriptor); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| goto bail; |
| } |
| } |
| |
| bail: |
| return instField; |
| } |
| |
| /* |
| * Look up a static field. |
| * |
| * Returns a StaticField on success, returns NULL and sets "*pFailure" |
| * on failure. |
| */ |
| static StaticField* getStaticField(const Method* meth, int fieldIdx, |
| VerifyError* pFailure) |
| { |
| StaticField* staticField; |
| |
| staticField = dvmOptResolveStaticField(meth->clazz, fieldIdx, pFailure); |
| if (staticField == NULL) { |
| DexFile* pDexFile = meth->clazz->pDvmDex->pDexFile; |
| const DexFieldId* pFieldId; |
| |
| pFieldId = dexGetFieldId(pDexFile, fieldIdx); |
| |
| LOG_VFY("VFY: unable to resolve static field %u (%s) in %s", fieldIdx, |
| dexStringById(pDexFile, pFieldId->nameIdx), |
| dexStringByTypeIdx(pDexFile, pFieldId->classIdx)); |
| assert(!VERIFY_OK(*pFailure)); |
| goto bail; |
| } |
| |
| bail: |
| return staticField; |
| } |
| |
| /* |
| * If "field" is marked "final", make sure this is the either <clinit> |
| * or <init> as appropriate. |
| * |
| * Sets "*pFailure" on failure. |
| */ |
| static void checkFinalFieldAccess(const Method* meth, const Field* field, |
| VerifyError* pFailure) |
| { |
| if (!dvmIsFinalField(field)) |
| return; |
| |
| /* make sure we're in the same class */ |
| if (meth->clazz != field->clazz) { |
| LOG_VFY_METH(meth, "VFY: can't modify final field %s.%s", |
| field->clazz->descriptor, field->name); |
| *pFailure = VERIFY_ERROR_ACCESS_FIELD; |
| return; |
| } |
| |
| /* |
| * The VM spec descriptions of putfield and putstatic say that |
| * IllegalAccessError is only thrown when the instructions appear |
| * outside the declaring class. Our earlier attempts to restrict |
| * final field modification to constructors are, therefore, wrong. |
| */ |
| #if 0 |
| /* make sure we're in the right kind of constructor */ |
| if (dvmIsStaticField(field)) { |
| if (!isClassInitMethod(meth)) { |
| LOG_VFY_METH(meth, |
| "VFY: can't modify final static field outside <clinit>"); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| } |
| } else { |
| if (!isInitMethod(meth)) { |
| LOG_VFY_METH(meth, |
| "VFY: can't modify final field outside <init>"); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| } |
| } |
| #endif |
| } |
| |
| /* |
| * Make sure that the register type is suitable for use as an array index. |
| * |
| * Sets "*pFailure" if not. |
| */ |
| static void checkArrayIndexType(const Method* meth, RegType regType, |
| VerifyError* pFailure) |
| { |
| if (VERIFY_OK(*pFailure)) { |
| /* |
| * The 1nr types are interchangeable at this level. However, |
| * check that a float is not used as the index. |
| */ |
| checkTypeCategory(regType, kTypeCategory1nr, pFailure); |
| if (regType == kRegTypeFloat) { |
| *pFailure = VERIFY_ERROR_GENERIC; |
| } |
| if (!VERIFY_OK(*pFailure)) { |
| LOG_VFY_METH(meth, "Invalid reg type for array index (%d)", |
| regType); |
| } |
| } |
| } |
| |
| /* |
| * Check constraints on constructor return. Specifically, make sure that |
| * the "this" argument got initialized. |
| * |
| * The "this" argument to <init> uses code offset kUninitThisArgAddr, which |
| * puts it at the start of the list in slot 0. If we see a register with |
| * an uninitialized slot 0 reference, we know it somehow didn't get |
| * initialized. |
| * |
| * Returns "true" if all is well. |
| */ |
| static bool checkConstructorReturn(const Method* meth, |
| const RegisterLine* registerLine, const int insnRegCount) |
| { |
| const RegType* insnRegs = registerLine->regTypes; |
| int i; |
| |
| if (!isInitMethod(meth)) |
| return true; |
| |
| RegType uninitThis = regTypeFromUninitIndex(kUninitThisArgSlot); |
| |
| for (i = 0; i < insnRegCount; i++) { |
| if (insnRegs[i] == uninitThis) { |
| LOG_VFY("VFY: <init> returning without calling superclass init"); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* |
| * Verify that the target instruction is not "move-exception". It's important |
| * that the only way to execute a move-exception is as the first instruction |
| * of an exception handler. |
| * |
| * Returns "true" if all is well, "false" if the target instruction is |
| * move-exception. |
| */ |
| static bool checkMoveException(const Method* meth, int insnIdx, |
| const char* logNote) |
| { |
| assert(insnIdx >= 0 && insnIdx < (int)dvmGetMethodInsnsSize(meth)); |
| |
| if ((meth->insns[insnIdx] & 0xff) == OP_MOVE_EXCEPTION) { |
| LOG_VFY("VFY: invalid use of move-exception"); |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * For the "move-exception" instruction at "insnIdx", which must be at an |
| * exception handler address, determine the first common superclass of |
| * all exceptions that can land here. (For javac output, we're probably |
| * looking at multiple spans of bytecode covered by one "try" that lands |
| * at an exception-specific "catch", but in general the handler could be |
| * shared for multiple exceptions.) |
| * |
| * Returns NULL if no matching exception handler can be found, or if the |
| * exception is not a subclass of Throwable. |
| */ |
| static ClassObject* getCaughtExceptionType(const Method* meth, int insnIdx, |
| VerifyError* pFailure) |
| { |
| VerifyError localFailure; |
| const DexCode* pCode; |
| DexFile* pDexFile; |
| ClassObject* commonSuper = NULL; |
| u4 handlersSize; |
| u4 offset; |
| u4 i; |
| |
| pDexFile = meth->clazz->pDvmDex->pDexFile; |
| pCode = dvmGetMethodCode(meth); |
| |
| if (pCode->triesSize != 0) { |
| handlersSize = dexGetHandlersSize(pCode); |
| offset = dexGetFirstHandlerOffset(pCode); |
| } else { |
| handlersSize = 0; |
| offset = 0; |
| } |
| |
| for (i = 0; i < handlersSize; i++) { |
| DexCatchIterator iterator; |
| dexCatchIteratorInit(&iterator, pCode, offset); |
| |
| for (;;) { |
| const DexCatchHandler* handler = dexCatchIteratorNext(&iterator); |
| |
| if (handler == NULL) { |
| break; |
| } |
| |
| if (handler->address == (u4) insnIdx) { |
| ClassObject* clazz; |
| |
| if (handler->typeIdx == kDexNoIndex) |
| clazz = gDvm.exThrowable; |
| else |
| clazz = dvmOptResolveClass(meth->clazz, handler->typeIdx, |
| &localFailure); |
| |
| if (clazz == NULL) { |
| LOG_VFY("VFY: unable to resolve exception class %u (%s)", |
| handler->typeIdx, |
| dexStringByTypeIdx(pDexFile, handler->typeIdx)); |
| /* TODO: do we want to keep going? If we don't fail |
| * this we run the risk of having a non-Throwable |
| * introduced at runtime. However, that won't pass |
| * an instanceof test, so is essentially harmless. */ |
| } else { |
| if (commonSuper == NULL) |
| commonSuper = clazz; |
| else |
| commonSuper = findCommonSuperclass(clazz, commonSuper); |
| } |
| } |
| } |
| |
| offset = dexCatchIteratorGetEndOffset(&iterator, pCode); |
| } |
| |
| if (commonSuper == NULL) { |
| /* no catch blocks, or no catches with classes we can find */ |
| LOG_VFY_METH(meth, |
| "VFY: unable to find exception handler at addr %#x", insnIdx); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| } else { |
| // TODO: verify the class is an instance of Throwable? |
| } |
| |
| return commonSuper; |
| } |
| |
| /* |
| * Helper for initRegisterTable. |
| * |
| * Returns an updated copy of "storage". |
| */ |
| static u1* assignLineStorage(u1* storage, RegisterLine* line, |
| bool trackMonitors, size_t regTypeSize, size_t monEntSize, size_t stackSize) |
| { |
| line->regTypes = (RegType*) storage; |
| storage += regTypeSize; |
| |
| if (trackMonitors) { |
| line->monitorEntries = (MonitorEntries*) storage; |
| storage += monEntSize; |
| line->monitorStack = (u4*) storage; |
| storage += stackSize; |
| |
| assert(line->monitorStackTop == 0); |
| } |
| |
| return storage; |
| } |
| |
| /* |
| * Initialize the RegisterTable. |
| * |
| * Every instruction address can have a different set of information about |
| * what's in which register, but for verification purposes we only need to |
| * store it at branch target addresses (because we merge into that). |
| * |
| * By zeroing out the regType storage we are effectively initializing the |
| * register information to kRegTypeUnknown. |
| * |
| * We jump through some hoops here to minimize the total number of |
| * allocations we have to perform per method verified. |
| */ |
| static bool initRegisterTable(const VerifierData* vdata, |
| RegisterTable* regTable, RegisterTrackingMode trackRegsFor) |
| { |
| const Method* meth = vdata->method; |
| const int insnsSize = vdata->insnsSize; |
| const InsnFlags* insnFlags = vdata->insnFlags; |
| const int kExtraLines = 2; /* workLine, savedLine */ |
| int i; |
| |
| /* |
| * Every address gets a RegisterLine struct. This is wasteful, but |
| * not so much that it's worth chasing through an extra level of |
| * indirection. |
| */ |
| regTable->insnRegCountPlus = meth->registersSize + kExtraRegs; |
| regTable->registerLines = |
| (RegisterLine*) calloc(insnsSize, sizeof(RegisterLine)); |
| if (regTable->registerLines == NULL) |
| return false; |
| |
| assert(insnsSize > 0); |
| |
| /* |
| * Count up the number of "interesting" instructions. |
| * |
| * "All" means "every address that holds the start of an instruction". |
| * "Branches" and "GcPoints" mean just those addresses. |
| * |
| * "GcPoints" fills about half the addresses, "Branches" about 15%. |
| */ |
| int interestingCount = kExtraLines; |
| |
| for (i = 0; i < insnsSize; i++) { |
| bool interesting; |
| |
| switch (trackRegsFor) { |
| case kTrackRegsAll: |
| interesting = dvmInsnIsOpcode(insnFlags, i); |
| break; |
| case kTrackRegsGcPoints: |
| interesting = dvmInsnIsGcPoint(insnFlags, i) || |
| dvmInsnIsBranchTarget(insnFlags, i); |
| break; |
| case kTrackRegsBranches: |
| interesting = dvmInsnIsBranchTarget(insnFlags, i); |
| break; |
| default: |
| dvmAbort(); |
| return false; |
| } |
| |
| if (interesting) |
| interestingCount++; |
| |
| /* count instructions, for display only */ |
| //if (dvmInsnIsOpcode(insnFlags, i)) |
| // insnCount++; |
| } |
| |
| /* |
| * Allocate storage for the register type arrays. |
| * TODO: set trackMonitors based on global config option |
| */ |
| size_t regTypeSize = regTable->insnRegCountPlus * sizeof(RegType); |
| size_t monEntSize = regTable->insnRegCountPlus * sizeof(MonitorEntries); |
| size_t stackSize = kMaxMonitorStackDepth * sizeof(u4); |
| bool trackMonitors; |
| |
| if (gDvm.monitorVerification) { |
| trackMonitors = (vdata->monitorEnterCount != 0); |
| } else { |
| trackMonitors = false; |
| } |
| |
| size_t spacePerEntry = regTypeSize + |
| (trackMonitors ? monEntSize + stackSize : 0); |
| regTable->lineAlloc = calloc(interestingCount, spacePerEntry); |
| if (regTable->lineAlloc == NULL) |
| return false; |
| |
| #ifdef VERIFIER_STATS |
| size_t totalSpace = interestingCount * spacePerEntry + |
| insnsSize * sizeof(RegisterLine); |
| if (gDvm.verifierStats.biggestAlloc < totalSpace) |
| gDvm.verifierStats.biggestAlloc = totalSpace; |
| #endif |
| |
| /* |
| * Populate the sparse register line table. |
| * |
| * There is a RegisterLine associated with every address, but not |
| * every RegisterLine has non-NULL pointers to storage for its fields. |
| */ |
| u1* storage = (u1*)regTable->lineAlloc; |
| for (i = 0; i < insnsSize; i++) { |
| bool interesting; |
| |
| switch (trackRegsFor) { |
| case kTrackRegsAll: |
| interesting = dvmInsnIsOpcode(insnFlags, i); |
| break; |
| case kTrackRegsGcPoints: |
| interesting = dvmInsnIsGcPoint(insnFlags, i) || |
| dvmInsnIsBranchTarget(insnFlags, i); |
| break; |
| case kTrackRegsBranches: |
| interesting = dvmInsnIsBranchTarget(insnFlags, i); |
| break; |
| default: |
| dvmAbort(); |
| return false; |
| } |
| |
| if (interesting) { |
| storage = assignLineStorage(storage, ®Table->registerLines[i], |
| trackMonitors, regTypeSize, monEntSize, stackSize); |
| } |
| } |
| |
| /* |
| * Grab storage for our "temporary" register lines. |
| */ |
| storage = assignLineStorage(storage, ®Table->workLine, |
| trackMonitors, regTypeSize, monEntSize, stackSize); |
| storage = assignLineStorage(storage, ®Table->savedLine, |
| trackMonitors, regTypeSize, monEntSize, stackSize); |
| |
| //ALOGD("Tracking registers for [%d], total %d in %d units", |
| // trackRegsFor, interestingCount-kExtraLines, insnsSize); |
| |
| assert(storage - (u1*)regTable->lineAlloc == |
| (int) (interestingCount * spacePerEntry)); |
| assert(regTable->registerLines[0].regTypes != NULL); |
| return true; |
| } |
| |
| /* |
| * Free up any "hairy" structures associated with register lines. |
| */ |
| static void freeRegisterLineInnards(VerifierData* vdata) |
| { |
| unsigned int idx; |
| |
| if (vdata->registerLines == NULL) |
| return; |
| |
| for (idx = 0; idx < vdata->insnsSize; idx++) { |
| BitVector* liveRegs = vdata->registerLines[idx].liveRegs; |
| if (liveRegs != NULL) |
| dvmFreeBitVector(liveRegs); |
| } |
| } |
| |
| |
| /* |
| * Verify that the arguments in a filled-new-array instruction are valid. |
| * |
| * "resClass" is the class refered to by pDecInsn->vB. |
| */ |
| static void verifyFilledNewArrayRegs(const Method* meth, |
| RegisterLine* registerLine, const DecodedInstruction* pDecInsn, |
| ClassObject* resClass, bool isRange, VerifyError* pFailure) |
| { |
| u4 argCount = pDecInsn->vA; |
| RegType expectedType; |
| PrimitiveType elemType; |
| unsigned int ui; |
| |
| assert(dvmIsArrayClass(resClass)); |
| elemType = resClass->elementClass->primitiveType; |
| if (elemType == PRIM_NOT) { |
| expectedType = regTypeFromClass(resClass->elementClass); |
| } else { |
| expectedType = primitiveTypeToRegType(elemType); |
| } |
| //ALOGI("filled-new-array: %s -> %d", resClass->descriptor, expectedType); |
| |
| /* |
| * Verify each register. If "argCount" is bad, verifyRegisterType() |
| * will run off the end of the list and fail. It's legal, if silly, |
| * for argCount to be zero. |
| */ |
| for (ui = 0; ui < argCount; ui++) { |
| u4 getReg; |
| |
| if (isRange) |
| getReg = pDecInsn->vC + ui; |
| else |
| getReg = pDecInsn->arg[ui]; |
| |
| verifyRegisterType(registerLine, getReg, expectedType, pFailure); |
| if (!VERIFY_OK(*pFailure)) { |
| LOG_VFY("VFY: filled-new-array arg %u(%u) not valid", ui, getReg); |
| return; |
| } |
| } |
| } |
| |
| |
| /* |
| * Replace an instruction with "throw-verification-error". This allows us to |
| * defer error reporting until the code path is first used. |
| * |
| * This is expected to be called during "just in time" verification, not |
| * from within dexopt. (Verification failures in dexopt will result in |
| * postponement of verification to first use of the class.) |
| * |
| * The throw-verification-error instruction requires two code units. Some |
| * of the replaced instructions require three; the third code unit will |
| * receive a "nop". The instruction's length will be left unchanged |
| * in "insnFlags". |
| * |
| * The VM postpones setting of debugger breakpoints in unverified classes, |
| * so there should be no clashes with the debugger. |
| * |
| * Returns "true" on success. |
| */ |
| static bool replaceFailingInstruction(const Method* meth, InsnFlags* insnFlags, |
| int insnIdx, VerifyError failure) |
| { |
| VerifyErrorRefType refType; |
| u2* oldInsns = (u2*) meth->insns + insnIdx; |
| int width; |
| |
| if (gDvm.optimizing) |
| ALOGD("Weird: RFI during dexopt?"); |
| |
| /* |
| * Generate the new instruction out of the old. |
| * |
| * First, make sure this is an instruction we're expecting to stomp on. |
| */ |
| Opcode opcode = dexOpcodeFromCodeUnit(*oldInsns); |
| switch (opcode) { |
| case OP_CONST_CLASS: // insn[1] == class ref, 2 bytes |
| case OP_CHECK_CAST: |
| case OP_INSTANCE_OF: |
| case OP_NEW_INSTANCE: |
| case OP_NEW_ARRAY: |
| case OP_FILLED_NEW_ARRAY: // insn[1] == class ref, 3 bytes |
| case OP_FILLED_NEW_ARRAY_RANGE: |
| refType = VERIFY_ERROR_REF_CLASS; |
| break; |
| |
| case OP_IGET: // insn[1] == field ref, 2 bytes |
| case OP_IGET_BOOLEAN: |
| case OP_IGET_BYTE: |
| case OP_IGET_CHAR: |
| case OP_IGET_SHORT: |
| case OP_IGET_WIDE: |
| case OP_IGET_OBJECT: |
| case OP_IPUT: |
| case OP_IPUT_BOOLEAN: |
| case OP_IPUT_BYTE: |
| case OP_IPUT_CHAR: |
| case OP_IPUT_SHORT: |
| case OP_IPUT_WIDE: |
| case OP_IPUT_OBJECT: |
| case OP_SGET: |
| case OP_SGET_BOOLEAN: |
| case OP_SGET_BYTE: |
| case OP_SGET_CHAR: |
| case OP_SGET_SHORT: |
| case OP_SGET_WIDE: |
| case OP_SGET_OBJECT: |
| case OP_SPUT: |
| case OP_SPUT_BOOLEAN: |
| case OP_SPUT_BYTE: |
| case OP_SPUT_CHAR: |
| case OP_SPUT_SHORT: |
| case OP_SPUT_WIDE: |
| case OP_SPUT_OBJECT: |
| refType = VERIFY_ERROR_REF_FIELD; |
| break; |
| |
| case OP_INVOKE_VIRTUAL: // insn[1] == method ref, 3 bytes |
| case OP_INVOKE_VIRTUAL_RANGE: |
| case OP_INVOKE_SUPER: |
| case OP_INVOKE_SUPER_RANGE: |
| case OP_INVOKE_DIRECT: |
| case OP_INVOKE_DIRECT_RANGE: |
| case OP_INVOKE_STATIC: |
| case OP_INVOKE_STATIC_RANGE: |
| case OP_INVOKE_INTERFACE: |
| case OP_INVOKE_INTERFACE_RANGE: |
| refType = VERIFY_ERROR_REF_METHOD; |
| break; |
| |
| default: |
| /* could handle this in a generic way, but this is probably safer */ |
| LOG_VFY("GLITCH: verifier asked to replace opcode 0x%02x", opcode); |
| return false; |
| } |
| |
| assert((dexGetFlagsFromOpcode(opcode) & kInstrCanThrow) != 0); |
| |
| /* write a NOP over the third code unit, if necessary */ |
| width = dvmInsnGetWidth(insnFlags, insnIdx); |
| switch (width) { |
| case 2: |
| case 4: |
| /* nothing to do */ |
| break; |
| case 3: |
| dvmUpdateCodeUnit(meth, oldInsns+2, OP_NOP); |
| break; |
| default: |
| /* whoops */ |
| ALOGE("ERROR: stomped a %d-unit instruction with a verifier error", |
| width); |
| dvmAbort(); |
| } |
| |
| /* encode the opcode, with the failure code in the high byte */ |
| assert(width == 2 || width == 3); |
| u2 newVal = OP_THROW_VERIFICATION_ERROR | |
| (failure << 8) | (refType << (8 + kVerifyErrorRefTypeShift)); |
| dvmUpdateCodeUnit(meth, oldInsns, newVal); |
| |
| return true; |
| } |
| |
| /* |
| * Handle a monitor-enter instruction. |
| */ |
| void handleMonitorEnter(RegisterLine* workLine, u4 regIdx, u4 insnIdx, |
| VerifyError* pFailure) |
| { |
| if (!regTypeIsReference(getRegisterType(workLine, regIdx))) { |
| LOG_VFY("VFY: monitor-enter on non-object"); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| return; |
| } |
| |
| if (workLine->monitorEntries == NULL) { |
| /* should only be true if monitor verification is disabled */ |
| assert(!gDvm.monitorVerification); |
| return; |
| } |
| |
| if (workLine->monitorStackTop == kMaxMonitorStackDepth) { |
| LOG_VFY("VFY: monitor-enter stack overflow (%d)", |
| kMaxMonitorStackDepth); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| return; |
| } |
| |
| /* |
| * Push an entry on the stack, and set a bit in the register flags to |
| * indicate that it's associated with this register. |
| */ |
| workLine->monitorEntries[regIdx] |= 1 << workLine->monitorStackTop; |
| workLine->monitorStack[workLine->monitorStackTop++] = insnIdx; |
| } |
| |
| /* |
| * Handle a monitor-exit instruction. |
| */ |
| void handleMonitorExit(RegisterLine* workLine, u4 regIdx, u4 insnIdx, |
| VerifyError* pFailure) |
| { |
| if (!regTypeIsReference(getRegisterType(workLine, regIdx))) { |
| LOG_VFY("VFY: monitor-exit on non-object"); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| return; |
| } |
| |
| if (workLine->monitorEntries == NULL) { |
| /* should only be true if monitor verification is disabled */ |
| assert(!gDvm.monitorVerification); |
| return; |
| } |
| |
| if (workLine->monitorStackTop == 0) { |
| LOG_VFY("VFY: monitor-exit stack underflow"); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| return; |
| } |
| |
| /* |
| * Confirm that the entry at the top of the stack is associated with |
| * the register. Pop the top entry off. |
| */ |
| workLine->monitorStackTop--; |
| #ifdef BUG_3215458_FIXED |
| /* |
| * TODO: This code can safely be enabled if know we are working on |
| * a dex file of format version 036 or later. (That is, we'll need to |
| * add a check for the version number.) |
| */ |
| if ((workLine->monitorEntries[regIdx] & (1 << workLine->monitorStackTop)) |
| == 0) |
| { |
| LOG_VFY("VFY: monitor-exit bit %d not set: addr=0x%04x (bits[%d]=%#x)", |
| workLine->monitorStackTop, insnIdx, regIdx, |
| workLine->monitorEntries[regIdx]); |
| *pFailure = VERIFY_ERROR_GENERIC; |
| return; |
| } |
| #endif |
| workLine->monitorStack[workLine->monitorStackTop] = 0; |
| |
| /* |
| * Clear the bit from the register flags. |
| */ |
| workLine->monitorEntries[regIdx] &= ~(1 << workLine->monitorStackTop); |
| } |
| |
| |
| /* |
| * =========================================================================== |
| * Entry point and driver loop |
| * =========================================================================== |
| */ |
| |
| /* |
| * One-time preparation. |
| */ |
| static void verifyPrep() |
| { |
| #ifndef NDEBUG |
| /* only need to do this if the table was updated */ |
| checkMergeTab(); |
| #endif |
| } |
| |
| /* |
| * Entry point for the detailed code-flow analysis of a single method. |
| */ |
| bool dvmVerifyCodeFlow(VerifierData* vdata) |
| { |
| bool result = false; |
| const Method* meth = vdata->method; |
| const int insnsSize = vdata->insnsSize; |
| const bool generateRegisterMap = gDvm.generateRegisterMaps; |
| RegisterTable regTable; |
| |
| memset(®Table, 0, sizeof(regTable)); |
| |
| #ifdef VERIFIER_STATS |
| gDvm.verifierStats.methodsExamined++; |
| if (vdata->monitorEnterCount) |
| gDvm.verifierStats.monEnterMethods++; |
| #endif |
| |
| /* TODO: move this elsewhere -- we don't need to do this for every method */ |
| verifyPrep(); |
| |
| if (meth->registersSize * insnsSize > 4*1024*1024) { |
| LOG_VFY_METH(meth, |
| "VFY: warning: method is huge (regs=%d insnsSize=%d)", |
| meth->registersSize, insnsSize); |
| /* might be bogus data, might be some huge generated method */ |
| } |
| |
| /* |
| * Create register lists, and initialize them to "Unknown". If we're |
| * also going to create the register map, we need to retain the |
| * register lists for a larger set of addresses. |
| */ |
| if (!initRegisterTable(vdata, ®Table, |
| generateRegisterMap ? kTrackRegsGcPoints : kTrackRegsBranches)) |
| goto bail; |
| |
| vdata->registerLines = regTable.registerLines; |
| |
| /* |
| * Perform liveness analysis. |
| * |
| * We can do this before or after the main verifier pass. The choice |
| * affects whether or not we see the effects of verifier instruction |
| * changes, i.e. substitution of throw-verification-error. |
| * |
| * In practice the ordering doesn't really matter, because T-V-E |
| * just prunes "can continue", creating regions of dead code (with |
| * corresponding register map data that will never be used). |
| */ |
| if (generateRegisterMap && |
| gDvm.registerMapMode == kRegisterMapModeLivePrecise) |
| { |
| /* |
| * Compute basic blocks and predecessor lists. |
| */ |
| if (!dvmComputeVfyBasicBlocks(vdata)) |
| goto bail; |
| |
| /* |
| * Compute liveness. |
| */ |
| if (!dvmComputeLiveness(vdata)) |
| goto bail; |
| } |
| |
| /* |
| * Initialize the types of the registers that correspond to the |
| * method arguments. We can determine this from the method signature. |
| */ |
| if (!setTypesFromSignature(meth, regTable.registerLines[0].regTypes, |
| vdata->uninitMap)) |
| goto bail; |
| |
| /* |
| * Run the verifier. |
| */ |
| if (!doCodeVerification(vdata, ®Table)) |
| goto bail; |
| |
| /* |
| * Generate a register map. |
| */ |
| if (generateRegisterMap) { |
| RegisterMap* pMap = dvmGenerateRegisterMapV(vdata); |
| if (pMap != NULL) { |
| /* |
| * Tuck it into the Method struct. It will either get used |
| * directly or, if we're in dexopt, will be packed up and |
| * appended to the DEX file. |
| */ |
| dvmSetRegisterMap((Method*)meth, pMap); |
| } |
| } |
| |
| /* |
| * Success. |
| */ |
| result = true; |
| |
| bail: |
| freeRegisterLineInnards(vdata); |
| free(regTable.registerLines); |
| free(regTable.lineAlloc); |
| return result; |
| } |
| |
| /* |
| * Grind through the instructions. |
| * |
| * The basic strategy is as outlined in v3 4.11.1.2: set the "changed" bit |
| * on the first instruction, process it (setting additional "changed" bits), |
| * and repeat until there are no more. |
| * |
| * v3 4.11.1.1 |
| * - (N/A) operand stack is always the same size |
| * - operand stack [registers] contain the correct types of values |
| * - local variables [registers] contain the correct types of values |
| * - methods are invoked with the appropriate arguments |
| * - fields are assigned using values of appropriate types |
| * - opcodes have the correct type values in operand registers |
| * - there is never an uninitialized class instance in a local variable in |
| * code protected by an exception handler (operand stack is okay, because |
| * the operand stack is discarded when an exception is thrown) [can't |
| * know what's a local var w/o the debug info -- should fall out of |
| * register typing] |
| * |
| * v3 4.11.1.2 |
| * - execution cannot fall off the end of the code |
| * |
| * (We also do many of the items described in the "static checks" sections, |
| * because it's easier to do them here.) |
| * |
| * We need an array of RegType values, one per register, for every |
| * instruction. If the method uses monitor-enter, we need extra data |
| * for every register, and a stack for every "interesting" instruction. |
| * In theory this could become quite large -- up to several megabytes for |
| * a monster function. |
| * |
| * NOTE: |
| * The spec forbids backward branches when there's an uninitialized reference |
| * in a register. The idea is to prevent something like this: |
| * loop: |
| * move r1, r0 |
| * new-instance r0, MyClass |
| * ... |
| * if-eq rN, loop // once |
| * initialize r0 |
| * |
| * This leaves us with two different instances, both allocated by the |
| * same instruction, but only one is initialized. The scheme outlined in |
| * v3 4.11.1.4 wouldn't catch this, so they work around it by preventing |
| * backward branches. We achieve identical results without restricting |
| * code reordering by specifying that you can't execute the new-instance |
| * instruction if a register contains an uninitialized instance created |
| * by that same instrutcion. |
| */ |
| static bool doCodeVerification(VerifierData* vdata, RegisterTable* regTable) |
| { |
| const Method* meth = vdata->method; |
| InsnFlags* insnFlags = vdata->insnFlags; |
| UninitInstanceMap* uninitMap = vdata->uninitMap; |
| const int insnsSize = dvmGetMethodInsnsSize(meth); |
| bool result = false; |
| bool debugVerbose = false; |
| int insnIdx, startGuess; |
| |
| /* |
| * Begin by marking the first instruction as "changed". |
| */ |
| dvmInsnSetChanged(insnFlags, 0, true); |
| |
| if (dvmWantVerboseVerification(meth)) { |
| IF_ALOGI() { |
| char* desc = dexProtoCopyMethodDescriptor(&meth->prototype); |
| ALOGI("Now verifying: %s.%s %s (ins=%d regs=%d)", |
| meth->clazz->descriptor, meth->name, desc, |
| meth->insSize, meth->registersSize); |
| ALOGI(" ------ [0 4 8 12 16 20 24 28 32 36"); |
| free(desc); |
| } |
| debugVerbose = true; |
| gDebugVerbose = true; |
| } else { |
| gDebugVerbose = false; |
| } |
| |
| startGuess = 0; |
| |
| /* |
| * Continue until no instructions are marked "changed". |
| */ |
| while (true) { |
| /* |
| * Find the first marked one. Use "startGuess" as a way to find |
| * one quickly. |
| */ |
| for (insnIdx = startGuess; insnIdx < insnsSize; insnIdx++) { |
| if (dvmInsnIsChanged(insnFlags, insnIdx)) |
| break; |
| } |
| |
| if (insnIdx == insnsSize) { |
| if (startGuess != 0) { |
| /* try again, starting from the top */ |
| startGuess = 0; |
| continue; |
| } else { |
| /* all flags are clear */ |
| break; |
| } |
| } |
| |
| /* |
| * We carry the working set of registers from instruction to |
| * instruction. If this address can be the target of a branch |
| * (or throw) instruction, or if we're skipping around chasing |
| * "changed" flags, we need to load the set of registers from |
| * the table. |
| * |
| * Because we always prefer to continue on to the next instruction, |
| * we should never have a situation where we have a stray |
| * "changed" flag set on an instruction that isn't a branch target. |
| */ |
| if (dvmInsnIsBranchTarget(insnFlags, insnIdx)) { |
| RegisterLine* workLine = ®Table->workLine; |
| |
| copyLineFromTable(workLine, regTable, insnIdx); |
| } else { |
| #ifndef NDEBUG |
| /* |
| * Sanity check: retrieve the stored register line (assuming |
| * a full table) and make sure it actually matches. |
| */ |
| RegisterLine* registerLine = getRegisterLine(regTable, insnIdx); |
| if (registerLine->regTypes != NULL && |
| compareLineToTable(regTable, insnIdx, ®Table->workLine) != 0) |
| { |
| char* desc = dexProtoCopyMethodDescriptor(&meth->prototype); |
| LOG_VFY("HUH? workLine diverged in %s.%s %s", |
| meth->clazz->descriptor, meth->name, desc); |
| free(desc); |
| dumpRegTypes(vdata, registerLine, 0, "work", |
| uninitMap, DRT_SHOW_REF_TYPES | DRT_SHOW_LOCALS); |
| dumpRegTypes(vdata, registerLine, 0, "insn", |
| uninitMap, DRT_SHOW_REF_TYPES | DRT_SHOW_LOCALS); |
| } |
| #endif |
| } |
| if (debugVerbose) { |
| dumpRegTypes(vdata, ®Table->workLine, insnIdx, |
| NULL, uninitMap, SHOW_REG_DETAILS); |
| } |
| |
| //ALOGI("process %s.%s %s %d", |
| // meth->clazz->descriptor, meth->name, meth->descriptor, insnIdx); |
| if (!verifyInstruction(meth, insnFlags, regTable, insnIdx, |
| uninitMap, &startGuess)) |
| { |
| //ALOGD("+++ %s bailing at %d", meth->name, insnIdx); |
| goto bail; |
| } |
| |
| /* |
| * Clear "changed" and mark as visited. |
| */ |
| dvmInsnSetVisited(insnFlags, insnIdx, true); |
| dvmInsnSetChanged(insnFlags, insnIdx, false); |
| } |
| |
| if (DEAD_CODE_SCAN && !IS_METHOD_FLAG_SET(meth, METHOD_ISWRITABLE)) { |
| /* |
| * Scan for dead code. There's nothing "evil" about dead code |
| * (besides the wasted space), but it indicates a flaw somewhere |
| * down the line, possibly in the verifier. |
| * |
| * If we've substituted "always throw" instructions into the stream, |
| * we are almost certainly going to have some dead code. |
| */ |
| int deadStart = -1; |
| for (insnIdx = 0; insnIdx < insnsSize; |
| insnIdx += dvmInsnGetWidth(insnFlags, insnIdx)) |
| { |
| /* |
| * Switch-statement data doesn't get "visited" by scanner. It |
| * may or may not be preceded by a padding NOP (for alignment). |
| */ |
| int instr = meth->insns[insnIdx]; |
| if (instr == kPackedSwitchSignature || |
| instr == kSparseSwitchSignature || |
| instr == kArrayDataSignature || |
| (instr == OP_NOP && (insnIdx + 1 < insnsSize) && |
| (meth->insns[insnIdx+1] == kPackedSwitchSignature || |
| meth->insns[insnIdx+1] == kSparseSwitchSignature || |
| meth->insns[insnIdx+1] == kArrayDataSignature))) |
| { |
| dvmInsnSetVisited(insnFlags, insnIdx, true); |
| } |
| |
| if (!dvmInsnIsVisited(insnFlags, insnIdx)) { |
| if (deadStart < 0) |
| deadStart = insnIdx; |
| } else if (deadStart >= 0) { |
| IF_ALOGD() { |
| char* desc = |
| dexProtoCopyMethodDescriptor(&meth->prototype); |
| ALOGD("VFY: dead code 0x%04x-%04x in %s.%s %s", |
| deadStart, insnIdx-1, |
| meth->clazz->descriptor, meth->name, desc); |
| free(desc); |
| } |
| |
| deadStart = -1; |
| } |
| } |
| if (deadStart >= 0) { |
| IF_ALOGD() { |
| char* desc = dexProtoCopyMethodDescriptor(&meth->prototype); |
| ALOGD("VFY: dead code 0x%04x-%04x in %s.%s %s", |
| deadStart, insnIdx-1, |
| meth->clazz->descriptor, meth->name, desc); |
| free(desc); |
| } |
| } |
| } |
| |
| result = true; |
| |
| bail: |
| return result; |
| } |
| |
| |
| /* |
| * Perform verification for a single instruction. |
| * |
| * This requires fully decoding the instruction to determine the effect |
| * it has on registers. |
| * |
| * Finds zero or more following instructions and sets the "changed" flag |
| * if execution at that point needs to be (re-)evaluated. Register changes |
| * are merged into "regTypes" at the target addresses. Does not set or |
| * clear any other flags in "insnFlags". |
| * |
| * This may alter meth->insns if we need to replace an instruction with |
| * throw-verification-error. |
| */ |
| static bool verifyInstruction(const Method* meth, InsnFlags* insnFlags, |
| RegisterTable* regTable, int insnIdx, UninitInstanceMap* uninitMap, |
| int* pStartGuess) |
| { |
| const int insnsSize = dvmGetMethodInsnsSize(meth); |
| const u2* insns = meth->insns + insnIdx; |
| bool result = false; |
| |
| #ifdef VERIFIER_STATS |
| if (dvmInsnIsVisited(insnFlags, insnIdx)) { |
| gDvm.verifierStats.instrsReexamined++; |
| } else { |
| gDvm.verifierStats.instrsExamined++; |
| } |
| #endif |
| |
| /* |
| * Once we finish decoding the instruction, we need to figure out where |
| * we can go from here. There are three possible ways to transfer |
| * control to another statement: |
| * |
| * (1) Continue to the next instruction. Applies to all but |
| * unconditional branches, method returns, and exception throws. |
| * (2) Branch to one or more possible locations. Applies to branches |
| * and switch statements. |
| * (3) Exception handlers. Applies to any instruction that can |
| * throw an exception that is handled by an encompassing "try" |
| * block. |
| * |
| * We can also return, in which case there is no successor instruction |
| * from this point. |
| * |
| * The behavior can be determined from the OpcodeFlags. |
| */ |
| |
| RegisterLine* workLine = ®Table->workLine; |
| const DexFile* pDexFile = meth->clazz->pDvmDex->pDexFile; |
| ClassObject* resClass; |
| s4 branchTarget = 0; |
| const int insnRegCount = meth->registersSize; |
| RegType tmpType; |
| DecodedInstruction decInsn; |
| bool justSetResult = false; |
| VerifyError failure = VERIFY_ERROR_NONE; |
| |
| #ifndef NDEBUG |
| memset(&decInsn, 0x81, sizeof(decInsn)); |
| #endif |
| dexDecodeInstruction(insns, &decInsn); |
| |
| int nextFlags = dexGetFlagsFromOpcode(decInsn.opcode); |
| |
| /* |
| * Make a copy of the previous register state. If the instruction |
| * can throw an exception, we will copy/merge this into the "catch" |
| * address rather than workLine, because we don't want the result |
| * from the "successful" code path (e.g. a check-cast that "improves" |
| * a type) to be visible to the exception handler. |
| */ |
| if ((nextFlags & kInstrCanThrow) != 0 && dvmInsnIsInTry(insnFlags, insnIdx)) |
| { |
| copyRegisterLine(®Table->savedLine, workLine, |
| regTable->insnRegCountPlus); |
| } else { |
| #ifndef NDEBUG |
| memset(regTable->savedLine.regTypes, 0xdd, |
| regTable->insnRegCountPlus * sizeof(RegType)); |
| #endif |
| } |
| |
| switch (decInsn.opcode) { |
| case OP_NOP: |
| /* |
| * A "pure" NOP has no effect on anything. Data tables start with |
| * a signature that looks like a NOP; if we see one of these in |
| * the course of executing code then we have a problem. |
| */ |
| if (decInsn.vA != 0) { |
| LOG_VFY("VFY: encountered data table in instruction stream"); |
| failure = VERIFY_ERROR_GENERIC; |
| } |
| break; |
| |
| case OP_MOVE: |
| case OP_MOVE_FROM16: |
| case OP_MOVE_16: |
| copyRegister1(workLine, decInsn.vA, decInsn.vB, kTypeCategory1nr, |
| &failure); |
| break; |
| case OP_MOVE_WIDE: |
| case OP_MOVE_WIDE_FROM16: |
| case OP_MOVE_WIDE_16: |
| copyRegister2(workLine, decInsn.vA, decInsn.vB, &failure); |
| break; |
| case OP_MOVE_OBJECT: |
| case OP_MOVE_OBJECT_FROM16: |
| case OP_MOVE_OBJECT_16: |
| copyRegister1(workLine, decInsn.vA, decInsn.vB, kTypeCategoryRef, |
| &failure); |
| break; |
| |
| /* |
| * The move-result instructions copy data out of a "pseudo-register" |
| * with the results from the last method invocation. In practice we |
| * might want to hold the result in an actual CPU register, so the |
| * Dalvik spec requires that these only appear immediately after an |
| * invoke or filled-new-array. |
| * |
| * These calls invalidate the "result" register. (This is now |
| * redundant with the reset done below, but it can make the debug info |
| * easier to read in some cases.) |
| */ |
| case OP_MOVE_RESULT: |
| copyResultRegister1(workLine, insnRegCount, decInsn.vA, |
| kTypeCategory1nr, &failure); |
| break; |
| case OP_MOVE_RESULT_WIDE: |
| copyResultRegister2(workLine, insnRegCount, decInsn.vA, &failure); |
| break; |
| case OP_MOVE_RESULT_OBJECT: |
| copyResultRegister1(workLine, insnRegCount, decInsn.vA, |
| kTypeCategoryRef, &failure); |
| break; |
| |
| case OP_MOVE_EXCEPTION: |
| /* |
| * This statement can only appear as the first instruction in an |
| * exception handler (though not all exception handlers need to |
| * have one of these). We verify that as part of extracting the |
| * exception type from the catch block list. |
| * |
| * "resClass" will hold the closest common superclass of all |
| * exceptions that can be handled here. |
| */ |
| resClass = getCaughtExceptionType(meth, insnIdx, &failure); |
| if (resClass == NULL) { |
| assert(!VERIFY_OK(failure)); |
| } else { |
| setRegisterType(workLine, decInsn.vA, regTypeFromClass(resClass)); |
| } |
| break; |
| |
| case OP_RETURN_VOID: |
| if (!checkConstructorReturn(meth, workLine, insnRegCount)) { |
| failure = VERIFY_ERROR_GENERIC; |
| } else if (getMethodReturnType(meth) != kRegTypeUnknown) { |
| LOG_VFY("VFY: return-void not expected"); |
| failure = VERIFY_ERROR_GENERIC; |
| } |
| break; |
| case OP_RETURN: |
| if (!checkConstructorReturn(meth, workLine, insnRegCount)) { |
| failure = VERIFY_ERROR_GENERIC; |
| } else { |
| /* check the method signature */ |
| RegType returnType = getMethodReturnType(meth); |
| checkTypeCategory(returnType, kTypeCategory1nr, &failure); |
| if (!VERIFY_OK(failure)) |
| LOG_VFY("VFY: return-1nr not expected"); |
| |
| /* |
| * javac generates synthetic functions that write byte values |
| * into boolean fields. Also, it may use integer values for |
| * boolean, byte, short, and character return types. |
| */ |
| RegType srcType = getRegisterType(workLine, decInsn.vA); |
| if ((returnType == kRegTypeBoolean && srcType == kRegTypeByte) || |
| ((returnType == kRegTypeBoolean || returnType == kRegTypeByte || |
| returnType == kRegTypeShort || returnType == kRegTypeChar) && |
| srcType == kRegTypeInteger)) |
| returnType = srcType; |
| |
| /* check the register contents */ |
| verifyRegisterType(workLine, decInsn.vA, returnType, &failure); |
| if (!VERIFY_OK(failure)) { |
| LOG_VFY("VFY: return-1nr on invalid register v%d", |
| decInsn.vA); |
| } |
| } |
| break; |
| case OP_RETURN_WIDE: |
| if (!checkConstructorReturn(meth, workLine, insnRegCount)) { |
| failure = VERIFY_ERROR_GENERIC; |
| } else { |
| RegType returnType; |
| |
| /* check the method signature */ |
| returnType = getMethodReturnType(meth); |
| checkTypeCategory(returnType, kTypeCategory2, &failure); |
| if (!VERIFY_OK(failure)) |
| LOG_VFY("VFY: return-wide not expected"); |
| |
| /* check the register contents */ |
| verifyRegisterType(workLine, decInsn.vA, returnType, &failure); |
| if (!VERIFY_OK(failure)) { |
| LOG_VFY("VFY: return-wide on invalid register pair v%d", |
| decInsn.vA); |
| } |
| } |
| break; |
| case OP_RETURN_OBJECT: |
| if (!checkConstructorReturn(meth, workLine, insnRegCount)) { |
| failure = VERIFY_ERROR_GENERIC; |
| } else { |
| RegType returnType = getMethodReturnType(meth); |
| checkTypeCategory(returnType, kTypeCategoryRef, &failure); |
| if (!VERIFY_OK(failure)) { |
| LOG_VFY("VFY: return-object not expected"); |
| break; |
| } |
| |
| /* returnType is the *expected* return type, not register value */ |
| assert(returnType != kRegTypeZero); |
| assert(!regTypeIsUninitReference(returnType)); |
| |
| /* |
| * Verify that the reference in vAA is an instance of the type |
| * in "returnType". The Zero type is allowed here. If the |
| * method is declared to return an interface, then any |
| * initialized reference is acceptable. |
| * |
| * Note getClassFromRegister fails if the register holds an |
| * uninitialized reference, so we do not allow them to be |
| * returned. |
| */ |
| ClassObject* declClass; |
| |
| declClass = regTypeInitializedReferenceToClass(returnType); |
| resClass = getClassFromRegister(workLine, decInsn.vA, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| if (resClass != NULL) { |
| if (!dvmIsInterfaceClass(declClass) && |
| !dvmInstanceof(resClass, declClass)) |
| { |
| LOG_VFY("VFY: returning %s (cl=%p), declared %s (cl=%p)", |
| resClass->descriptor, resClass->classLoader, |
| declClass->descriptor, declClass->classLoader); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| } |
| break; |
| |
| case OP_CONST_4: |
| case OP_CONST_16: |
| case OP_CONST: |
| /* could be boolean, int, float, or a null reference */ |
| setRegisterType(workLine, decInsn.vA, |
| determineCat1Const((s4)decInsn.vB)); |
| break; |
| case OP_CONST_HIGH16: |
| /* could be boolean, int, float, or a null reference */ |
| setRegisterType(workLine, decInsn.vA, |
| determineCat1Const((s4) decInsn.vB << 16)); |
| break; |
| case OP_CONST_WIDE_16: |
| case OP_CONST_WIDE_32: |
| case OP_CONST_WIDE: |
| case OP_CONST_WIDE_HIGH16: |
| /* could be long or double; resolved upon use */ |
| setRegisterType(workLine, decInsn.vA, kRegTypeConstLo); |
| break; |
| case OP_CONST_STRING: |
| case OP_CONST_STRING_JUMBO: |
| assert(gDvm.classJavaLangString != NULL); |
| setRegisterType(workLine, decInsn.vA, |
| regTypeFromClass(gDvm.classJavaLangString)); |
| break; |
| case OP_CONST_CLASS: |
| assert(gDvm.classJavaLangClass != NULL); |
| /* make sure we can resolve the class; access check is important */ |
| resClass = dvmOptResolveClass(meth->clazz, decInsn.vB, &failure); |
| if (resClass == NULL) { |
| const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vB); |
| dvmLogUnableToResolveClass(badClassDesc, meth); |
| LOG_VFY("VFY: unable to resolve const-class %d (%s) in %s", |
| decInsn.vB, badClassDesc, meth->clazz->descriptor); |
| assert(failure != VERIFY_ERROR_GENERIC); |
| } else { |
| setRegisterType(workLine, decInsn.vA, |
| regTypeFromClass(gDvm.classJavaLangClass)); |
| } |
| break; |
| |
| case OP_MONITOR_ENTER: |
| handleMonitorEnter(workLine, decInsn.vA, insnIdx, &failure); |
| break; |
| case OP_MONITOR_EXIT: |
| /* |
| * monitor-exit instructions are odd. They can throw exceptions, |
| * but when they do they act as if they succeeded and the PC is |
| * pointing to the following instruction. (This behavior goes back |
| * to the need to handle asynchronous exceptions, a now-deprecated |
| * feature that Dalvik doesn't support.) |
| * |
| * In practice we don't need to worry about this. The only |
| * exceptions that can be thrown from monitor-exit are for a |
| * null reference and -exit without a matching -enter. If the |
| * structured locking checks are working, the former would have |
| * failed on the -enter instruction, and the latter is impossible. |
| * |
| * This is fortunate, because issue 3221411 prevents us from |
| * chasing the "can throw" path when monitor verification is |
| * enabled. If we can fully verify the locking we can ignore |
| * some catch blocks (which will show up as "dead" code when |
| * we skip them here); if we can't, then the code path could be |
| * "live" so we still need to check it. |
| */ |
| if (workLine->monitorEntries != NULL) |
| nextFlags &= ~kInstrCanThrow; |
| handleMonitorExit(workLine, decInsn.vA, insnIdx, &failure); |
| break; |
| |
| case OP_CHECK_CAST: |
| /* |
| * If this instruction succeeds, we will promote register vA to |
| * the type in vB. (This could be a demotion -- not expected, so |
| * we don't try to address it.) |
| * |
| * If it fails, an exception is thrown, which we deal with later |
| * by ignoring the update to decInsn.vA when branching to a handler. |
| */ |
| resClass = dvmOptResolveClass(meth->clazz, decInsn.vB, &failure); |
| if (resClass == NULL) { |
| const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vB); |
| dvmLogUnableToResolveClass(badClassDesc, meth); |
| LOG_VFY("VFY: unable to resolve check-cast %d (%s) in %s", |
| decInsn.vB, badClassDesc, meth->clazz->descriptor); |
| assert(failure != VERIFY_ERROR_GENERIC); |
| } else { |
| RegType origType; |
| |
| origType = getRegisterType(workLine, decInsn.vA); |
| if (!regTypeIsReference(origType)) { |
| LOG_VFY("VFY: check-cast on non-reference in v%u",decInsn.vA); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| setRegisterType(workLine, decInsn.vA, regTypeFromClass(resClass)); |
| } |
| break; |
| case OP_INSTANCE_OF: |
| /* make sure we're checking a reference type */ |
| tmpType = getRegisterType(workLine, decInsn.vB); |
| if (!regTypeIsReference(tmpType)) { |
| LOG_VFY("VFY: vB not a reference (%d)", tmpType); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* make sure we can resolve the class; access check is important */ |
| resClass = dvmOptResolveClass(meth->clazz, decInsn.vC, &failure); |
| if (resClass == NULL) { |
| const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vC); |
| dvmLogUnableToResolveClass(badClassDesc, meth); |
| LOG_VFY("VFY: unable to resolve instanceof %d (%s) in %s", |
| decInsn.vC, badClassDesc, meth->clazz->descriptor); |
| assert(failure != VERIFY_ERROR_GENERIC); |
| } else { |
| /* result is boolean */ |
| setRegisterType(workLine, decInsn.vA, kRegTypeBoolean); |
| } |
| break; |
| |
| case OP_ARRAY_LENGTH: |
| resClass = getClassFromRegister(workLine, decInsn.vB, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| if (resClass != NULL && !dvmIsArrayClass(resClass)) { |
| LOG_VFY("VFY: array-length on non-array"); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| setRegisterType(workLine, decInsn.vA, kRegTypeInteger); |
| break; |
| |
| case OP_NEW_INSTANCE: |
| resClass = dvmOptResolveClass(meth->clazz, decInsn.vB, &failure); |
| if (resClass == NULL) { |
| const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vB); |
| dvmLogUnableToResolveClass(badClassDesc, meth); |
| LOG_VFY("VFY: unable to resolve new-instance %d (%s) in %s", |
| decInsn.vB, badClassDesc, meth->clazz->descriptor); |
| assert(failure != VERIFY_ERROR_GENERIC); |
| } else { |
| RegType uninitType; |
| |
| /* can't create an instance of an interface or abstract class */ |
| if (dvmIsAbstractClass(resClass) || dvmIsInterfaceClass(resClass)) { |
| LOG_VFY("VFY: new-instance on interface or abstract class %s", |
| resClass->descriptor); |
| failure = VERIFY_ERROR_INSTANTIATION; |
| break; |
| } |
| |
| /* add resolved class to uninit map if not already there */ |
| int uidx = setUninitInstance(uninitMap, insnIdx, resClass); |
| assert(uidx >= 0); |
| uninitType = regTypeFromUninitIndex(uidx); |
| |
| /* |
| * Any registers holding previous allocations from this address |
| * that have not yet been initialized must be marked invalid. |
| */ |
| markUninitRefsAsInvalid(workLine, insnRegCount, uninitMap, |
| uninitType); |
| |
| /* add the new uninitialized reference to the register ste */ |
| setRegisterType(workLine, decInsn.vA, uninitType); |
| } |
| break; |
| case OP_NEW_ARRAY: |
| resClass = dvmOptResolveClass(meth->clazz, decInsn.vC, &failure); |
| if (resClass == NULL) { |
| const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vC); |
| dvmLogUnableToResolveClass(badClassDesc, meth); |
| LOG_VFY("VFY: unable to resolve new-array %d (%s) in %s", |
| decInsn.vC, badClassDesc, meth->clazz->descriptor); |
| assert(failure != VERIFY_ERROR_GENERIC); |
| } else if (!dvmIsArrayClass(resClass)) { |
| LOG_VFY("VFY: new-array on non-array class"); |
| failure = VERIFY_ERROR_GENERIC; |
| } else { |
| /* make sure "size" register is valid type */ |
| verifyRegisterType(workLine, decInsn.vB, kRegTypeInteger, &failure); |
| /* set register type to array class */ |
| setRegisterType(workLine, decInsn.vA, regTypeFromClass(resClass)); |
| } |
| break; |
| case OP_FILLED_NEW_ARRAY: |
| case OP_FILLED_NEW_ARRAY_RANGE: |
| resClass = dvmOptResolveClass(meth->clazz, decInsn.vB, &failure); |
| if (resClass == NULL) { |
| const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vB); |
| dvmLogUnableToResolveClass(badClassDesc, meth); |
| LOG_VFY("VFY: unable to resolve filled-array %d (%s) in %s", |
| decInsn.vB, badClassDesc, meth->clazz->descriptor); |
| assert(failure != VERIFY_ERROR_GENERIC); |
| } else if (!dvmIsArrayClass(resClass)) { |
| LOG_VFY("VFY: filled-new-array on non-array class"); |
| failure = VERIFY_ERROR_GENERIC; |
| } else { |
| bool isRange = (decInsn.opcode == OP_FILLED_NEW_ARRAY_RANGE); |
| |
| /* check the arguments to the instruction */ |
| verifyFilledNewArrayRegs(meth, workLine, &decInsn, |
| resClass, isRange, &failure); |
| /* filled-array result goes into "result" register */ |
| setResultRegisterType(workLine, insnRegCount, |
| regTypeFromClass(resClass)); |
| justSetResult = true; |
| } |
| break; |
| |
| case OP_CMPL_FLOAT: |
| case OP_CMPG_FLOAT: |
| verifyRegisterType(workLine, decInsn.vB, kRegTypeFloat, &failure); |
| verifyRegisterType(workLine, decInsn.vC, kRegTypeFloat, &failure); |
| setRegisterType(workLine, decInsn.vA, kRegTypeBoolean); |
| break; |
| case OP_CMPL_DOUBLE: |
| case OP_CMPG_DOUBLE: |
| verifyRegisterType(workLine, decInsn.vB, kRegTypeDoubleLo, &failure); |
| verifyRegisterType(workLine, decInsn.vC, kRegTypeDoubleLo, &failure); |
| setRegisterType(workLine, decInsn.vA, kRegTypeBoolean); |
| break; |
| case OP_CMP_LONG: |
| verifyRegisterType(workLine, decInsn.vB, kRegTypeLongLo, &failure); |
| verifyRegisterType(workLine, decInsn.vC, kRegTypeLongLo, &failure); |
| setRegisterType(workLine, decInsn.vA, kRegTypeBoolean); |
| break; |
| |
| case OP_THROW: |
| resClass = getClassFromRegister(workLine, decInsn.vA, &failure); |
| if (VERIFY_OK(failure) && resClass != NULL) { |
| if (!dvmInstanceof(resClass, gDvm.exThrowable)) { |
| LOG_VFY("VFY: thrown class %s not instanceof Throwable", |
| resClass->descriptor); |
| failure = VERIFY_ERROR_GENERIC; |
| } |
| } |
| break; |
| |
| case OP_GOTO: |
| case OP_GOTO_16: |
| case OP_GOTO_32: |
| /* no effect on or use of registers */ |
| break; |
| |
| case OP_PACKED_SWITCH: |
| case OP_SPARSE_SWITCH: |
| /* verify that vAA is an integer, or can be converted to one */ |
| verifyRegisterType(workLine, decInsn.vA, kRegTypeInteger, &failure); |
| break; |
| |
| case OP_FILL_ARRAY_DATA: |
| { |
| RegType valueType; |
| const u2 *arrayData; |
| u2 elemWidth; |
| |
| /* Similar to the verification done for APUT */ |
| resClass = getClassFromRegister(workLine, decInsn.vA, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| /* resClass can be null if the reg type is Zero */ |
| if (resClass == NULL) |
| break; |
| |
| if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 || |
| resClass->elementClass->primitiveType == PRIM_NOT || |
| resClass->elementClass->primitiveType == PRIM_VOID) |
| { |
| LOG_VFY("VFY: invalid fill-array-data on %s", |
| resClass->descriptor); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| valueType = primitiveTypeToRegType( |
| resClass->elementClass->primitiveType); |
| assert(valueType != kRegTypeUnknown); |
| |
| /* |
| * Now verify if the element width in the table matches the element |
| * width declared in the array |
| */ |
| arrayData = insns + (insns[1] | (((s4)insns[2]) << 16)); |
| if (arrayData[0] != kArrayDataSignature) { |
| LOG_VFY("VFY: invalid magic for array-data"); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| switch (resClass->elementClass->primitiveType) { |
| case PRIM_BOOLEAN: |
| case PRIM_BYTE: |
| elemWidth = 1; |
| break; |
| case PRIM_CHAR: |
| case PRIM_SHORT: |
| elemWidth = 2; |
| break; |
| case PRIM_FLOAT: |
| case PRIM_INT: |
| elemWidth = 4; |
| break; |
| case PRIM_DOUBLE: |
| case PRIM_LONG: |
| elemWidth = 8; |
| break; |
| default: |
| elemWidth = 0; |
| break; |
| } |
| |
| /* |
| * Since we don't compress the data in Dex, expect to see equal |
| * width of data stored in the table and expected from the array |
| * class. |
| */ |
| if (arrayData[1] != elemWidth) { |
| LOG_VFY("VFY: array-data size mismatch (%d vs %d)", |
| arrayData[1], elemWidth); |
| failure = VERIFY_ERROR_GENERIC; |
| } |
| } |
| break; |
| |
| case OP_IF_EQ: |
| case OP_IF_NE: |
| { |
| RegType type1, type2; |
| |
| type1 = getRegisterType(workLine, decInsn.vA); |
| type2 = getRegisterType(workLine, decInsn.vB); |
| |
| /* both references? */ |
| if (regTypeIsReference(type1) && regTypeIsReference(type2)) |
| break; |
| |
| /* both category-1nr? */ |
| checkTypeCategory(type1, kTypeCategory1nr, &failure); |
| checkTypeCategory(type2, kTypeCategory1nr, &failure); |
| if (type1 == kRegTypeFloat || type2 == kRegTypeFloat) { |
| failure = VERIFY_ERROR_GENERIC; |
| } |
| if (!VERIFY_OK(failure)) { |
| LOG_VFY("VFY: args to if-eq/if-ne must both be refs or cat1"); |
| break; |
| } |
| } |
| break; |
| case OP_IF_LT: |
| case OP_IF_GE: |
| case OP_IF_GT: |
| case OP_IF_LE: |
| tmpType = getRegisterType(workLine, decInsn.vA); |
| checkTypeCategory(tmpType, kTypeCategory1nr, &failure); |
| if (tmpType == kRegTypeFloat) { |
| failure = VERIFY_ERROR_GENERIC; |
| } |
| if (!VERIFY_OK(failure)) { |
| LOG_VFY("VFY: args to 'if' must be cat-1nr and not float"); |
| break; |
| } |
| tmpType = getRegisterType(workLine, decInsn.vB); |
| checkTypeCategory(tmpType, kTypeCategory1nr, &failure); |
| if (tmpType == kRegTypeFloat) { |
| failure = VERIFY_ERROR_GENERIC; |
| } |
| if (!VERIFY_OK(failure)) { |
| LOG_VFY("VFY: args to 'if' must be cat-1nr and not float"); |
| break; |
| } |
| break; |
| case OP_IF_EQZ: |
| case OP_IF_NEZ: |
| tmpType = getRegisterType(workLine, decInsn.vA); |
| if (regTypeIsReference(tmpType)) |
| break; |
| checkTypeCategory(tmpType, kTypeCategory1nr, &failure); |
| if (tmpType == kRegTypeFloat) { |
| failure = VERIFY_ERROR_GENERIC; |
| } |
| if (!VERIFY_OK(failure)) |
| LOG_VFY("VFY: expected non-float cat-1 arg to if"); |
| break; |
| case OP_IF_LTZ: |
| case OP_IF_GEZ: |
| case OP_IF_GTZ: |
| case OP_IF_LEZ: |
| tmpType = getRegisterType(workLine, decInsn.vA); |
| checkTypeCategory(tmpType, kTypeCategory1nr, &failure); |
| if (tmpType == kRegTypeFloat) { |
| failure = VERIFY_ERROR_GENERIC; |
| } |
| if (!VERIFY_OK(failure)) |
| LOG_VFY("VFY: expected non-float cat-1 arg to if"); |
| break; |
| |
| case OP_AGET: |
| tmpType = kRegTypeInteger; |
| goto aget_1nr_common; |
| case OP_AGET_BOOLEAN: |
| tmpType = kRegTypeBoolean; |
| goto aget_1nr_common; |
| case OP_AGET_BYTE: |
| tmpType = kRegTypeByte; |
| goto aget_1nr_common; |
| case OP_AGET_CHAR: |
| tmpType = kRegTypeChar; |
| goto aget_1nr_common; |
| case OP_AGET_SHORT: |
| tmpType = kRegTypeShort; |
| goto aget_1nr_common; |
| aget_1nr_common: |
| { |
| RegType srcType, indexType; |
| |
| indexType = getRegisterType(workLine, decInsn.vC); |
| checkArrayIndexType(meth, indexType, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| resClass = getClassFromRegister(workLine, decInsn.vB, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| if (resClass != NULL) { |
| /* verify the class */ |
| if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 || |
| resClass->elementClass->primitiveType == PRIM_NOT) |
| { |
| LOG_VFY("VFY: invalid aget-1nr target %s", |
| resClass->descriptor); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* make sure array type matches instruction */ |
| srcType = primitiveTypeToRegType( |
| resClass->elementClass->primitiveType); |
| |
| /* correct if float */ |
| if (srcType == kRegTypeFloat && tmpType == kRegTypeInteger) |
| tmpType = kRegTypeFloat; |
| |
| if (!checkFieldArrayStore1nr(tmpType, srcType)) { |
| LOG_VFY("VFY: invalid aget-1nr, array type=%d with" |
| " inst type=%d (on %s)", |
| srcType, tmpType, resClass->descriptor); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } else { |
| /* |
| * Null array ref; this code path will fail at runtime. Label |
| * result as zero to allow it to remain mergeable. |
| */ |
| tmpType = kRegTypeZero; |
| } |
| setRegisterType(workLine, decInsn.vA, tmpType); |
| } |
| break; |
| |
| case OP_AGET_WIDE: |
| { |
| RegType dstType, indexType; |
| |
| indexType = getRegisterType(workLine, decInsn.vC); |
| checkArrayIndexType(meth, indexType, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| resClass = getClassFromRegister(workLine, decInsn.vB, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| if (resClass != NULL) { |
| /* verify the class */ |
| if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 || |
| resClass->elementClass->primitiveType == PRIM_NOT) |
| { |
| LOG_VFY("VFY: invalid aget-wide target %s", |
| resClass->descriptor); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* try to refine "dstType" */ |
| switch (resClass->elementClass->primitiveType) { |
| case PRIM_LONG: |
| dstType = kRegTypeLongLo; |
| break; |
| case PRIM_DOUBLE: |
| dstType = kRegTypeDoubleLo; |
| break; |
| default: |
| LOG_VFY("VFY: invalid aget-wide on %s", |
| resClass->descriptor); |
| dstType = kRegTypeUnknown; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } else { |
| /* |
| * Null array ref; this code path will fail at runtime. We |
| * know this is either long or double, so label it const. |
| */ |
| dstType = kRegTypeConstLo; |
| } |
| setRegisterType(workLine, decInsn.vA, dstType); |
| } |
| break; |
| |
| case OP_AGET_OBJECT: |
| { |
| RegType dstType, indexType; |
| |
| indexType = getRegisterType(workLine, decInsn.vC); |
| checkArrayIndexType(meth, indexType, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| /* get the class of the array we're pulling an object from */ |
| resClass = getClassFromRegister(workLine, decInsn.vB, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| if (resClass != NULL) { |
| ClassObject* elementClass; |
| |
| assert(resClass != NULL); |
| if (!dvmIsArrayClass(resClass)) { |
| LOG_VFY("VFY: aget-object on non-array class"); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| assert(resClass->elementClass != NULL); |
| |
| /* |
| * Find the element class. resClass->elementClass indicates |
| * the basic type, which won't be what we want for a |
| * multi-dimensional array. |
| */ |
| if (resClass->descriptor[1] == '[') { |
| assert(resClass->arrayDim > 1); |
| elementClass = dvmFindArrayClass(&resClass->descriptor[1], |
| resClass->classLoader); |
| } else if (resClass->descriptor[1] == 'L') { |
| assert(resClass->arrayDim == 1); |
| elementClass = resClass->elementClass; |
| } else { |
| LOG_VFY("VFY: aget-object on non-ref array class (%s)", |
| resClass->descriptor); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| dstType = regTypeFromClass(elementClass); |
| } else { |
| /* |
| * The array reference is NULL, so the current code path will |
| * throw an exception. For proper merging with later code |
| * paths, and correct handling of "if-eqz" tests on the |
| * result of the array get, we want to treat this as a null |
| * reference. |
| */ |
| dstType = kRegTypeZero; |
| } |
| setRegisterType(workLine, decInsn.vA, dstType); |
| } |
| break; |
| case OP_APUT: |
| tmpType = kRegTypeInteger; |
| goto aput_1nr_common; |
| case OP_APUT_BOOLEAN: |
| tmpType = kRegTypeBoolean; |
| goto aput_1nr_common; |
| case OP_APUT_BYTE: |
| tmpType = kRegTypeByte; |
| goto aput_1nr_common; |
| case OP_APUT_CHAR: |
| tmpType = kRegTypeChar; |
| goto aput_1nr_common; |
| case OP_APUT_SHORT: |
| tmpType = kRegTypeShort; |
| goto aput_1nr_common; |
| aput_1nr_common: |
| { |
| RegType srcType, dstType, indexType; |
| |
| indexType = getRegisterType(workLine, decInsn.vC); |
| checkArrayIndexType(meth, indexType, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| srcType = getRegisterType(workLine, decInsn.vA); |
| |
| /* correct if float */ |
| if (srcType == kRegTypeFloat && tmpType == kRegTypeInteger) |
| tmpType = kRegTypeFloat; |
| |
| /* make sure the source register has the correct type */ |
| if (!canConvertTo1nr(srcType, tmpType)) { |
| LOG_VFY("VFY: invalid reg type %d on aput instr (need %d)", |
| srcType, tmpType); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| resClass = getClassFromRegister(workLine, decInsn.vB, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| /* resClass can be null if the reg type is Zero */ |
| if (resClass == NULL) |
| break; |
| |
| if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 || |
| resClass->elementClass->primitiveType == PRIM_NOT) |
| { |
| LOG_VFY("VFY: invalid aput-1nr on %s", resClass->descriptor); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* verify that instruction matches array */ |
| dstType = primitiveTypeToRegType( |
| resClass->elementClass->primitiveType); |
| |
| /* correct if float */ |
| if (dstType == kRegTypeFloat && tmpType == kRegTypeInteger) |
| tmpType = kRegTypeFloat; |
| |
| verifyRegisterType(workLine, decInsn.vA, dstType, &failure); |
| |
| if (dstType == kRegTypeUnknown || |
| !checkFieldArrayStore1nr(tmpType, dstType)) { |
| LOG_VFY("VFY: invalid aput-1nr on %s (inst=%d dst=%d)", |
| resClass->descriptor, tmpType, dstType); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| break; |
| case OP_APUT_WIDE: |
| tmpType = getRegisterType(workLine, decInsn.vC); |
| checkArrayIndexType(meth, tmpType, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| resClass = getClassFromRegister(workLine, decInsn.vB, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| if (resClass != NULL) { |
| /* verify the class and try to refine "dstType" */ |
| if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 || |
| resClass->elementClass->primitiveType == PRIM_NOT) |
| { |
| LOG_VFY("VFY: invalid aput-wide on %s", |
| resClass->descriptor); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| switch (resClass->elementClass->primitiveType) { |
| case PRIM_LONG: |
| verifyRegisterType(workLine, decInsn.vA, kRegTypeLongLo, &failure); |
| break; |
| case PRIM_DOUBLE: |
| verifyRegisterType(workLine, decInsn.vA, kRegTypeDoubleLo, &failure); |
| break; |
| default: |
| LOG_VFY("VFY: invalid aput-wide on %s", |
| resClass->descriptor); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| break; |
| case OP_APUT_OBJECT: |
| tmpType = getRegisterType(workLine, decInsn.vC); |
| checkArrayIndexType(meth, tmpType, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| /* get the ref we're storing; Zero is okay, Uninit is not */ |
| resClass = getClassFromRegister(workLine, decInsn.vA, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| if (resClass != NULL) { |
| ClassObject* arrayClass; |
| ClassObject* elementClass; |
| |
| /* |
| * Get the array class. If the array ref is null, we won't |
| * have type information (and we'll crash at runtime with a |
| * null pointer exception). |
| */ |
| arrayClass = getClassFromRegister(workLine, decInsn.vB, &failure); |
| |
| if (arrayClass != NULL) { |
| /* see if the array holds a compatible type */ |
| if (!dvmIsArrayClass(arrayClass)) { |
| LOG_VFY("VFY: invalid aput-object on %s", |
| arrayClass->descriptor); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* |
| * Find the element class. resClass->elementClass indicates |
| * the basic type, which won't be what we want for a |
| * multi-dimensional array. |
| * |
| * All we want to check here is that the element type is a |
| * reference class. We *don't* check instanceof here, because |
| * you can still put a String into a String[] after the latter |
| * has been cast to an Object[]. |
| */ |
| if (arrayClass->descriptor[1] == '[') { |
| assert(arrayClass->arrayDim > 1); |
| elementClass = dvmFindArrayClass(&arrayClass->descriptor[1], |
| arrayClass->classLoader); |
| } else { |
| assert(arrayClass->arrayDim == 1); |
| elementClass = arrayClass->elementClass; |
| } |
| if (elementClass->primitiveType != PRIM_NOT) { |
| LOG_VFY("VFY: invalid aput-object of %s into %s", |
| resClass->descriptor, arrayClass->descriptor); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| } |
| break; |
| |
| case OP_IGET: |
| tmpType = kRegTypeInteger; |
| goto iget_1nr_common; |
| case OP_IGET_BOOLEAN: |
| tmpType = kRegTypeBoolean; |
| goto iget_1nr_common; |
| case OP_IGET_BYTE: |
| tmpType = kRegTypeByte; |
| goto iget_1nr_common; |
| case OP_IGET_CHAR: |
| tmpType = kRegTypeChar; |
| goto iget_1nr_common; |
| case OP_IGET_SHORT: |
| tmpType = kRegTypeShort; |
| goto iget_1nr_common; |
| iget_1nr_common: |
| { |
| InstField* instField; |
| RegType objType, fieldType; |
| |
| objType = getRegisterType(workLine, decInsn.vB); |
| instField = getInstField(meth, uninitMap, objType, decInsn.vC, |
| &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| /* make sure the field's type is compatible with expectation */ |
| fieldType = primSigCharToRegType(instField->signature[0]); |
| |
| /* correct if float */ |
| if (fieldType == kRegTypeFloat && tmpType == kRegTypeInteger) |
| tmpType = kRegTypeFloat; |
| |
| if (fieldType == kRegTypeUnknown || |
| !checkFieldArrayStore1nr(tmpType, fieldType)) |
| { |
| LOG_VFY("VFY: invalid iget-1nr of %s.%s (inst=%d field=%d)", |
| instField->clazz->descriptor, |
| instField->name, tmpType, fieldType); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| setRegisterType(workLine, decInsn.vA, tmpType); |
| } |
| break; |
| case OP_IGET_WIDE: |
| { |
| RegType dstType; |
| InstField* instField; |
| RegType objType; |
| |
| objType = getRegisterType(workLine, decInsn.vB); |
| instField = getInstField(meth, uninitMap, objType, decInsn.vC, |
| &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| /* check the type, which should be prim */ |
| switch (instField->signature[0]) { |
| case 'D': |
| dstType = kRegTypeDoubleLo; |
| break; |
| case 'J': |
| dstType = kRegTypeLongLo; |
| break; |
| default: |
| LOG_VFY("VFY: invalid iget-wide of %s.%s", |
| instField->clazz->descriptor, |
| instField->name); |
| dstType = kRegTypeUnknown; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (VERIFY_OK(failure)) { |
| setRegisterType(workLine, decInsn.vA, dstType); |
| } |
| } |
| break; |
| case OP_IGET_OBJECT: |
| { |
| ClassObject* fieldClass; |
| InstField* instField; |
| RegType objType; |
| |
| objType = getRegisterType(workLine, decInsn.vB); |
| instField = getInstField(meth, uninitMap, objType, decInsn.vC, |
| &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| fieldClass = getFieldClass(meth, instField); |
| if (fieldClass == NULL) { |
| /* class not found or primitive type */ |
| LOG_VFY("VFY: unable to recover field class from '%s'", |
| instField->signature); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (VERIFY_OK(failure)) { |
| assert(!dvmIsPrimitiveClass(fieldClass)); |
| setRegisterType(workLine, decInsn.vA, |
| regTypeFromClass(fieldClass)); |
| } |
| } |
| break; |
| case OP_IPUT: |
| tmpType = kRegTypeInteger; |
| goto iput_1nr_common; |
| case OP_IPUT_BOOLEAN: |
| tmpType = kRegTypeBoolean; |
| goto iput_1nr_common; |
| case OP_IPUT_BYTE: |
| tmpType = kRegTypeByte; |
| goto iput_1nr_common; |
| case OP_IPUT_CHAR: |
| tmpType = kRegTypeChar; |
| goto iput_1nr_common; |
| case OP_IPUT_SHORT: |
| tmpType = kRegTypeShort; |
| goto iput_1nr_common; |
| iput_1nr_common: |
| { |
| RegType srcType, fieldType, objType; |
| InstField* instField; |
| |
| srcType = getRegisterType(workLine, decInsn.vA); |
| |
| /* |
| * javac generates synthetic functions that write byte values |
| * into boolean fields. |
| */ |
| if (tmpType == kRegTypeBoolean && srcType == kRegTypeByte) |
| tmpType = kRegTypeByte; |
| |
| /* correct if float */ |
| if (srcType == kRegTypeFloat && tmpType == kRegTypeInteger) |
| tmpType = kRegTypeFloat; |
| |
| /* make sure the source register has the correct type */ |
| if (!canConvertTo1nr(srcType, tmpType)) { |
| LOG_VFY("VFY: invalid reg type %d on iput instr (need %d)", |
| srcType, tmpType); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| objType = getRegisterType(workLine, decInsn.vB); |
| instField = getInstField(meth, uninitMap, objType, decInsn.vC, |
| &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| checkFinalFieldAccess(meth, instField, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| /* get type of field we're storing into */ |
| fieldType = primSigCharToRegType(instField->signature[0]); |
| |
| /* correct if float */ |
| if (fieldType == kRegTypeFloat && tmpType == kRegTypeInteger) |
| tmpType = kRegTypeFloat; |
| |
| if (fieldType == kRegTypeBoolean && srcType == kRegTypeByte) |
| fieldType = kRegTypeByte; |
| |
| verifyRegisterType(workLine, decInsn.vA, fieldType, &failure); |
| |
| if (fieldType == kRegTypeUnknown || |
| !checkFieldArrayStore1nr(tmpType, fieldType)) |
| { |
| LOG_VFY("VFY: invalid iput-1nr of %s.%s (inst=%d field=%d)", |
| instField->clazz->descriptor, |
| instField->name, tmpType, fieldType); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| break; |
| case OP_IPUT_WIDE: |
| tmpType = getRegisterType(workLine, decInsn.vA); |
| { |
| RegType typeHi = getRegisterType(workLine, decInsn.vA + 1); |
| checkTypeCategory(tmpType, kTypeCategory2, &failure); |
| checkWidePair(tmpType, typeHi, &failure); |
| } |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| InstField* instField; |
| RegType objType; |
| |
| objType = getRegisterType(workLine, decInsn.vB); |
| instField = getInstField(meth, uninitMap, objType, decInsn.vC, |
| &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| checkFinalFieldAccess(meth, instField, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| /* check the type, which should be prim */ |
| switch (instField->signature[0]) { |
| case 'D': |
| verifyRegisterType(workLine, decInsn.vA, kRegTypeDoubleLo, &failure); |
| break; |
| case 'J': |
| verifyRegisterType(workLine, decInsn.vA, kRegTypeLongLo, &failure); |
| break; |
| default: |
| LOG_VFY("VFY: invalid iput-wide of %s.%s", |
| instField->clazz->descriptor, |
| instField->name); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| break; |
| case OP_IPUT_OBJECT: |
| { |
| ClassObject* fieldClass; |
| ClassObject* valueClass; |
| InstField* instField; |
| RegType objType, valueType; |
| |
| objType = getRegisterType(workLine, decInsn.vB); |
| instField = getInstField(meth, uninitMap, objType, decInsn.vC, |
| &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| checkFinalFieldAccess(meth, instField, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| fieldClass = getFieldClass(meth, instField); |
| if (fieldClass == NULL) { |
| LOG_VFY("VFY: unable to recover field class from '%s'", |
| instField->signature); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| valueType = getRegisterType(workLine, decInsn.vA); |
| if (!regTypeIsReference(valueType)) { |
| LOG_VFY("VFY: storing non-ref v%d into ref field '%s' (%s)", |
| decInsn.vA, instField->name, |
| fieldClass->descriptor); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (valueType != kRegTypeZero) { |
| valueClass = regTypeInitializedReferenceToClass(valueType); |
| if (valueClass == NULL) { |
| LOG_VFY("VFY: storing uninit ref v%d into ref field", |
| decInsn.vA); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| /* allow if field is any interface or field is base class */ |
| if (!dvmIsInterfaceClass(fieldClass) && |
| !dvmInstanceof(valueClass, fieldClass)) |
| { |
| LOG_VFY("VFY: storing type '%s' into field type '%s' (%s.%s)", |
| valueClass->descriptor, fieldClass->descriptor, |
| instField->clazz->descriptor, |
| instField->name); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| } |
| break; |
| |
| case OP_SGET: |
| tmpType = kRegTypeInteger; |
| goto sget_1nr_common; |
| case OP_SGET_BOOLEAN: |
| tmpType = kRegTypeBoolean; |
| goto sget_1nr_common; |
| case OP_SGET_BYTE: |
| tmpType = kRegTypeByte; |
| goto sget_1nr_common; |
| case OP_SGET_CHAR: |
| tmpType = kRegTypeChar; |
| goto sget_1nr_common; |
| case OP_SGET_SHORT: |
| tmpType = kRegTypeShort; |
| goto sget_1nr_common; |
| sget_1nr_common: |
| { |
| StaticField* staticField; |
| RegType fieldType; |
| |
| staticField = getStaticField(meth, decInsn.vB, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| /* |
| * Make sure the field's type is compatible with expectation. |
| * We can get ourselves into trouble if we mix & match loads |
| * and stores with different widths, so rather than just checking |
| * "canConvertTo1nr" we require that the field types have equal |
| * widths. |
| */ |
| fieldType = primSigCharToRegType(staticField->signature[0]); |
| |
| /* correct if float */ |
| if (fieldType == kRegTypeFloat && tmpType == kRegTypeInteger) |
| tmpType = kRegTypeFloat; |
| |
| if (!checkFieldArrayStore1nr(tmpType, fieldType)) { |
| LOG_VFY("VFY: invalid sget-1nr of %s.%s (inst=%d actual=%d)", |
| staticField->clazz->descriptor, |
| staticField->name, tmpType, fieldType); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| setRegisterType(workLine, decInsn.vA, tmpType); |
| } |
| break; |
| case OP_SGET_WIDE: |
| { |
| StaticField* staticField; |
| RegType dstType; |
| |
| staticField = getStaticField(meth, decInsn.vB, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| /* check the type, which should be prim */ |
| switch (staticField->signature[0]) { |
| case 'D': |
| dstType = kRegTypeDoubleLo; |
| break; |
| case 'J': |
| dstType = kRegTypeLongLo; |
| break; |
| default: |
| LOG_VFY("VFY: invalid sget-wide of %s.%s", |
| staticField->clazz->descriptor, |
| staticField->name); |
| dstType = kRegTypeUnknown; |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (VERIFY_OK(failure)) { |
| setRegisterType(workLine, decInsn.vA, dstType); |
| } |
| } |
| break; |
| case OP_SGET_OBJECT: |
| { |
| StaticField* staticField; |
| ClassObject* fieldClass; |
| |
| staticField = getStaticField(meth, decInsn.vB, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| fieldClass = getFieldClass(meth, staticField); |
| if (fieldClass == NULL) { |
| LOG_VFY("VFY: unable to recover field class from '%s'", |
| staticField->signature); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (dvmIsPrimitiveClass(fieldClass)) { |
| LOG_VFY("VFY: attempt to get prim field with sget-object"); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| setRegisterType(workLine, decInsn.vA, regTypeFromClass(fieldClass)); |
| } |
| break; |
| case OP_SPUT: |
| tmpType = kRegTypeInteger; |
| goto sput_1nr_common; |
| case OP_SPUT_BOOLEAN: |
| tmpType = kRegTypeBoolean; |
| goto sput_1nr_common; |
| case OP_SPUT_BYTE: |
| tmpType = kRegTypeByte; |
| goto sput_1nr_common; |
| case OP_SPUT_CHAR: |
| tmpType = kRegTypeChar; |
| goto sput_1nr_common; |
| case OP_SPUT_SHORT: |
| tmpType = kRegTypeShort; |
| goto sput_1nr_common; |
| sput_1nr_common: |
| { |
| RegType srcType, fieldType; |
| StaticField* staticField; |
| |
| srcType = getRegisterType(workLine, decInsn.vA); |
| |
| /* |
| * javac generates synthetic functions that write byte values |
| * into boolean fields. |
| */ |
| if (tmpType == kRegTypeBoolean && srcType == kRegTypeByte) |
| tmpType = kRegTypeByte; |
| |
| /* correct if float */ |
| if (srcType == kRegTypeFloat && tmpType == kRegTypeInteger) |
| tmpType = kRegTypeFloat; |
| |
| /* make sure the source register has the correct type */ |
| if (!canConvertTo1nr(srcType, tmpType)) { |
| LOG_VFY("VFY: invalid reg type %d on sput instr (need %d)", |
| srcType, tmpType); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| staticField = getStaticField(meth, decInsn.vB, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| checkFinalFieldAccess(meth, staticField, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| /* |
| * Get type of field we're storing into. We know that the |
| * contents of the register match the instruction, but we also |
| * need to ensure that the instruction matches the field type. |
| * Using e.g. sput-short to write into a 32-bit integer field |
| * can lead to trouble if we do 16-bit writes. |
| */ |
| fieldType = primSigCharToRegType(staticField->signature[0]); |
| |
| /* correct if float */ |
| if (fieldType == kRegTypeFloat && tmpType == kRegTypeInteger) |
| tmpType = kRegTypeFloat; |
| |
| if (fieldType == kRegTypeBoolean && srcType == kRegTypeByte) |
| fieldType = kRegTypeByte; |
| |
| verifyRegisterType(workLine, decInsn.vA, fieldType, &failure); |
| |
| if (fieldType == kRegTypeUnknown || |
| !checkFieldArrayStore1nr(tmpType, fieldType)) { |
| LOG_VFY("VFY: invalid sput-1nr of %s.%s (inst=%d actual=%d)", |
| staticField->clazz->descriptor, |
| staticField->name, tmpType, fieldType); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| break; |
| case OP_SPUT_WIDE: |
| tmpType = getRegisterType(workLine, decInsn.vA); |
| { |
| RegType typeHi = getRegisterType(workLine, decInsn.vA + 1); |
| checkTypeCategory(tmpType, kTypeCategory2, &failure); |
| checkWidePair(tmpType, typeHi, &failure); |
| } |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| StaticField* staticField; |
| |
| staticField = getStaticField(meth, decInsn.vB, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| checkFinalFieldAccess(meth, staticField, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| /* check the type, which should be prim */ |
| switch (staticField->signature[0]) { |
| case 'D': |
| verifyRegisterType(workLine, decInsn.vA, kRegTypeDoubleLo, &failure); |
| break; |
| case 'J': |
| verifyRegisterType(workLine, decInsn.vA, kRegTypeLongLo, &failure); |
| break; |
| default: |
| LOG_VFY("VFY: invalid sput-wide of %s.%s", |
| staticField->clazz->descriptor, |
| staticField->name); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| break; |
| case OP_SPUT_OBJECT: |
| { |
| ClassObject* fieldClass; |
| ClassObject* valueClass; |
| StaticField* staticField; |
| RegType valueType; |
| |
| staticField = getStaticField(meth, decInsn.vB, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| checkFinalFieldAccess(meth, staticField, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| fieldClass = getFieldClass(meth, staticField); |
| if (fieldClass == NULL) { |
| LOG_VFY("VFY: unable to recover field class from '%s'", |
| staticField->signature); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| valueType = getRegisterType(workLine, decInsn.vA); |
| if (!regTypeIsReference(valueType)) { |
| LOG_VFY("VFY: storing non-ref v%d into ref field '%s' (%s)", |
| decInsn.vA, staticField->name, |
| fieldClass->descriptor); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| if (valueType != kRegTypeZero) { |
| valueClass = regTypeInitializedReferenceToClass(valueType); |
| if (valueClass == NULL) { |
| LOG_VFY("VFY: storing uninit ref v%d into ref field", |
| decInsn.vA); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| /* allow if field is any interface or field is base class */ |
| if (!dvmIsInterfaceClass(fieldClass) && |
| !dvmInstanceof(valueClass, fieldClass)) |
| { |
| LOG_VFY("VFY: storing type '%s' into field type '%s' (%s.%s)", |
| valueClass->descriptor, fieldClass->descriptor, |
| staticField->clazz->descriptor, |
| staticField->name); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| } |
| break; |
| |
| case OP_INVOKE_VIRTUAL: |
| case OP_INVOKE_VIRTUAL_RANGE: |
| case OP_INVOKE_SUPER: |
| case OP_INVOKE_SUPER_RANGE: |
| { |
| Method* calledMethod; |
| RegType returnType; |
| bool isRange; |
| bool isSuper; |
| |
| isRange = (decInsn.opcode == OP_INVOKE_VIRTUAL_RANGE || |
| decInsn.opcode == OP_INVOKE_SUPER_RANGE); |
| isSuper = (decInsn.opcode == OP_INVOKE_SUPER || |
| decInsn.opcode == OP_INVOKE_SUPER_RANGE); |
| |
| calledMethod = verifyInvocationArgs(meth, workLine, insnRegCount, |
| &decInsn, uninitMap, METHOD_VIRTUAL, isRange, |
| isSuper, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| returnType = getMethodReturnType(calledMethod); |
| setResultRegisterType(workLine, insnRegCount, returnType); |
| justSetResult = true; |
| } |
| break; |
| case OP_INVOKE_DIRECT: |
| case OP_INVOKE_DIRECT_RANGE: |
| { |
| RegType returnType; |
| Method* calledMethod; |
| bool isRange; |
| |
| isRange = (decInsn.opcode == OP_INVOKE_DIRECT_RANGE); |
| calledMethod = verifyInvocationArgs(meth, workLine, insnRegCount, |
| &decInsn, uninitMap, METHOD_DIRECT, isRange, |
| false, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| /* |
| * Some additional checks when calling <init>. We know from |
| * the invocation arg check that the "this" argument is an |
| * instance of calledMethod->clazz. Now we further restrict |
| * that to require that calledMethod->clazz is the same as |
| * this->clazz or this->super, allowing the latter only if |
| * the "this" argument is the same as the "this" argument to |
| * this method (which implies that we're in <init> ourselves). |
| */ |
| if (isInitMethod(calledMethod)) { |
| RegType thisType; |
| thisType = getInvocationThis(workLine, &decInsn, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| /* no null refs allowed (?) */ |
| if (thisType == kRegTypeZero) { |
| LOG_VFY("VFY: unable to initialize null ref"); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| ClassObject* thisClass; |
| |
| thisClass = regTypeReferenceToClass(thisType, uninitMap); |
| assert(thisClass != NULL); |
| |
| /* must be in same class or in superclass */ |
| if (calledMethod->clazz == thisClass->super) { |
| if (thisClass != meth->clazz) { |
| LOG_VFY("VFY: invoke-direct <init> on super only " |
| "allowed for 'this' in <init>"); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } else if (calledMethod->clazz != thisClass) { |
| LOG_VFY("VFY: invoke-direct <init> must be on current " |
| "class or super"); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* arg must be an uninitialized reference */ |
| if (!regTypeIsUninitReference(thisType)) { |
| LOG_VFY("VFY: can only initialize the uninitialized"); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* |
| * Replace the uninitialized reference with an initialized |
| * one, and clear the entry in the uninit map. We need to |
| * do this for all registers that have the same object |
| * instance in them, not just the "this" register. |
| */ |
| markRefsAsInitialized(workLine, insnRegCount, uninitMap, |
| thisType, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| } |
| returnType = getMethodReturnType(calledMethod); |
| setResultRegisterType(workLine, insnRegCount, returnType); |
| justSetResult = true; |
| } |
| break; |
| case OP_INVOKE_STATIC: |
| case OP_INVOKE_STATIC_RANGE: |
| { |
| RegType returnType; |
| Method* calledMethod; |
| bool isRange; |
| |
| isRange = (decInsn.opcode == OP_INVOKE_STATIC_RANGE); |
| calledMethod = verifyInvocationArgs(meth, workLine, insnRegCount, |
| &decInsn, uninitMap, METHOD_STATIC, isRange, |
| false, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| returnType = getMethodReturnType(calledMethod); |
| setResultRegisterType(workLine, insnRegCount, returnType); |
| justSetResult = true; |
| } |
| break; |
| case OP_INVOKE_INTERFACE: |
| case OP_INVOKE_INTERFACE_RANGE: |
| { |
| RegType /*thisType,*/ returnType; |
| Method* absMethod; |
| bool isRange; |
| |
| isRange = (decInsn.opcode == OP_INVOKE_INTERFACE_RANGE); |
| absMethod = verifyInvocationArgs(meth, workLine, insnRegCount, |
| &decInsn, uninitMap, METHOD_INTERFACE, isRange, |
| false, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| #if 0 /* can't do this here, fails on dalvik test 052-verifier-fun */ |
| /* |
| * Get the type of the "this" arg, which should always be an |
| * interface class. Because we don't do a full merge on |
| * interface classes, this might have reduced to Object. |
| */ |
| thisType = getInvocationThis(workLine, &decInsn, &failure); |
| if (!VERIFY_OK(failure)) |
| break; |
| |
| if (thisType == kRegTypeZero) { |
| /* null pointer always passes (and always fails at runtime) */ |
| } else { |
| ClassObject* thisClass; |
| |
| thisClass = regTypeInitializedReferenceToClass(thisType); |
| if (thisClass == NULL) { |
| LOG_VFY("VFY: interface call on uninitialized"); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| |
| /* |
| * Either "thisClass" needs to be the interface class that |
| * defined absMethod, or absMethod's class needs to be one |
| * of the interfaces implemented by "thisClass". (Or, if |
| * we couldn't complete the merge, this will be Object.) |
| */ |
| if (thisClass != absMethod->clazz && |
| thisClass != gDvm.classJavaLangObject && |
| !dvmImplements(thisClass, absMethod->clazz)) |
| { |
| LOG_VFY("VFY: unable to match absMethod '%s' with %s interfaces", |
| absMethod->name, thisClass->descriptor); |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| } |
| } |
| #endif |
| |
| /* |
| * We don't have an object instance, so we can't find the |
| * concrete method. However, all of the type information is |
| * in the abstract method, so we're good. |
| */ |
| returnType = getMethodReturnType(absMethod); |
| setResultRegisterType(workLine, insnRegCount, returnType); |
| justSetResult = true; |
| } |
| break; |
| |
| case OP_NEG_INT: |
| case OP_NOT_INT: |
| checkUnop(workLine, &decInsn, |
| kRegTypeInteger, kRegTypeInteger, &failure); |
| break; |
| case OP_NEG_LONG: |
| case OP_NOT_LONG: |
| checkUnop(workLine, &decInsn, |
| kRegTypeLongLo, kRegTypeLongLo, &failure); |
| break; |
| case OP_NEG_FLOAT: |
| checkUnop(workLine, &decInsn, |
| kRegTypeFloat, kRegTypeFloat, &failure); |
| break; |
| case OP_NEG_DOUBLE: |
| checkUnop(workLine, &decInsn, |
| kRegTypeDoubleLo, kRegTypeDoubleLo, &failure); |
| break; |
| case OP_INT_TO_LONG: |
| checkUnop(workLine, &decInsn, |
| kRegTypeLongLo, kRegTypeInteger, &failure); |
| break; |
| case OP_INT_TO_FLOAT: |
| checkUnop(workLine, &decInsn, |
| kRegTypeFloat, kRegTypeInteger, &failure); |
| break; |
| case OP_INT_TO_DOUBLE: |
| checkUnop(workLine, &decInsn, |
| kRegTypeDoubleLo, kRegTypeInteger, &failure); |
| break; |
| case OP_LONG_TO_INT: |
| checkUnop(workLine, &decInsn, |
| kRegTypeInteger, kRegTypeLongLo, &failure); |
| break; |
| case OP_LONG_TO_FLOAT: |
| checkUnop(workLine, &decInsn, |
| kRegTypeFloat, kRegTypeLongLo, &failure); |
| break; |
| case OP_LONG_TO_DOUBLE: |
| checkUnop(workLine, &decInsn, |
| kRegTypeDoubleLo, kRegTypeLongLo, &failure); |
| break; |
| case OP_FLOAT_TO_INT: |
| checkUnop(workLine, &decInsn, |
| kRegTypeInteger, kRegTypeFloat, &failure); |
| break; |
| case OP_FLOAT_TO_LONG: |
| checkUnop(workLine, &decInsn, |
| kRegTypeLongLo, kRegTypeFloat, &failure); |
| break; |
| case OP_FLOAT_TO_DOUBLE: |
| checkUnop(workLine, &decInsn, |
| kRegTypeDoubleLo, kRegTypeFloat, &failure); |
| break; |
| case OP_DOUBLE_TO_INT: |
| checkUnop(workLine, &decInsn, |
| kRegTypeInteger, kRegTypeDoubleLo, &failure); |
| break; |
| case OP_DOUBLE_TO_LONG: |
| checkUnop(workLine, &decInsn, |
| kRegTypeLongLo, kRegTypeDoubleLo, &failure); |
| break; |
| case OP_DOUBLE_TO_FLOAT: |
| checkUnop(workLine, &decInsn, |
| kRegTypeFloat, kRegTypeDoubleLo, &failure); |
| break; |
| case OP_INT_TO_BYTE: |
| checkUnop(workLine, &decInsn, |
| kRegTypeByte, kRegTypeInteger, &failure); |
| break; |
| case OP_INT_TO_CHAR: |
| checkUnop(workLine, &decInsn, |
| kRegTypeChar, kRegTypeInteger, &failure); |
| break; |
| case OP_INT_TO_SHORT: |
| checkUnop(workLine, &decInsn, |
| kRegTypeShort, kRegTypeInteger, &failure); |
| break; |
| |
| case OP_ADD_INT: |
| case OP_SUB_INT: |
| case OP_MUL_INT: |
| case OP_REM_INT: |
| case OP_DIV_INT: |
| case OP_SHL_INT: |
| case OP_SHR_INT: |
| case OP_USHR_INT: |
| checkBinop(workLine, &decInsn, |
| kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, false, &failure); |
| break; |
| case OP_AND_INT: |
| case OP_OR_INT: |
| case OP_XOR_INT: |
| checkBinop(workLine, &decInsn, |
| kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, true, &failure); |
| break; |
| case OP_ADD_LONG: |
| case OP_SUB_LONG: |
| case OP_MUL_LONG: |
| case OP_DIV_LONG: |
| case OP_REM_LONG: |
| case OP_AND_LONG: |
| case OP_OR_LONG: |
| case OP_XOR_LONG: |
| checkBinop(workLine, &decInsn, |
| kRegTypeLongLo, kRegTypeLongLo, kRegTypeLongLo, false, &failure); |
| break; |
| case OP_SHL_LONG: |
| case OP_SHR_LONG: |
| case OP_USHR_LONG: |
| /* shift distance is Int, making these different from other binops */ |
| checkBinop(workLine, &decInsn, |
| kRegTypeLongLo, kRegTypeLongLo, kRegTypeInteger, false, &failure); |
| break; |
| case OP_ADD_FLOAT: |
| case OP_SUB_FLOAT: |
| case OP_MUL_FLOAT: |
| case OP_DIV_FLOAT: |
| case OP_REM_FLOAT: |
| checkBinop(workLine, &decInsn, |
| kRegTypeFloat, kRegTypeFloat, kRegTypeFloat, false, &failure); |
| break; |
| case OP_ADD_DOUBLE: |
| case OP_SUB_DOUBLE: |
| case OP_MUL_DOUBLE: |
| case OP_DIV_DOUBLE: |
| case OP_REM_DOUBLE: |
| checkBinop(workLine, &decInsn, |
| kRegTypeDoubleLo, kRegTypeDoubleLo, kRegTypeDoubleLo, false, |
| &failure); |
| break; |
| case OP_ADD_INT_2ADDR: |
| case OP_SUB_INT_2ADDR: |
| case OP_MUL_INT_2ADDR: |
| case OP_REM_INT_2ADDR: |
| case OP_SHL_INT_2ADDR: |
| case OP_SHR_INT_2ADDR: |
| case OP_USHR_INT_2ADDR: |
| checkBinop2addr(workLine, &decInsn, |
| kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, false, &failure); |
| break; |
| case OP_AND_INT_2ADDR: |
| case OP_OR_INT_2ADDR: |
| case OP_XOR_INT_2ADDR: |
| checkBinop2addr(workLine, &decInsn, |
| kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, true, &failure); |
| break; |
| case OP_DIV_INT_2ADDR: |
| checkBinop2addr(workLine, &decInsn, |
| kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, false, &failure); |
| break; |
| case OP_ADD_LONG_2ADDR: |
| case OP_SUB_LONG_2ADDR: |
| case OP_MUL_LONG_2ADDR: |
| case OP_DIV_LONG_2ADDR: |
| case OP_REM_LONG_2ADDR: |
| case OP_AND_LONG_2ADDR: |
| case OP_OR_LONG_2ADDR: |
| case OP_XOR_LONG_2ADDR: |
| checkBinop2addr(workLine, &decInsn, |
| kRegTypeLongLo, kRegTypeLongLo, kRegTypeLongLo, false, &failure); |
| break; |
| case OP_SHL_LONG_2ADDR: |
| case OP_SHR_LONG_2ADDR: |
| case OP_USHR_LONG_2ADDR: |
| checkBinop2addr(workLine, &decInsn, |
| kRegTypeLongLo, kRegTypeLongLo, kRegTypeInteger, false, &failure); |
| break; |
| case OP_ADD_FLOAT_2ADDR: |
| case OP_SUB_FLOAT_2ADDR: |
| case OP_MUL_FLOAT_2ADDR: |
| case OP_DIV_FLOAT_2ADDR: |
| case OP_REM_FLOAT_2ADDR: |
| checkBinop2addr(workLine, &decInsn, |
| kRegTypeFloat, kRegTypeFloat, kRegTypeFloat, false, &failure); |
| break; |
| case OP_ADD_DOUBLE_2ADDR: |
| case OP_SUB_DOUBLE_2ADDR: |
| case OP_MUL_DOUBLE_2ADDR: |
| case OP_DIV_DOUBLE_2ADDR: |
| case OP_REM_DOUBLE_2ADDR: |
| checkBinop2addr(workLine, &decInsn, |
| kRegTypeDoubleLo, kRegTypeDoubleLo, kRegTypeDoubleLo, false, |
| &failure); |
| break; |
| case OP_ADD_INT_LIT16: |
| case OP_RSUB_INT: |
| case OP_MUL_INT_LIT16: |
| case OP_DIV_INT_LIT16: |
| case OP_REM_INT_LIT16: |
| checkLitop(workLine, &decInsn, |
| kRegTypeInteger, kRegTypeInteger, false, &failure); |
| break; |
| case OP_AND_INT_LIT16: |
| case OP_OR_INT_LIT16: |
| case OP_XOR_INT_LIT16: |
| checkLitop(workLine, &decInsn, |
| kRegTypeInteger, kRegTypeInteger, true, &failure); |
| break; |
| case OP_ADD_INT_LIT8: |
| case OP_RSUB_INT_LIT8: |
| case OP_MUL_INT_LIT8: |
| case OP_DIV_INT_LIT8: |
| case OP_REM_INT_LIT8: |
| case OP_SHL_INT_LIT8: |
| checkLitop(workLine, &decInsn, |
| kRegTypeInteger, kRegTypeInteger, false, &failure); |
| break; |
| case OP_SHR_INT_LIT8: |
| tmpType = adjustForRightShift(workLine, |
| decInsn.vB, decInsn.vC, false, &failure); |
| checkLitop(workLine, &decInsn, |
| tmpType, kRegTypeInteger, false, &failure); |
| break; |
| case OP_USHR_INT_LIT8: |
| tmpType = adjustForRightShift(workLine, |
| decInsn.vB, decInsn.vC, true, &failure); |
| checkLitop(workLine, &decInsn, |
| tmpType, kRegTypeInteger, false, &failure); |
| break; |
| case OP_AND_INT_LIT8: |
| case OP_OR_INT_LIT8: |
| case OP_XOR_INT_LIT8: |
| checkLitop(workLine, &decInsn, |
| kRegTypeInteger, kRegTypeInteger, true, &failure); |
| break; |
| |
| /* |
| * This falls into the general category of "optimized" instructions, |
| * which don't generally appear during verification. Because it's |
| * inserted in the course of verification, we can expect to see it here. |
| */ |
| case OP_THROW_VERIFICATION_ERROR: |
| break; |
| |
| /* |
| * Verifying "quickened" instructions is tricky, because we have |
| * discarded the original field/method information. The byte offsets |
| * and vtable indices only have meaning in the context of an object |
| * instance. |
| * |
| * If a piece of code declares a local reference variable, assigns |
| * null to it, and then issues a virtual method call on it, we |
| * cannot evaluate the method call during verification. This situation |
| * isn't hard to handle, since we know the call will always result in an |
| * NPE, and the arguments and return value don't matter. Any code that |
| * depends on the result of the method call is inaccessible, so the |
| * fact that we can't fully verify anything that comes after the bad |
| * call is not a problem. |
| * |
| * We must also consider the case of multiple code paths, only some of |
| * which involve a null reference. We can completely verify the method |
| * if we sidestep the results of executing with a null reference. |
| * For example, if on the first pass through the code we try to do a |
| * virtual method invocation through a null ref, we have to skip the |
| * method checks and have the method return a "wildcard" type (which |
| * merges with anything to become that other thing). The move-result |
| * will tell us if it's a reference, single-word numeric, or double-word |
| * value. We continue to perform the verification, and at the end of |
| * the function any invocations that were never fully exercised are |
| * marked as null-only. |
| * |
| * We would do something similar for the field accesses. The field's |
| * type, once known, can be used to recover the width of short integers. |
| * If the object reference was null, the field-get returns the "wildcard" |
| * type, which is acceptable for any operation. |
| */ |
| case OP_EXECUTE_INLINE: |
| case OP_EXECUTE_INLINE_RANGE: |
| case OP_IGET_QUICK: |
| case OP_IGET_WIDE_QUICK: |
| case OP_IGET_OBJECT_QUICK: |
| case OP_IPUT_QUICK: |
| case OP_IPUT_WIDE_QUICK: |
| case OP_IPUT_OBJECT_QUICK: |
| case OP_INVOKE_VIRTUAL_QUICK: |
| case OP_INVOKE_VIRTUAL_QUICK_RANGE: |
| case OP_INVOKE_SUPER_QUICK: |
| case OP_INVOKE_SUPER_QUICK_RANGE: |
| /* fall through to failure */ |
| |
| /* |
| * These instructions are equivalent (from the verifier's point of view) |
| * to the original form. The change was made for correctness rather |
| * than improved performance (except for invoke-object-init, which |
| * provides both). The substitution takes place after verification |
| * completes, though, so we don't expect to see them here. |
| */ |
| case OP_INVOKE_OBJECT_INIT_RANGE: |
| case OP_RETURN_VOID_BARRIER: |
| case OP_IGET_VOLATILE: |
| case OP_IGET_WIDE_VOLATILE: |
| case OP_IGET_OBJECT_VOLATILE: |
| case OP_IPUT_VOLATILE: |
| case OP_IPUT_WIDE_VOLATILE: |
| case OP_IPUT_OBJECT_VOLATILE: |
| case OP_SGET_VOLATILE: |
| case OP_SGET_WIDE_VOLATILE: |
| case OP_SGET_OBJECT_VOLATILE: |
| case OP_SPUT_VOLATILE: |
| case OP_SPUT_WIDE_VOLATILE: |
| case OP_SPUT_OBJECT_VOLATILE: |
| /* fall through to failure */ |
| |
| /* these should never appear during verification */ |
| case OP_UNUSED_3E: |
| case OP_UNUSED_3F: |
| case OP_UNUSED_40: |
| case OP_UNUSED_41: |
| case OP_UNUSED_42: |
| case OP_UNUSED_43: |
| case OP_UNUSED_73: |
| case OP_UNUSED_79: |
| case OP_UNUSED_7A: |
| case OP_BREAKPOINT: |
| case OP_UNUSED_FF: |
| failure = VERIFY_ERROR_GENERIC; |
| break; |
| |
| /* |
| * DO NOT add a "default" clause here. Without it the compiler will |
| * complain if an instruction is missing (which is desirable). |
| */ |
| } |
| |
| if (!VERIFY_OK(failure)) { |
| if (failure == VERIFY_ERROR_GENERIC || gDvm.optimizing) { |
| /* immediate failure, reject class */ |
| LOG_VFY_METH(meth, "VFY: rejecting opcode 0x%02x at 0x%04x", |
| decInsn.opcode, insnIdx); |
| goto bail; |
| } else { |
| /* replace opcode and continue on */ |
| ALOGD("VFY: replacing opcode 0x%02x at 0x%04x", |
| decInsn.opcode, insnIdx); |
| if (!replaceFailingInstruction(meth, insnFlags, insnIdx, failure)) { |
| LOG_VFY_METH(meth, "VFY: rejecting opcode 0x%02x at 0x%04x", |
| decInsn.opcode, insnIdx); |
| goto bail; |
| } |
| /* IMPORTANT: meth->insns may have been changed */ |
| insns = meth->insns + insnIdx; |
| |
| /* continue on as if we just handled a throw-verification-error */ |
| failure = VERIFY_ERROR_NONE; |
| nextFlags = kInstrCanThrow; |
| } |
| } |
| |
| /* |
| * If we didn't just set the result register, clear it out. This |
| * ensures that you can only use "move-result" immediately after the |
| * result is set. (We could check this statically, but it's not |
| * expensive and it makes our debugging output cleaner.) |
| */ |
| if (!justSetResult) { |
| int reg = RESULT_REGISTER(insnRegCount); |
| setRegisterType(workLine, reg, kRegTypeUnknown); |
| setRegisterType(workLine, reg+1, kRegTypeUnknown); |
| } |
| |
| /* |
| * Handle "continue". Tag the next consecutive instruction. |
| */ |
| if ((nextFlags & kInstrCanContinue) != 0) { |
| int insnWidth = dvmInsnGetWidth(insnFlags, insnIdx); |
| if (insnIdx+insnWidth >= insnsSize) { |
| LOG_VFY_METH(meth, |
| "VFY: execution can walk off end of code area (from %#x)", |
| insnIdx); |
| goto bail; |
| } |
| |
| /* |
| * The only way to get to a move-exception instruction is to get |
| * thrown there. Make sure the next instruction isn't one. |
| */ |
| if (!checkMoveException(meth, insnIdx+insnWidth, "next")) |
| goto bail; |
| |
| if (getRegisterLine(regTable, insnIdx+insnWidth)->regTypes != NULL) { |
| /* |
| * Merge registers into what we have for the next instruction, |
| * and set the "changed" flag if needed. |
| */ |
| if (!updateRegisters(meth, insnFlags, regTable, insnIdx+insnWidth, |
| workLine)) |
| goto bail; |
| } else { |
| /* |
| * We're not recording register data for the next instruction, |
| * so we don't know what the prior state was. We have to |
| * assume that something has changed and re-evaluate it. |
| */ |
| dvmInsnSetChanged(insnFlags, insnIdx+insnWidth, true); |
| } |
| } |
| |
| /* |
| * Handle "branch". Tag the branch target. |
| * |
| * NOTE: instructions like OP_EQZ provide information about the state |
| * of the register when the branch is taken or not taken. For example, |
| * somebody could get a reference field, check it for zero, and if the |
| * branch is taken immediately store that register in a boolean field |
| * since the value is known to be zero. We do not currently account for |
| * that, and will reject the code. |
| * |
| * TODO: avoid re-fetching the branch target |
| */ |
| if ((nextFlags & kInstrCanBranch) != 0) { |
| bool isConditional; |
| |
| if (!dvmGetBranchOffset(meth, insnFlags, insnIdx, &branchTarget, |
| &isConditional)) |
| { |
| /* should never happen after static verification */ |
| LOG_VFY_METH(meth, "VFY: bad branch at %d", insnIdx); |
| goto bail; |
| } |
| assert(isConditional || (nextFlags & kInstrCanContinue) == 0); |
| assert(!isConditional || (nextFlags & kInstrCanContinue) != 0); |
| |
| if (!checkMoveException(meth, insnIdx+branchTarget, "branch")) |
| goto bail; |
| |
| /* update branch target, set "changed" if appropriate */ |
| if (!updateRegisters(meth, insnFlags, regTable, insnIdx+branchTarget, |
| workLine)) |
| goto bail; |
| } |
| |
| /* |
| * Handle "switch". Tag all possible branch targets. |
| * |
| * We've already verified that the table is structurally sound, so we |
| * just need to walk through and tag the targets. |
| */ |
| if ((nextFlags & kInstrCanSwitch) != 0) { |
| int offsetToSwitch = insns[1] | (((s4)insns[2]) << 16); |
| const u2* switchInsns = insns + offsetToSwitch; |
| int switchCount = switchInsns[1]; |
| int offsetToTargets, targ; |
| |
| if ((*insns & 0xff) == OP_PACKED_SWITCH) { |
| /* 0=sig, 1=count, 2/3=firstKey */ |
| offsetToTargets = 4; |
| } else { |
| /* 0=sig, 1=count, 2..count*2 = keys */ |
| assert((*insns & 0xff) == OP_SPARSE_SWITCH); |
| offsetToTargets = 2 + 2*switchCount; |
| } |
| |
| /* verify each switch target */ |
| for (targ = 0; targ < switchCount; targ++) { |
| int offset, absOffset; |
| |
| /* offsets are 32-bit, and only partly endian-swapped */ |
| offset = switchInsns[offsetToTargets + targ*2] | |
| (((s4) switchInsns[offsetToTargets + targ*2 +1]) << 16); |
| absOffset = insnIdx + offset; |
| |
| assert(absOffset >= 0 && absOffset < insnsSize); |
| |
| if (!checkMoveException(meth, absOffset, "switch")) |
| goto bail; |
| |
| if (!updateRegisters(meth, insnFlags, regTable, absOffset, |
| workLine)) |
| goto bail; |
| } |
| } |
| |
| /* |
| * Handle instructions that can throw and that are sitting in a |
| * "try" block. (If they're not in a "try" block when they throw, |
| * control transfers out of the method.) |
| */ |
| if ((nextFlags & kInstrCanThrow) != 0 && dvmInsnIsInTry(insnFlags, insnIdx)) |
| { |
| const DexCode* pCode = dvmGetMethodCode(meth); |
| DexCatchIterator iterator; |
| bool hasCatchAll = false; |
| |
| if (dexFindCatchHandler(&iterator, pCode, insnIdx)) { |
| for (;;) { |
| DexCatchHandler* handler = dexCatchIteratorNext(&iterator); |
| |
| if (handler == NULL) { |
| break; |
| } |
| |
| if (handler->typeIdx == kDexNoIndex) |
| hasCatchAll = true; |
| |
| /* |
| * Merge registers into the "catch" block. We want to |
| * use the "savedRegs" rather than "workRegs", because |
| * at runtime the exception will be thrown before the |
| * instruction modifies any registers. |
| */ |
| if (!updateRegisters(meth, insnFlags, regTable, |
| handler->address, ®Table->savedLine)) |
| goto bail; |
| } |
| } |
| |
| /* |
| * If the monitor stack depth is nonzero, there must be a "catch all" |
| * handler for this instruction. This does apply to monitor-exit |
| * because of async exception handling. |
| */ |
| if (workLine->monitorStackTop != 0 && !hasCatchAll) { |
| /* |
| * The state in workLine reflects the post-execution state. |
| * If the current instruction is a monitor-enter and the monitor |
| * stack was empty, we don't need a catch-all (if it throws, |
| * it will do so before grabbing the lock). |
| */ |
| if (!(decInsn.opcode == OP_MONITOR_ENTER && |
| workLine->monitorStackTop == 1)) |
| { |
| LOG_VFY_METH(meth, |
| "VFY: no catch-all for instruction at 0x%04x", insnIdx); |
| goto bail; |
| } |
| } |
| } |
| |
| /* |
| * If we're returning from the method, make sure our monitor stack |
| * is empty. |
| */ |
| if ((nextFlags & kInstrCanReturn) != 0 && workLine->monitorStackTop != 0) { |
| LOG_VFY_METH(meth, "VFY: return with stack depth=%d at 0x%04x", |
| workLine->monitorStackTop, insnIdx); |
| goto bail; |
| } |
| |
| /* |
| * Update startGuess. Advance to the next instruction of that's |
| * possible, otherwise use the branch target if one was found. If |
| * neither of those exists we're in a return or throw; leave startGuess |
| * alone and let the caller sort it out. |
| */ |
| if ((nextFlags & kInstrCanContinue) != 0) { |
| *pStartGuess = insnIdx + dvmInsnGetWidth(insnFlags, insnIdx); |
| } else if ((nextFlags & kInstrCanBranch) != 0) { |
| /* we're still okay if branchTarget is zero */ |
| *pStartGuess = insnIdx + branchTarget; |
| } |
| |
| assert(*pStartGuess >= 0 && *pStartGuess < insnsSize && |
| dvmInsnGetWidth(insnFlags, *pStartGuess) != 0); |
| |
| result = true; |
| |
| bail: |
| return result; |
| } |
| |
| |
| /* |
| * callback function used in dumpRegTypes to print local vars |
| * valid at a given address. |
| */ |
| static void logLocalsCb(void *cnxt, u2 reg, u4 startAddress, u4 endAddress, |
| const char *name, const char *descriptor, |
| const char *signature) |
| { |
| int addr = *((int *)cnxt); |
| |
| if (addr >= (int) startAddress && addr < (int) endAddress) |
| { |
| ALOGI(" %2d: '%s' %s", reg, name, descriptor); |
| } |
| } |
| |
| /* |
| * Dump the register types for the specifed address to the log file. |
| */ |
| static void dumpRegTypes(const VerifierData* vdata, |
| const RegisterLine* registerLine, int addr, const char* addrName, |
| const UninitInstanceMap* uninitMap, int displayFlags) |
| { |
| const Method* meth = vdata->method; |
| const InsnFlags* insnFlags = vdata->insnFlags; |
| const RegType* addrRegs = registerLine->regTypes; |
| int regCount = meth->registersSize; |
| int fullRegCount = regCount + kExtraRegs; |
| bool branchTarget = dvmInsnIsBranchTarget(insnFlags, addr); |
| int i; |
| |
| assert(addr >= 0 && addr < (int) dvmGetMethodInsnsSize(meth)); |
| |
| int regCharSize = fullRegCount + (fullRegCount-1)/4 + 2 +1; |
| char regChars[regCharSize +1]; |
| memset(regChars, ' ', regCharSize); |
| regChars[0] = '['; |
| if (regCount == 0) |
| regChars[1] = ']'; |
| else |
| regChars[1 + (regCount-1) + (regCount-1)/4 +1] = ']'; |
| regChars[regCharSize] = '\0'; |
| |
| for (i = 0; i < regCount + kExtraRegs; i++) { |
| char tch; |
| |
| switch (addrRegs[i]) { |
| case kRegTypeUnknown: tch = '.'; break; |
| case kRegTypeConflict: tch = 'X'; break; |
| case kRegTypeZero: tch = '0'; break; |
| case kRegTypeOne: tch = '1'; break; |
| case kRegTypeBoolean: tch = 'Z'; break; |
| case kRegTypeConstPosByte: tch = 'y'; break; |
| case kRegTypeConstByte: tch = 'Y'; break; |
| case kRegTypeConstPosShort: tch = 'h'; break; |
| case kRegTypeConstShort: tch = 'H'; break; |
| case kRegTypeConstChar: tch = 'c'; break; |
| case kRegTypeConstInteger: tch = 'i'; break; |
| case kRegTypePosByte: tch = 'b'; break; |
| case kRegTypeByte: tch = 'B'; break; |
| case kRegTypePosShort: tch = 's'; break; |
| case kRegTypeShort: tch = 'S'; break; |
| case kRegTypeChar: tch = 'C'; break; |
| case kRegTypeInteger: tch = 'I'; break; |
| case kRegTypeFloat: tch = 'F'; break; |
| case kRegTypeConstLo: tch = 'N'; break; |
| case kRegTypeConstHi: tch = 'n'; break; |
| case kRegTypeLongLo: tch = 'J'; break; |
| case kRegTypeLongHi: tch = 'j'; break; |
| case kRegTypeDoubleLo: tch = 'D'; break; |
| case kRegTypeDoubleHi: tch = 'd'; break; |
| default: |
| if (regTypeIsReference(addrRegs[i])) { |
| if (regTypeIsUninitReference(addrRegs[i])) |
| tch = 'U'; |
| else |
| tch = 'L'; |
| } else { |
| tch = '*'; |
| assert(false); |
| } |
| break; |
| } |
| |
| if (i < regCount) |
| regChars[1 + i + (i/4)] = tch; |
| else |
| regChars[1 + i + (i/4) + 2] = tch; |
| } |
| |
| if (addr == 0 && addrName != NULL) { |
| ALOGI("%c%s %s mst=%d", branchTarget ? '>' : ' ', |
| addrName, regChars, registerLine->monitorStackTop); |
| } else { |
| ALOGI("%c0x%04x %s mst=%d", branchTarget ? '>' : ' ', |
| addr, regChars, registerLine->monitorStackTop); |
| } |
| if (displayFlags & DRT_SHOW_LIVENESS) { |
| /* |
| * We can't use registerLine->liveRegs because it might be the |
| * "work line" rather than the copy from RegisterTable. |
| */ |
| BitVector* liveRegs = vdata->registerLines[addr].liveRegs; |
| if (liveRegs != NULL) { |
| char liveChars[regCharSize + 1]; |
| memset(liveChars, ' ', regCharSize); |
| liveChars[regCharSize] = '\0'; |
| |
| for (i = 0; i < regCount; i++) { |
| bool isLive = dvmIsBitSet(liveRegs, i); |
| liveChars[i + 1 + (i / 4)] = isLive ? '+' : '-'; |
| } |
| ALOGI(" %s", liveChars); |
| } else { |
| ALOGI(" %c", '#'); |
| } |
| } |
| |
| if (displayFlags & DRT_SHOW_REF_TYPES) { |
| for (i = 0; i < regCount + kExtraRegs; i++) { |
| if (regTypeIsReference(addrRegs[i]) && addrRegs[i] != kRegTypeZero) |
| { |
| ClassObject* clazz = regTypeReferenceToClass(addrRegs[i], uninitMap); |
| assert(dvmIsHeapAddress((Object*)clazz)); |
| if (i < regCount) { |
| ALOGI(" %2d: 0x%08x %s%s", |
| i, addrRegs[i], |
| regTypeIsUninitReference(addrRegs[i]) ? "[U]" : "", |
| clazz->descriptor); |
| } else { |
| ALOGI(" RS: 0x%08x %s%s", |
| addrRegs[i], |
| regTypeIsUninitReference(addrRegs[i]) ? "[U]" : "", |
| clazz->descriptor); |
| } |
| } |
| } |
| } |
| if (displayFlags & DRT_SHOW_LOCALS) { |
| dexDecodeDebugInfo(meth->clazz->pDvmDex->pDexFile, |
| dvmGetMethodCode(meth), |
| meth->clazz->descriptor, |
| meth->prototype.protoIdx, |
| meth->accessFlags, |
| NULL, logLocalsCb, &addr); |
| } |
| } |