arm_compute v18.02

Change-Id: I7207aa488e5470f235f39b6c188b4678dc38d1a6
diff --git a/examples/graph_vgg16.cpp b/examples/graph_vgg16.cpp
index 1a804a4..c8cc5b2 100644
--- a/examples/graph_vgg16.cpp
+++ b/examples/graph_vgg16.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2017, 2018 ARM Limited.
+ * Copyright (c) 2017-2018 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -33,6 +33,20 @@
 using namespace arm_compute::graph;
 using namespace arm_compute::graph_utils;
 
+namespace
+{
+/** This function checks if we can use GEMM-based convolution trying to allocate a memory of size "size_in_bytes"
+ *
+ * @param[in] size_in_bytes Memory size in bytes needed for VGG-16
+ *
+ * @return The convolution layer hint
+ */
+ConvolutionMethodHint convolution_hint_vgg16(size_t size_in_bytes)
+{
+    return ((get_mem_free_from_meminfo() * 1024) >= size_in_bytes) ? ConvolutionMethodHint::GEMM : ConvolutionMethodHint::DIRECT;
+}
+} // namespace
+
 /** Example demonstrating how to implement VGG16's network using the Compute Library's graph API
  *
  * @param[in] argc Number of arguments
@@ -47,13 +61,17 @@
         std::string image;     /* Image data */
         std::string label;     /* Label data */
 
-        constexpr float mean_r = 123.68f;  /* Mean value to subtract from red channel */
-        constexpr float mean_g = 116.779f; /* Mean value to subtract from green channel */
-        constexpr float mean_b = 103.939f; /* Mean value to subtract from blue channel */
+        // Create a preprocessor object
+        const std::array<float, 3> mean_rgb{ { 123.68f, 116.779f, 103.939f } };
+        std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
 
-        // Set target. 0 (NEON), 1 (OpenCL). By default it is NEON
-        TargetHint            target_hint      = set_target_hint(argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0);
-        ConvolutionMethodHint convolution_hint = ConvolutionMethodHint::DIRECT;
+        // Set target. 0 (NEON), 1 (OpenCL), 2 (OpenCL with Tuner). By default it is NEON
+        const int  int_target_hint = argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0;
+        TargetHint target_hint     = set_target_hint(int_target_hint);
+
+        // Check if we can use GEMM-based convolutions evaluating if the platform has at least 1.8 GB of available memory
+        const size_t          memory_required  = 1932735283L;
+        ConvolutionMethodHint convolution_hint = convolution_hint_vgg16(memory_required);
 
         // Parse arguments
         if(argc < 2)
@@ -90,8 +108,7 @@
         graph << target_hint
               << convolution_hint
               << Tensor(TensorInfo(TensorShape(224U, 224U, 3U, 1U), 1, DataType::F32),
-                        get_input_accessor(image, mean_r, mean_g, mean_b))
-              << ConvolutionMethodHint::DIRECT
+                        get_input_accessor(image, std::move(preprocessor)))
               // Layer 1
               << ConvolutionLayer(
                   3U, 3U, 64U,
@@ -208,6 +225,9 @@
               // Softmax
               << SoftmaxLayer()
               << Tensor(get_output_accessor(label, 5));
+
+        // In order to enable the OpenCL tuner, graph_init() has to be called only when all nodes have been instantiated
+        graph.graph_init(int_target_hint == 2);
     }
     void do_run() override
     {