arm_compute v18.02

Change-Id: I7207aa488e5470f235f39b6c188b4678dc38d1a6
diff --git a/src/runtime/CL/functions/CLFullyConnectedLayer.cpp b/src/runtime/CL/functions/CLFullyConnectedLayer.cpp
index 68c6576..2b4670b 100644
--- a/src/runtime/CL/functions/CLFullyConnectedLayer.cpp
+++ b/src/runtime/CL/functions/CLFullyConnectedLayer.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2017 ARM Limited.
+ * Copyright (c) 2017-2018 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -55,7 +55,7 @@
     }
     else
     {
-        ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixMultiplyKernel::validate(&input, &weights, &output, 1.f, is_interleaved_transposed, gpu_target));
+        ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixMultiplyKernel::validate(&input, &weights, &output, 1.f, is_interleaved_transposed, GEMMReshapeInfo(), gpu_target));
     }
 
     return Status{};
@@ -114,7 +114,7 @@
     // If the fully connected layer is called after a convolution layer, the input tensor must be linearized
 
     // Initialize output tensor for im2col
-    TensorShape shape_im2col = compute_im2col_shape(*input->info());
+    TensorShape shape_im2col = compute_im2col_shape(input->info());
     _im2col_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col));
 
     // Configure im2col kernel
@@ -243,7 +243,7 @@
     bool            is_quantized     = is_data_type_quantized_asymmetric(input->data_type());
     const GPUTarget gpu_target       = CLScheduler::get().target();
 
-    const ITensorInfo &im2col_input     = TensorInfo(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_im2col_shape(*input)));
+    const ITensorInfo &im2col_input     = TensorInfo(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_im2col_shape(input)));
     const ITensorInfo &reshaped_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
     const ITensorInfo &gemmlowp_output  = TensorInfo(output->clone()->set_is_resizable(true).reset_padding().set_data_type(DataType::S32));