arm_compute v19.11
diff --git a/documentation/channel__shuffle_8cl_source.xhtml b/documentation/channel__shuffle_8cl_source.xhtml
index 449a01f..b2b008d 100644
--- a/documentation/channel__shuffle_8cl_source.xhtml
+++ b/documentation/channel__shuffle_8cl_source.xhtml
@@ -40,7 +40,7 @@
   <img alt="Compute Library" src="https://raw.githubusercontent.com/ARM-software/ComputeLibrary/gh-pages/ACL_logo.png" style="max-width: 100%;margin-top: 15px;margin-left: 10px"/>
   <td style="padding-left: 0.5em;">
    <div id="projectname">
-   &#160;<span id="projectnumber">19.08</span>
+   &#160;<span id="projectnumber">19.11</span>
    </div>
   </td>
  </tr>
@@ -100,13 +100,14 @@
 <div class="title">channel_shuffle.cl</div>  </div>
 </div><!--header-->
 <div class="contents">
-<a href="channel__shuffle_8cl.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment">* Copyright (c) 2018 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment">*</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment">* SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment">*</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment">* Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment">* of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment">* deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment">* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment">* sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment">* furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment">*</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment">* The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment">* copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment">*</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment">* THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment">* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment">* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment">* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="comment">* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="comment">* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="comment">* SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment">*/</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml">helpers.h</a>&quot;</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;</div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="preprocessor">#if defined(DATA_TYPE) &amp;&amp; defined(VEC_SIZE) &amp;&amp; defined(NUM_GROUPS) &amp;&amp; defined(K) &amp;&amp; defined(SRC_DIM_Z)</span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;</div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;<span class="comment">// Check valid VEC_SIZES</span></div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;<span class="preprocessor">#if VEC_SIZE != 4 &amp;&amp; VEC_SIZE != 8 &amp;&amp; VEC_SIZE != 16</span></div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;<span class="preprocessor">#error &quot;Only vector sizes 4, 8 and 16 are supported&quot;</span></div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;<span class="preprocessor">#endif // VEC_SIZE != 4 &amp;&amp; VEC_SIZE != 8 &amp;&amp; VEC_SIZE != 16</span></div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;</div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;<span class="preprocessor">#define TYPE VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)</span></div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;</div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;<span class="preprocessor">#define DIV_MOD_UINT(x, y, div_res, mod_res)                \</span></div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;<span class="preprocessor">    ({                                                      \</span></div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;<span class="preprocessor">        div_res = (uint)((x) * (float)(1.0f / (float)(y))); \</span></div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;<span class="preprocessor">        uint r  = div_res * (y);                            \</span></div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;<span class="preprocessor">        mod_res = (x)-r;                                    \</span></div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;<span class="preprocessor">    })</span></div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;</div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;__kernel <span class="keywordtype">void</span> channel_shuffle_nchw(<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;                                   <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>))</div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;{</div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;    uint curr_channel = 0; <span class="comment">// channel id of input</span></div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;    uint batch_id     = 0; <span class="comment">// batch id</span></div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;    uint group_id     = 0; <span class="comment">// group id</span></div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;    uint channel_id   = 0; <span class="comment">// channel id within the group</span></div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;    <span class="comment">// Compute curr_channel and batch_id</span></div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;    DIV_MOD_UINT(get_global_id(2), SRC_DIM_Z, batch_id, curr_channel);</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;    <span class="comment">// Compute group_id and channel_id</span></div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;    DIV_MOD_UINT(curr_channel, K, group_id, channel_id);</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;    <span class="keyword">const</span> uint x = get_global_id(0) * VEC_SIZE;</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;    <span class="keyword">const</span> uint y = get_global_id(1) * 2;</div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;    <span class="keyword">const</span> uint z = channel_id * NUM_GROUPS + group_id;</div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;</div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;    <span class="comment">// Load the Nx2 block</span></div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;    <span class="keyword">const</span> __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>) + y * src_stride_y + curr_channel * src_stride_z + batch_id * src_stride_w;</div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;    <a class="code" href="activation__quant__helpers_8h.xhtml#a5a392548f2df67370cb15d2a5d75cd7b">TYPE</a> u0                         = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(VEC_SIZE)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(input_ptr + 0 * src_stride_y));</div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;    <a class="code" href="activation__quant__helpers_8h.xhtml#a5a392548f2df67370cb15d2a5d75cd7b">TYPE</a> u1                         = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(VEC_SIZE)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(input_ptr + 1 * src_stride_y));</div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;</div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;    <span class="comment">// Store blocks</span></div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;    __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + x * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>) + y * dst_stride_y + z * dst_stride_z + batch_id * dst_stride_w;</div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(VEC_SIZE)</div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;    (u0, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + 0 * dst_stride_y));</div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(VEC_SIZE)</div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;    (u1, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + 1 * dst_stride_y));</div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;}</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;<span class="preprocessor">#if VEC_SIZE == 4 &amp;&amp; defined(LAST_ACCESSED)</span></div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;</div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;__kernel <span class="keywordtype">void</span> channel_shuffle_nhwc(<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;                                   <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>))</div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;{</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;    <span class="keyword">const</span> uint curr_channel = min((uint)(get_global_id(0) * VEC_SIZE), (uint)LAST_ACCESSED); <span class="comment">// input feature map</span></div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;    uint       channel_id0  = 0;</div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;    uint       channel_id1  = 0;</div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;    uint       channel_id2  = 0;</div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;    uint       channel_id3  = 0;</div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;    uint       group_id0    = 0;</div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;    uint       group_id1    = 0;</div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;    uint       group_id2    = 0;</div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;    uint       group_id3    = 0;</div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;    uint       y            = 0;</div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;    uint       batch_id     = 0;</div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;</div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;    <span class="comment">// Compute curr_channel and batch_id</span></div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;    DIV_MOD_UINT(get_global_id(2), (uint)SRC_DIM_Z, batch_id, y);</div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;</div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;    <span class="comment">// Compute group_id and channel_id</span></div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;    DIV_MOD_UINT(curr_channel + (uint)0, K, group_id0, channel_id0);</div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;    DIV_MOD_UINT(curr_channel + (uint)1, K, group_id1, channel_id1);</div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;    DIV_MOD_UINT(curr_channel + (uint)2, K, group_id2, channel_id2);</div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;    DIV_MOD_UINT(curr_channel + (uint)3, K, group_id3, channel_id3);</div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;</div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;    <span class="keyword">const</span> uint x  = get_global_id(1) * 2;</div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;    <span class="keyword">const</span> uint z0 = channel_id0 * (uint)NUM_GROUPS + group_id0;</div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;    <span class="keyword">const</span> uint z1 = channel_id1 * (uint)NUM_GROUPS + group_id1;</div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;    <span class="keyword">const</span> uint z2 = channel_id2 * (uint)NUM_GROUPS + group_id2;</div><div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;    <span class="keyword">const</span> uint z3 = channel_id3 * (uint)NUM_GROUPS + group_id3;</div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;</div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;    <span class="comment">// Load the Nx2 block</span></div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;    <span class="keyword">const</span> __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + curr_channel * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>) + x * src_stride_y + y * src_stride_z + batch_id * src_stride_w;</div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;    <a class="code" href="activation__quant__helpers_8h.xhtml#a5a392548f2df67370cb15d2a5d75cd7b">TYPE</a> u0                         = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(VEC_SIZE)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(input_ptr + 0 * src_stride_y));</div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;    <a class="code" href="activation__quant__helpers_8h.xhtml#a5a392548f2df67370cb15d2a5d75cd7b">TYPE</a> u1                         = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(VEC_SIZE)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(input_ptr + 1 * src_stride_y));</div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;</div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;    <span class="comment">// Store blocks</span></div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;    __global uchar *output_ptr                                                              = dst_ptr + dst_offset_first_element_in_bytes + x * dst_stride_y + y * dst_stride_z + batch_id * dst_stride_w;</div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)0 * dst_stride_y + z0 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u0.s0;</div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)0 * dst_stride_y + z1 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u0.s1;</div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)0 * dst_stride_y + z2 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u0.s2;</div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)0 * dst_stride_y + z3 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u0.s3;</div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)1 * dst_stride_y + z0 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u1.s0;</div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)1 * dst_stride_y + z1 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u1.s1;</div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)1 * dst_stride_y + z2 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u1.s2;</div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)1 * dst_stride_y + z3 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u1.s3;</div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;}</div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;<span class="preprocessor">#endif // VEC_SIZE == 4 &amp;&amp; defined(LAST_ACCESSED)</span></div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;<span class="preprocessor">#endif // defined(DATA_TYPE) &amp;&amp; defined(VEC_SIZE) &amp;&amp; defined(NUM_GROUPS) &amp;&amp; defined(K) &amp;&amp; defined(SRC_DIM_Z)</span></div><div class="ttc" id="convolution3x3_8cl_xhtml_afb8c72ce35c4a1f4a2588d6573e54aa1"><div class="ttname"><a href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a></div><div class="ttdeci">#define DATA_TYPE</div><div class="ttdef"><b>Definition:</b> <a href="convolution3x3_8cl_source.xhtml#l00027">convolution3x3.cl:27</a></div></div>
+<a href="channel__shuffle_8cl.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment">* Copyright (c) 2018 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment">*</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment">* SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment">*</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment">* Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment">* of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment">* deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment">* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment">* sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment">* furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment">*</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment">* The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment">* copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment">*</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment">* THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment">* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment">* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment">* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="comment">* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="comment">* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="comment">* SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment">*/</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml">helpers.h</a>&quot;</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;</div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="preprocessor">#if defined(DATA_TYPE) &amp;&amp; defined(VEC_SIZE) &amp;&amp; defined(NUM_GROUPS) &amp;&amp; defined(K) &amp;&amp; defined(SRC_DIM_Z)</span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;</div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;<span class="comment">// Check valid VEC_SIZES</span></div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;<span class="preprocessor">#if VEC_SIZE != 4 &amp;&amp; VEC_SIZE != 8 &amp;&amp; VEC_SIZE != 16</span></div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;<span class="preprocessor">#error &quot;Only vector sizes 4, 8 and 16 are supported&quot;</span></div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;<span class="preprocessor">#endif // VEC_SIZE != 4 &amp;&amp; VEC_SIZE != 8 &amp;&amp; VEC_SIZE != 16</span></div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;</div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;<span class="preprocessor">#define TYPE VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)</span></div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;</div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;<span class="preprocessor">#define DIV_MOD_UINT(x, y, div_res, mod_res)                \</span></div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;<span class="preprocessor">    ({                                                      \</span></div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;<span class="preprocessor">        div_res = (uint)((x) * (float)(1.0f / (float)(y))); \</span></div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;<span class="preprocessor">        uint r  = div_res * (y);                            \</span></div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;<span class="preprocessor">        mod_res = (x)-r;                                    \</span></div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;<span class="preprocessor">    })</span></div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;<span class="comment">/** Performs channel shuffle when the data layout is NCHW. See https://arxiv.org/pdf/1707.01083.pdf for details.</span></div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;<span class="comment"> * @note The vector size must be given as a preprocessor argument using -DVEC_SIZE=num. e.g. -DVEC_SIZE=4</span></div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;<span class="comment"> * @note The depth of the tensor must be given as a preprocessor argument using -DSRC_DIM_Z=num. e.g. -DSRC_DIM_Z=64</span></div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;<span class="comment"> * @note The number of groups must be given as a preprocessor argument using -DNUM_GROUPS=num_groups. e.g. -DNUM_GROUPS=2</span></div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;<span class="comment"> * @note The number of channels in each group must be given as a preprocessor argument using -DK=num. e.g. -DK=1</span></div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;<span class="comment"> *       K is equal to num_channels / num_groups.</span></div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;<span class="comment"> * @param[in]  src_ptr                           Pointer to the source matrix. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32</span></div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;<span class="comment"> * @param[in]  src_stride_x                      Stride of the first source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;<span class="comment"> * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;<span class="comment"> * @param[in]  src_stride_y                      Stride of the first source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;<span class="comment"> * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;<span class="comment"> * @param[in]  src_stride_z                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;<span class="comment"> * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;<span class="comment"> * @param[in]  src_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;<span class="comment"> * @param[in]  src_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;<span class="comment"> * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the first source tensor</span></div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;<span class="comment"> * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;<span class="comment"> * @param[in]  dst_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;<span class="comment"> * @param[in]  dst_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;<span class="comment"> * @param[in]  dst_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;<span class="comment"> * @param[in]  dst_stride_w                      Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;<span class="comment"> * @param[in]  dst_step_w                        output_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;__kernel <span class="keywordtype">void</span> channel_shuffle_nchw(<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;                                   <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>))</div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;{</div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;    uint curr_channel = 0; <span class="comment">// channel id of input</span></div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;    uint batch_id     = 0; <span class="comment">// batch id</span></div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;    uint group_id     = 0; <span class="comment">// group id</span></div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;    uint channel_id   = 0; <span class="comment">// channel id within the group</span></div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;    <span class="comment">// Compute curr_channel and batch_id</span></div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;    DIV_MOD_UINT(get_global_id(2), SRC_DIM_Z, batch_id, curr_channel);</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;    <span class="comment">// Compute group_id and channel_id</span></div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;    DIV_MOD_UINT(curr_channel, K, group_id, channel_id);</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;    <span class="keyword">const</span> uint x = get_global_id(0) * <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>;</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;    <span class="keyword">const</span> uint y = get_global_id(1) * 2;</div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;    <span class="keyword">const</span> uint z = channel_id * NUM_GROUPS + group_id;</div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;</div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;    <span class="comment">// Load the Nx2 block</span></div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;    <span class="keyword">const</span> __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>) + y * src_stride_y + curr_channel * src_stride_z + batch_id * src_stride_w;</div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;    <a class="code" href="activation__quant__helpers_8h.xhtml#a5a392548f2df67370cb15d2a5d75cd7b">TYPE</a> u0                         = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(input_ptr + 0 * src_stride_y));</div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;    <a class="code" href="activation__quant__helpers_8h.xhtml#a5a392548f2df67370cb15d2a5d75cd7b">TYPE</a> u1                         = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(input_ptr + 1 * src_stride_y));</div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;</div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;    <span class="comment">// Store blocks</span></div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;    __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + x * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>) + y * dst_stride_y + z * dst_stride_z + batch_id * dst_stride_w;</div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;    (u0, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + 0 * dst_stride_y));</div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;    (u1, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + 1 * dst_stride_y));</div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;}</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;<span class="preprocessor">#if VEC_SIZE == 4 &amp;&amp; defined(LAST_ACCESSED)</span></div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;<span class="comment">/** Performs channel shuffle when the data layout is NHWC. See https://arxiv.org/pdf/1707.01083.pdf for details.</span></div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;<span class="comment"> * @note This implementation is only defined for VEC_SIZE = 4</span></div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;<span class="comment"> * @note This last element accessed along the first dimension must be given as a preprocessor argument using -DLAST_ACCESSED=num. e.g. -DLAST_ACCESSED=64 in order to prevent out-of-bound writes.</span></div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;<span class="comment"> * @note The vector size must be given as a preprocessor argument using -DVEC_SIZE=num. e.g. -DVEC_SIZE=4</span></div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;<span class="comment"> * @note The height of the tensor must be given as a preprocessor argument using -DSRC_DIM_Z=num. e.g. -DSRC_DIM_Z=64</span></div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;<span class="comment"> * @note The number of groups must be given as a preprocessor argument using -DNUM_GROUPS=num_groups. e.g. -DNUM_GROUPS=2</span></div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;<span class="comment"> * @note The number of channels in each group must be given as a preprocessor argument using -DK=num. e.g. -DK=1</span></div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;<span class="comment"> *       K is equal to num_channels / num_groups.</span></div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;<span class="comment"> * @param[in]  src_ptr                           Pointer to the source matrix. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32</span></div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;<span class="comment"> * @param[in]  src_stride_x                      Stride of the first source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;<span class="comment"> * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;<span class="comment"> * @param[in]  src_stride_y                      Stride of the first source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;<span class="comment"> * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;<span class="comment"> * @param[in]  src_stride_z                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;<span class="comment"> * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;<span class="comment"> * @param[in]  src_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;<span class="comment"> * @param[in]  src_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;<span class="comment"> * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the first source tensor</span></div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;<span class="comment"> * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;<span class="comment"> * @param[in]  dst_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;<span class="comment"> * @param[in]  dst_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;<span class="comment"> * @param[in]  dst_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;<span class="comment"> * @param[in]  dst_stride_w                      Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;<span class="comment"> * @param[in]  dst_step_w                        output_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;__kernel <span class="keywordtype">void</span> channel_shuffle_nhwc(<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;                                   <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>))</div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;{</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;    <span class="keyword">const</span> uint curr_channel = min((uint)(get_global_id(0) * <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>), (uint)LAST_ACCESSED); <span class="comment">// input feature map</span></div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;    uint       channel_id0  = 0;</div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;    uint       channel_id1  = 0;</div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;    uint       channel_id2  = 0;</div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;    uint       channel_id3  = 0;</div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;    uint       group_id0    = 0;</div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;    uint       group_id1    = 0;</div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;    uint       group_id2    = 0;</div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;    uint       group_id3    = 0;</div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;    uint       y            = 0;</div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;    uint       batch_id     = 0;</div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;</div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;    <span class="comment">// Compute curr_channel and batch_id</span></div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;    DIV_MOD_UINT(get_global_id(2), (uint)SRC_DIM_Z, batch_id, y);</div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;</div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;    <span class="comment">// Compute group_id and channel_id</span></div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;    DIV_MOD_UINT(curr_channel + (uint)0, K, group_id0, channel_id0);</div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;    DIV_MOD_UINT(curr_channel + (uint)1, K, group_id1, channel_id1);</div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;    DIV_MOD_UINT(curr_channel + (uint)2, K, group_id2, channel_id2);</div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;    DIV_MOD_UINT(curr_channel + (uint)3, K, group_id3, channel_id3);</div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;</div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;    <span class="keyword">const</span> uint x  = get_global_id(1) * 2;</div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;    <span class="keyword">const</span> uint z0 = channel_id0 * (uint)NUM_GROUPS + group_id0;</div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;    <span class="keyword">const</span> uint z1 = channel_id1 * (uint)NUM_GROUPS + group_id1;</div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;    <span class="keyword">const</span> uint z2 = channel_id2 * (uint)NUM_GROUPS + group_id2;</div><div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;    <span class="keyword">const</span> uint z3 = channel_id3 * (uint)NUM_GROUPS + group_id3;</div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;</div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;    <span class="comment">// Load the Nx2 block</span></div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;    <span class="keyword">const</span> __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + curr_channel * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>) + x * src_stride_y + y * src_stride_z + batch_id * src_stride_w;</div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;    <a class="code" href="activation__quant__helpers_8h.xhtml#a5a392548f2df67370cb15d2a5d75cd7b">TYPE</a> u0                         = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(input_ptr + 0 * src_stride_y));</div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;    <a class="code" href="activation__quant__helpers_8h.xhtml#a5a392548f2df67370cb15d2a5d75cd7b">TYPE</a> u1                         = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(input_ptr + 1 * src_stride_y));</div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;</div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;    <span class="comment">// Store blocks</span></div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;    __global uchar *output_ptr                                                              = dst_ptr + dst_offset_first_element_in_bytes + x * dst_stride_y + y * dst_stride_z + batch_id * dst_stride_w;</div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)0 * dst_stride_y + z0 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u0.s0;</div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)0 * dst_stride_y + z1 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u0.s1;</div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)0 * dst_stride_y + z2 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u0.s2;</div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)0 * dst_stride_y + z3 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u0.s3;</div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)1 * dst_stride_y + z0 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u1.s0;</div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)1 * dst_stride_y + z1 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u1.s1;</div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)1 * dst_stride_y + z2 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u1.s2;</div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(output_ptr + (uint)1 * dst_stride_y + z3 * <span class="keyword">sizeof</span>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>))) = u1.s3;</div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;}</div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;<span class="preprocessor">#endif // VEC_SIZE == 4 &amp;&amp; defined(LAST_ACCESSED)</span></div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;<span class="preprocessor">#endif // defined(DATA_TYPE) &amp;&amp; defined(VEC_SIZE) &amp;&amp; defined(NUM_GROUPS) &amp;&amp; defined(K) &amp;&amp; defined(SRC_DIM_Z)</span></div><div class="ttc" id="depthwise__convolution__quantized_8cl_xhtml_a3fffea119c04c7680f2e9cf3fadf63b4"><div class="ttname"><a href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a></div><div class="ttdeci">#define VEC_SIZE</div><div class="ttdef"><b>Definition:</b> <a href="depthwise__convolution__quantized_8cl_source.xhtml#l00031">depthwise_convolution_quantized.cl:31</a></div></div>
+<div class="ttc" id="convolution3x3_8cl_xhtml_afb8c72ce35c4a1f4a2588d6573e54aa1"><div class="ttname"><a href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a></div><div class="ttdeci">#define DATA_TYPE</div><div class="ttdef"><b>Definition:</b> <a href="convolution3x3_8cl_source.xhtml#l00027">convolution3x3.cl:27</a></div></div>
 <div class="ttc" id="activation__quant__helpers_8h_xhtml_a5a392548f2df67370cb15d2a5d75cd7b"><div class="ttname"><a href="activation__quant__helpers_8h.xhtml#a5a392548f2df67370cb15d2a5d75cd7b">TYPE</a></div><div class="ttdeci">#define TYPE</div><div class="ttdef"><b>Definition:</b> <a href="activation__quant__helpers_8h_source.xhtml#l00027">activation_quant_helpers.h:27</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_adbf67dcee294e673cf796f1ed8aeb6a4"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">arm_compute::test::validation::dst</a></div><div class="ttdeci">CLTensor dst</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_absolute_difference_8cpp_source.xhtml#l00102">AbsoluteDifference.cpp:102</a></div></div>
 <div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml">helpers.h</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_acb282042d1edeeaa3cc979a206f78b54"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a></div><div class="ttdeci">#define VSTORE(size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00056">helpers.h:56</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a481bdc6d61b3df9dcdbdb244f0f97790"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a></div><div class="ttdeci">#define TENSOR4D_DECLARATION(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00111">helpers.h:111</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a287e2fc366c312b468382c95bb90f91f"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a></div><div class="ttdeci">#define VLOAD(size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00053">helpers.h:53</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_acb282042d1edeeaa3cc979a206f78b54"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a></div><div class="ttdeci">#define VSTORE(size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00198">helpers.h:198</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a481bdc6d61b3df9dcdbdb244f0f97790"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a></div><div class="ttdeci">#define TENSOR4D_DECLARATION(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00293">helpers.h:293</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a287e2fc366c312b468382c95bb90f91f"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a></div><div class="ttdeci">#define VLOAD(size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00195">helpers.h:195</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a989ab3e96426615bb98e04e0235088ca"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">arm_compute::test::validation::src</a></div><div class="ttdeci">cast configure &amp; src</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_cast_8cpp_source.xhtml#l00169">Cast.cpp:169</a></div></div>
 </div><!-- fragment --></div><!-- contents -->
 </div><!-- doc-content -->
@@ -114,7 +115,7 @@
 <div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
   <ul>
     <li class="navelem"><a class="el" href="dir_68267d1309a1af8e8297ef4c3efbcdba.xhtml">src</a></li><li class="navelem"><a class="el" href="dir_aebb8dcc11953d78e620bbef0b9e2183.xhtml">core</a></li><li class="navelem"><a class="el" href="dir_8c278f79c760e5c5fbd911f9870614c1.xhtml">CL</a></li><li class="navelem"><a class="el" href="dir_25885286e9dad4fa105b7b25a8031bbf.xhtml">cl_kernels</a></li><li class="navelem"><a class="el" href="channel__shuffle_8cl.xhtml">channel_shuffle.cl</a></li>
-    <li class="footer">Generated on Mon Sep 2 2019 11:47:20 for Compute Library by
+    <li class="footer">Generated on Thu Nov 28 2019 16:52:57 for Compute Library by
     <a href="http://www.doxygen.org/index.html">
     <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.15 </li>
   </ul>