arm_compute v19.11
diff --git a/documentation/direct__convolution1x1_8cl_source.xhtml b/documentation/direct__convolution1x1_8cl_source.xhtml
index 928a6fb..82654f0 100644
--- a/documentation/direct__convolution1x1_8cl_source.xhtml
+++ b/documentation/direct__convolution1x1_8cl_source.xhtml
@@ -40,7 +40,7 @@
   <img alt="Compute Library" src="https://raw.githubusercontent.com/ARM-software/ComputeLibrary/gh-pages/ACL_logo.png" style="max-width: 100%;margin-top: 15px;margin-left: 10px"/>
   <td style="padding-left: 0.5em;">
    <div id="projectname">
-   &#160;<span id="projectnumber">19.08</span>
+   &#160;<span id="projectnumber">19.11</span>
    </div>
   </td>
  </tr>
@@ -100,35 +100,35 @@
 <div class="title">direct_convolution1x1.cl</div>  </div>
 </div><!--header-->
 <div class="contents">
-<a href="direct__convolution1x1_8cl.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2016-2018 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> * of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment"> * THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml">helpers.h</a>&quot;</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;</div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="preprocessor">#undef CONVERT_SAT</span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;</div><div class="line"><a name="l00028"></a><span class="lineno"><a class="line" href="direct__convolution1x1_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">   28</a></span>&#160;<span class="preprocessor">#define ADD_OP(a, b) ((a) + (b))</span></div><div class="line"><a name="l00029"></a><span class="lineno"><a class="line" href="direct__convolution1x1_8cl.xhtml#ad3cc858846806e6b1d3694b9d0a2e6da">   29</a></span>&#160;<span class="preprocessor">#define MUL_OP(a, b) ((a) * (b))</span></div><div class="line"><a name="l00030"></a><span class="lineno"><a class="line" href="direct__convolution1x1_8cl.xhtml#a1f15728672380ade7a238f5e783d54d2">   30</a></span>&#160;<span class="preprocessor">#define CONVERT_SAT(a, b) ((a))</span></div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;</div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;<span class="preprocessor">#if defined(DATA_TYPE) &amp;&amp; defined(DATA_SIZE) &amp;&amp; defined(STRIDE_X) &amp;&amp; defined(WEIGHTS_DEPTH)</span></div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;</div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;<span class="preprocessor">#if defined(DATA_LAYOUT_NHWC)</span></div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;</div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;<span class="preprocessor">#define PTR_TO_VALUE(PTR, DATA_TYPE) *((__global DATA_TYPE *)(PTR))</span></div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;</div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;__kernel <span class="keywordtype">void</span> direct_convolution1x1_nhwc(</div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>),</div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;#ifdef HAS_BIAS</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a>(biases),</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;#endif <span class="comment">/* defined(HAS_BIAS) */</span></div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;    <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> weights_stride_w)</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;{</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a>    <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>     = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>);</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a79e8e562daa6599317d2d1cd86ef1bf2">CONVERT_TO_TENSOR3D_STRUCT_NO_STEP</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>);</div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>     = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>);</div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;</div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;<span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;    <a class="code" href="struct_vector.xhtml">Vector</a> biases = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a>(biases);</div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;</div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)</div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;    values        = 0;</div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> id0 = get_global_id(0);</div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> id1 = get_global_id(1);</div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> id2 = get_global_id(2);</div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;    <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>.ptr += id0 * weights_stride_w;</div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;    __global uchar *src_addr = (__global uchar *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, 0, 0) - src_stride_x * id0 + id2 * STRIDE_Y * (int)src_stride_z;</div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;    <span class="keywordflow">for</span>(<span class="keyword">volatile</span> <span class="keywordtype">int</span> d = 0; d &lt; WEIGHTS_DEPTH; ++d)</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;    {</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;        <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> weight = *(__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>.ptr;</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;#<span class="keywordflow">if</span> STRIDE_X == 1</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;        col0 = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))(</div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;                   PTR_TO_VALUE(src_addr + 0 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;                   PTR_TO_VALUE(src_addr + 1 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;                   PTR_TO_VALUE(src_addr + 2 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;                   PTR_TO_VALUE(src_addr + 3 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;                   PTR_TO_VALUE(src_addr + 4 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;                   PTR_TO_VALUE(src_addr + 5 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;                   PTR_TO_VALUE(src_addr + 6 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;                   PTR_TO_VALUE(src_addr + 7 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>));</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;<span class="preprocessor">#elif STRIDE_X == 2 </span><span class="comment">/* STRIDE_X == 1 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)</div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;        col0 = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))(</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;                   PTR_TO_VALUE(src_addr + 0 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;                   PTR_TO_VALUE(src_addr + 2 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;                   PTR_TO_VALUE(src_addr + 4 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;                   PTR_TO_VALUE(src_addr + 6 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;                   PTR_TO_VALUE(src_addr + 8 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;                   PTR_TO_VALUE(src_addr + 10 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;                   PTR_TO_VALUE(src_addr + 12 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;                   PTR_TO_VALUE(src_addr + 14 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>));</div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;<span class="preprocessor">#else               </span><span class="comment">/* STRIDE_X not equals 1 or 2 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;<span class="preprocessor">#error &quot;STRIDE_X larger than 2 is not supported&quot;</span></div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* STRIDE_X == 2 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;        values = <a class="code" href="direct__convolution1x1_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">ADD_OP</a>(values, <a class="code" href="direct__convolution1x1_8cl.xhtml#ad3cc858846806e6b1d3694b9d0a2e6da">MUL_OP</a>((<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))weight, col0));</div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;</div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;        src_addr += src_stride_x;</div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>.ptr += weights_stride_x;</div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;    }</div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;</div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;<span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;    values = <a class="code" href="direct__convolution1x1_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">ADD_OP</a>(values, (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)) * ((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a>(&amp;biases, id0))));</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;</div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr)                      = values.s0;</div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 1 * dst_stride_y)) = values.s1;</div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 2 * dst_stride_y)) = values.s2;</div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 3 * dst_stride_y)) = values.s3;</div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 4 * dst_stride_y)) = values.s4;</div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 5 * dst_stride_y)) = values.s5;</div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 6 * dst_stride_y)) = values.s6;</div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 7 * dst_stride_y)) = values.s7;</div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;}</div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;<span class="preprocessor">#endif // defined(DATA_LAYOUT_NHWC)</span></div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;</div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;<span class="preprocessor">#if STRIDE_X == 3</span></div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;<span class="preprocessor">#define INPUT_PIXEL_STR(data_size) extract_input_stride3_##data_size</span></div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;<span class="preprocessor">#define INPUT_PIXEL(data_size) INPUT_PIXEL_STR(data_size)</span></div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;<span class="preprocessor">#elif STRIDE_X == 2</span></div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;<span class="preprocessor">#define INPUT_PIXEL(data_size) extract_input_stride2</span></div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;<span class="preprocessor">#elif STRIDE_X == 1</span></div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;<span class="preprocessor">#define INPUT_PIXEL(data_size) extract_input_stride1</span></div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;<span class="preprocessor">#else </span><span class="comment">/* STRIDE_X not equals 1, 2 or 3 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;<span class="preprocessor">#error &quot;Only support strides 1, 2 and 3&quot;</span></div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* STRIDE_X == 3 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;</div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;<span class="keyword">inline</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8) extract_input_stride1(__global const <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *input_pixel)</div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;{</div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;    <span class="keywordflow">return</span> vload8(0, input_pixel);</div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;}</div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;</div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;<span class="keyword">inline</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8) extract_input_stride2(__global const <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *input_pixel)</div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;{</div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16)</div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;    temp = vload16(0, input_pixel);</div><div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;    return temp.s02468ace;</div><div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;}</div><div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;</div><div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;inline <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8) extract_input_stride3_32(__global const <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *input_pixel)</div><div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;{</div><div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;    temp1 = vload4(0, input_pixel);</div><div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;    temp2 = vload4(0, input_pixel + 6);</div><div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;    temp3 = vload4(0, input_pixel + 12);</div><div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;    temp4 = vload4(0, input_pixel + 18);</div><div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;    return (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))(temp1.s03, temp2.s03, temp3.s03, temp4.s03);</div><div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;}</div><div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;</div><div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;inline <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8) extract_input_stride3_16(__global const <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *input_pixel)</div><div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;{</div><div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)</div><div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;    temp1 = vload8(0, input_pixel);</div><div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)</div><div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;    temp2 = vload8(0, input_pixel + 8);</div><div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)</div><div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;    temp3 = vload8(0, input_pixel + 16);</div><div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;    return (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))(temp1.s036, temp2.s147, temp3.s25);</div><div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;}</div><div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;</div><div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;inline <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8) extract_input_stride3_8(__global const <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *input_pixel)</div><div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;{</div><div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16)</div><div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;    temp1 = vload16(0, input_pixel);</div><div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16)</div><div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;    temp2 = vload16(0, input_pixel + 12);</div><div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;    return (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))(temp1.s0369, temp2.s0369);</div><div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;}</div><div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;</div><div class="line"><a name="l00274"></a><span class="lineno">  274</span>&#160;__kernel <span class="keywordtype">void</span> direct_convolution1x1(</div><div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>),</div><div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;<span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a>(biases),</div><div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;    <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> weights_stride_w)</div><div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;{</div><div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a>    <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>     = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>);</div><div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a79e8e562daa6599317d2d1cd86ef1bf2">CONVERT_TO_TENSOR3D_STRUCT_NO_STEP</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>);</div><div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>     = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>);</div><div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;</div><div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;<span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;    <a class="code" href="struct_vector.xhtml">Vector</a> biases = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a>(biases);</div><div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;</div><div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)</div><div class="line"><a name="l00292"></a><span class="lineno">  292</span>&#160;    values = 0;</div><div class="line"><a name="l00293"></a><span class="lineno">  293</span>&#160;</div><div class="line"><a name="l00294"></a><span class="lineno">  294</span>&#160;    const uint z_index = get_global_id(2);</div><div class="line"><a name="l00295"></a><span class="lineno">  295</span>&#160;</div><div class="line"><a name="l00296"></a><span class="lineno">  296</span>&#160;    <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>.ptr += z_index * weights_stride_w;</div><div class="line"><a name="l00297"></a><span class="lineno">  297</span>&#160;    <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a0886942393a3ba0dfefaa7516b159784">for</a>(volatile <span class="keywordtype">int</span> d = 0; d &lt; WEIGHTS_DEPTH; ++d)</div><div class="line"><a name="l00298"></a><span class="lineno">  298</span>&#160;    {</div><div class="line"><a name="l00299"></a><span class="lineno">  299</span>&#160;        <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> weight = *(__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>.ptr;</div><div class="line"><a name="l00300"></a><span class="lineno">  300</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)</div><div class="line"><a name="l00301"></a><span class="lineno">  301</span>&#160;        input_pixel = INPUT_PIXEL(DATA_SIZE)((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>.ptr);</div><div class="line"><a name="l00302"></a><span class="lineno">  302</span>&#160;        values      = <a class="code" href="direct__convolution1x1_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">ADD_OP</a>(values, <a class="code" href="direct__convolution1x1_8cl.xhtml#ad3cc858846806e6b1d3694b9d0a2e6da">MUL_OP</a>((<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))weight, input_pixel));</div><div class="line"><a name="l00303"></a><span class="lineno">  303</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>.ptr += src_stride_z;</div><div class="line"><a name="l00304"></a><span class="lineno">  304</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>.ptr += weights_stride_z;</div><div class="line"><a name="l00305"></a><span class="lineno">  305</span>&#160;    }</div><div class="line"><a name="l00306"></a><span class="lineno">  306</span>&#160;</div><div class="line"><a name="l00307"></a><span class="lineno">  307</span>&#160;<span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00308"></a><span class="lineno">  308</span>&#160;    values = <a class="code" href="direct__convolution1x1_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">ADD_OP</a>(values, (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)) * ((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a>(&amp;biases, z_index))));</div><div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;</div><div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;    vstore8(<a class="code" href="direct__convolution1x1_8cl.xhtml#a1f15728672380ade7a238f5e783d54d2">CONVERT_SAT</a>(values, <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)), 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr);</div><div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;}</div><div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;<span class="preprocessor">#endif // defined(DATA_TYPE) &amp;&amp; defined(DATA_SIZE) &amp;&amp; defined(STRIDE_X) &amp;&amp; defined(WEIGHTS_DEPTH)</span></div><div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;</div><div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;<span class="preprocessor">#if defined(WEIGHTS_DEPTH)</span></div><div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;</div><div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;<span class="preprocessor">#define CONVOLUTION1x1_BIFROST(acc, src, weight_value) \</span></div><div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;<span class="preprocessor">    ({                                                 \</span></div><div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;<span class="preprocessor">        acc.s0 = mad(src.s0, weight_value, acc.s0);    \</span></div><div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;<span class="preprocessor">        acc.s1 = mad(src.s1, weight_value, acc.s1);    \</span></div><div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;<span class="preprocessor">        acc.s2 = mad(src.s2, weight_value, acc.s2);    \</span></div><div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;<span class="preprocessor">        acc.s3 = mad(src.s3, weight_value, acc.s3);    \</span></div><div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;<span class="preprocessor">    })</span></div><div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;</div><div class="line"><a name="l00361"></a><span class="lineno">  361</span>&#160;__kernel <span class="keywordtype">void</span> direct_convolution1x1_f32_bifrost(</div><div class="line"><a name="l00362"></a><span class="lineno">  362</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00363"></a><span class="lineno">  363</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00364"></a><span class="lineno">  364</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>),</div><div class="line"><a name="l00365"></a><span class="lineno">  365</span>&#160;#ifdef HAS_BIAS</div><div class="line"><a name="l00366"></a><span class="lineno">  366</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a>(biases),</div><div class="line"><a name="l00367"></a><span class="lineno">  367</span>&#160;#endif <span class="comment">/* defined(HAS_BIAS) */</span></div><div class="line"><a name="l00368"></a><span class="lineno">  368</span>&#160;    <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> weights_stride_w)</div><div class="line"><a name="l00369"></a><span class="lineno">  369</span>&#160;{</div><div class="line"><a name="l00370"></a><span class="lineno">  370</span>&#160;    <span class="comment">// Get the kernel index</span></div><div class="line"><a name="l00371"></a><span class="lineno">  371</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> kernel_index = get_global_id(2);</div><div class="line"><a name="l00372"></a><span class="lineno">  372</span>&#160;</div><div class="line"><a name="l00373"></a><span class="lineno">  373</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a>    <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>);</div><div class="line"><a name="l00374"></a><span class="lineno">  374</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>);</div><div class="line"><a name="l00375"></a><span class="lineno">  375</span>&#160;</div><div class="line"><a name="l00376"></a><span class="lineno">  376</span>&#160;    float4 acc0 = 0.0f;</div><div class="line"><a name="l00377"></a><span class="lineno">  377</span>&#160;    float4 acc1 = 0.0f;</div><div class="line"><a name="l00378"></a><span class="lineno">  378</span>&#160;    float4 acc2 = 0.0f;</div><div class="line"><a name="l00379"></a><span class="lineno">  379</span>&#160;    float4 acc3 = 0.0f;</div><div class="line"><a name="l00380"></a><span class="lineno">  380</span>&#160;</div><div class="line"><a name="l00381"></a><span class="lineno">  381</span>&#160;    __global uchar *weights_addr = (__global uchar *)(weights_ptr + weights_offset_first_element_in_bytes + kernel_index * weights_stride_w);</div><div class="line"><a name="l00382"></a><span class="lineno">  382</span>&#160;    __global uchar *src_addr     = (__global uchar *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, 0, 0);</div><div class="line"><a name="l00383"></a><span class="lineno">  383</span>&#160;</div><div class="line"><a name="l00384"></a><span class="lineno">  384</span>&#160;    <span class="keywordflow">for</span>(ushort d = 0; d &lt; (ushort)WEIGHTS_DEPTH; ++d)</div><div class="line"><a name="l00385"></a><span class="lineno">  385</span>&#160;    {</div><div class="line"><a name="l00386"></a><span class="lineno">  386</span>&#160;        <span class="comment">// Load the weights</span></div><div class="line"><a name="l00387"></a><span class="lineno">  387</span>&#160;        <span class="keywordtype">float</span> weight = *((__global <span class="keywordtype">float</span> *)weights_addr);</div><div class="line"><a name="l00388"></a><span class="lineno">  388</span>&#160;</div><div class="line"><a name="l00389"></a><span class="lineno">  389</span>&#160;        <span class="comment">// Load values from row0 of input tensor</span></div><div class="line"><a name="l00390"></a><span class="lineno">  390</span>&#160;        float4 src0 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 0 * src_stride_y));</div><div class="line"><a name="l00391"></a><span class="lineno">  391</span>&#160;        float4 src1 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 1 * src_stride_y));</div><div class="line"><a name="l00392"></a><span class="lineno">  392</span>&#160;        float4 src2 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 2 * src_stride_y));</div><div class="line"><a name="l00393"></a><span class="lineno">  393</span>&#160;        float4 src3 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 3 * src_stride_y));</div><div class="line"><a name="l00394"></a><span class="lineno">  394</span>&#160;</div><div class="line"><a name="l00395"></a><span class="lineno">  395</span>&#160;        CONVOLUTION1x1_BIFROST(acc0, src0, weight);</div><div class="line"><a name="l00396"></a><span class="lineno">  396</span>&#160;        CONVOLUTION1x1_BIFROST(acc1, src1, weight);</div><div class="line"><a name="l00397"></a><span class="lineno">  397</span>&#160;        CONVOLUTION1x1_BIFROST(acc2, src2, weight);</div><div class="line"><a name="l00398"></a><span class="lineno">  398</span>&#160;        CONVOLUTION1x1_BIFROST(acc3, src3, weight);</div><div class="line"><a name="l00399"></a><span class="lineno">  399</span>&#160;</div><div class="line"><a name="l00400"></a><span class="lineno">  400</span>&#160;        src_addr += src_stride_z;</div><div class="line"><a name="l00401"></a><span class="lineno">  401</span>&#160;        weights_addr += weights_stride_z;</div><div class="line"><a name="l00402"></a><span class="lineno">  402</span>&#160;    }</div><div class="line"><a name="l00403"></a><span class="lineno">  403</span>&#160;</div><div class="line"><a name="l00404"></a><span class="lineno">  404</span>&#160;<span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00405"></a><span class="lineno">  405</span>&#160;    <a class="code" href="struct_vector.xhtml">Vector</a> biases = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a>(biases);</div><div class="line"><a name="l00406"></a><span class="lineno">  406</span>&#160;</div><div class="line"><a name="l00407"></a><span class="lineno">  407</span>&#160;    <span class="keywordtype">float</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a> = (float) * ((__global <span class="keywordtype">float</span> *)(<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a>(&amp;biases, kernel_index)));</div><div class="line"><a name="l00408"></a><span class="lineno">  408</span>&#160;</div><div class="line"><a name="l00409"></a><span class="lineno">  409</span>&#160;    acc0.s0 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00410"></a><span class="lineno">  410</span>&#160;    acc0.s1 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00411"></a><span class="lineno">  411</span>&#160;    acc0.s2 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00412"></a><span class="lineno">  412</span>&#160;    acc0.s3 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00413"></a><span class="lineno">  413</span>&#160;    acc1.s0 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00414"></a><span class="lineno">  414</span>&#160;    acc1.s1 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00415"></a><span class="lineno">  415</span>&#160;    acc1.s2 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00416"></a><span class="lineno">  416</span>&#160;    acc1.s3 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00417"></a><span class="lineno">  417</span>&#160;    acc2.s0 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00418"></a><span class="lineno">  418</span>&#160;    acc2.s1 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00419"></a><span class="lineno">  419</span>&#160;    acc2.s2 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00420"></a><span class="lineno">  420</span>&#160;    acc2.s3 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00421"></a><span class="lineno">  421</span>&#160;    acc3.s0 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00422"></a><span class="lineno">  422</span>&#160;    acc3.s1 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00423"></a><span class="lineno">  423</span>&#160;    acc3.s2 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00424"></a><span class="lineno">  424</span>&#160;    acc3.s3 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00425"></a><span class="lineno">  425</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00426"></a><span class="lineno">  426</span>&#160;</div><div class="line"><a name="l00427"></a><span class="lineno">  427</span>&#160;    vstore4(acc0, 0, (__global <span class="keywordtype">float</span> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 0 * dst_stride_y));</div><div class="line"><a name="l00428"></a><span class="lineno">  428</span>&#160;    vstore4(acc1, 0, (__global <span class="keywordtype">float</span> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 1 * dst_stride_y));</div><div class="line"><a name="l00429"></a><span class="lineno">  429</span>&#160;    vstore4(acc2, 0, (__global <span class="keywordtype">float</span> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 2 * dst_stride_y));</div><div class="line"><a name="l00430"></a><span class="lineno">  430</span>&#160;    vstore4(acc3, 0, (__global <span class="keywordtype">float</span> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 3 * dst_stride_y));</div><div class="line"><a name="l00431"></a><span class="lineno">  431</span>&#160;}</div><div class="line"><a name="l00432"></a><span class="lineno">  432</span>&#160;<span class="preprocessor">#endif // defined(WEIGHTS_DEPTH)</span></div><div class="ttc" id="struct_vector_xhtml"><div class="ttname"><a href="struct_vector.xhtml">Vector</a></div><div class="ttdoc">Structure to hold Vector information.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00159">helpers.h:159</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a009469e4d9b8fce3b6d5e97d2077827d"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a></div><div class="ttdeci">__global uchar * offset(const Image *img, int x, int y)</div><div class="ttdoc">Get the pointer position of a Image.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00328">helpers.h:328</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_aebe814363556c244be043b13e7969197"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a></div><div class="ttdeci">#define CONVERT_TO_IMAGE_STRUCT(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00129">helpers.h:129</a></div></div>
+<a href="direct__convolution1x1_8cl.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2016-2018 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> * of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment"> * THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml">helpers.h</a>&quot;</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;</div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="preprocessor">#undef CONVERT_SAT</span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;</div><div class="line"><a name="l00028"></a><span class="lineno"><a class="line" href="direct__convolution1x1_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">   28</a></span>&#160;<span class="preprocessor">#define ADD_OP(a, b) ((a) + (b))</span></div><div class="line"><a name="l00029"></a><span class="lineno"><a class="line" href="direct__convolution1x1_8cl.xhtml#ad3cc858846806e6b1d3694b9d0a2e6da">   29</a></span>&#160;<span class="preprocessor">#define MUL_OP(a, b) ((a) * (b))</span></div><div class="line"><a name="l00030"></a><span class="lineno"><a class="line" href="direct__convolution1x1_8cl.xhtml#a1f15728672380ade7a238f5e783d54d2">   30</a></span>&#160;<span class="preprocessor">#define CONVERT_SAT(a, b) ((a))</span></div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;</div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;<span class="preprocessor">#if defined(DATA_TYPE) &amp;&amp; defined(DATA_SIZE) &amp;&amp; defined(STRIDE_X) &amp;&amp; defined(WEIGHTS_DEPTH)</span></div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;</div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;<span class="preprocessor">#if defined(DATA_LAYOUT_NHWC)</span></div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;</div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;<span class="preprocessor">#define PTR_TO_VALUE(PTR, DATA_TYPE) *((__global DATA_TYPE *)(PTR))</span></div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;<span class="comment">/** This kernel performs a direct convolution to convolve the low three dimensions of a tensor with data layout NHWC</span></div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;<span class="comment"> * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float</span></div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;<span class="comment"> * @note The data size must be passed at compile time using -DDATA_SIZE e.g. -DDATA_SIZE=32</span></div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;<span class="comment"> * @note The convolution stride x must be passed at compile time using -DSTRIDE_X e.g. -DSTRIDE_X=1</span></div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;<span class="comment"> * @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH</span></div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;<span class="comment"> * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.</span></div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;<span class="comment"> * @param[in]  src_ptr                               Pointer to the source tensor. Supported data types: F16/F32</span></div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;<span class="comment"> * @param[in]  src_stride_x                          Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;<span class="comment"> * @param[in]  src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;<span class="comment"> * @param[in]  src_stride_y                          Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;<span class="comment"> * @param[in]  src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;<span class="comment"> * @param[in]  src_stride_z                          Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;<span class="comment"> * @param[in]  src_step_z                            src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;<span class="comment"> * @param[in]  src_offset_first_element_in_bytes     The offset of the first element in the source tensor</span></div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;<span class="comment"> * @param[out] dst_ptr                               Pointer to the destination tensor. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;<span class="comment"> * @param[in]  dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;<span class="comment"> * @param[in]  dst_step_y                            dst_stride_y * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                          Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;<span class="comment"> * @param[in]  dst_step_z                            dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;<span class="comment"> * @param[in]  weights_ptr                           Pointer to the weights tensor. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;<span class="comment"> * @param[in]  weights_stride_x                      Stride of the weights tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;<span class="comment"> * @param[in]  weights_step_x                        weights_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;<span class="comment"> * @param[in]  weights_stride_y                      Stride of the weights tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;<span class="comment"> * @param[in]  weights_step_y                        weights_stride_y * number of elements along y processed per workitem(in bytes)</span></div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;<span class="comment"> * @param[in]  weights_stride_z                      Stride of the weights tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;<span class="comment"> * @param[in]  weights_step_z                        weights_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;<span class="comment"> * @param[in]  weights_offset_first_element_in_bytes The offset of the first element in the weights tensor</span></div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;<span class="comment"> * @param[in]  biases_ptr                            Pointer to the biases tensor. Same as @p src_ptr</span></div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;<span class="comment"> * @param[in]  biases_stride_x                       Stride of the biases tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;<span class="comment"> * @param[in]  biases_step_x                         biases_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;<span class="comment"> * @param[in]  biases_offset_first_element_in_bytes  The offset of the first element in the biases tensor</span></div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;<span class="comment"> * @param[in]  weights_stride_w                      Stride of the weights tensor in the 4th dimension</span></div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;__kernel <span class="keywordtype">void</span> direct_convolution1x1_nhwc(</div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>),</div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;#ifdef HAS_BIAS</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a>(biases),</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;#endif <span class="comment">/* defined(HAS_BIAS) */</span></div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;    <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> weights_stride_w)</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;{</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a>    <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>     = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>);</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a79e8e562daa6599317d2d1cd86ef1bf2">CONVERT_TO_TENSOR3D_STRUCT_NO_STEP</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>);</div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>     = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>);</div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;</div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;<span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;    <a class="code" href="struct_vector.xhtml">Vector</a> biases = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a>(biases);</div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;</div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)</div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;    values        = 0;</div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> id0 = get_global_id(0);</div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> id1 = get_global_id(1);</div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> id2 = get_global_id(2);</div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;    <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>.ptr += id0 * weights_stride_w;</div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;    __global uchar *src_addr = (__global uchar *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, 0, 0) - src_stride_x * id0 + id2 * STRIDE_Y * (int)src_stride_z;</div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;    <span class="keywordflow">for</span>(<span class="keyword">volatile</span> <span class="keywordtype">int</span> d = 0; d &lt; WEIGHTS_DEPTH; ++d)</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;    {</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;        <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> weight = *(__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>.ptr;</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;#<span class="keywordflow">if</span> STRIDE_X == 1</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;        col0 = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))(</div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;                   PTR_TO_VALUE(src_addr + 0 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;                   PTR_TO_VALUE(src_addr + 1 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;                   PTR_TO_VALUE(src_addr + 2 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;                   PTR_TO_VALUE(src_addr + 3 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;                   PTR_TO_VALUE(src_addr + 4 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;                   PTR_TO_VALUE(src_addr + 5 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;                   PTR_TO_VALUE(src_addr + 6 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;                   PTR_TO_VALUE(src_addr + 7 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>));</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;<span class="preprocessor">#elif STRIDE_X == 2 </span><span class="comment">/* STRIDE_X == 1 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)</div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;        col0 = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))(</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;                   PTR_TO_VALUE(src_addr + 0 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;                   PTR_TO_VALUE(src_addr + 2 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;                   PTR_TO_VALUE(src_addr + 4 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;                   PTR_TO_VALUE(src_addr + 6 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;                   PTR_TO_VALUE(src_addr + 8 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;                   PTR_TO_VALUE(src_addr + 10 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;                   PTR_TO_VALUE(src_addr + 12 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>),</div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;                   PTR_TO_VALUE(src_addr + 14 * src_stride_y, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>));</div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;<span class="preprocessor">#else               </span><span class="comment">/* STRIDE_X not equals 1 or 2 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;<span class="preprocessor">#error &quot;STRIDE_X larger than 2 is not supported&quot;</span></div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* STRIDE_X == 2 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;        values = <a class="code" href="direct__convolution1x1_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">ADD_OP</a>(values, <a class="code" href="direct__convolution1x1_8cl.xhtml#ad3cc858846806e6b1d3694b9d0a2e6da">MUL_OP</a>((<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))weight, col0));</div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;</div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;        src_addr += src_stride_x;</div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>.ptr += weights_stride_x;</div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;    }</div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;</div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;<span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;    values = <a class="code" href="direct__convolution1x1_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">ADD_OP</a>(values, (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)) * ((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a>(&amp;biases, id0))));</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;</div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr)                      = values.s0;</div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 1 * dst_stride_y)) = values.s1;</div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 2 * dst_stride_y)) = values.s2;</div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 3 * dst_stride_y)) = values.s3;</div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 4 * dst_stride_y)) = values.s4;</div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 5 * dst_stride_y)) = values.s5;</div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 6 * dst_stride_y)) = values.s6;</div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 7 * dst_stride_y)) = values.s7;</div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;}</div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;<span class="preprocessor">#endif // defined(DATA_LAYOUT_NHWC)</span></div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;</div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;<span class="preprocessor">#if STRIDE_X == 3</span></div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;<span class="preprocessor">#define INPUT_PIXEL_STR(data_size) extract_input_stride3_##data_size</span></div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;<span class="preprocessor">#define INPUT_PIXEL(data_size) INPUT_PIXEL_STR(data_size)</span></div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;<span class="preprocessor">#elif STRIDE_X == 2</span></div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;<span class="preprocessor">#define INPUT_PIXEL(data_size) extract_input_stride2</span></div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;<span class="preprocessor">#elif STRIDE_X == 1</span></div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;<span class="preprocessor">#define INPUT_PIXEL(data_size) extract_input_stride1</span></div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;<span class="preprocessor">#else </span><span class="comment">/* STRIDE_X not equals 1, 2 or 3 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;<span class="preprocessor">#error &quot;Only support strides 1, 2 and 3&quot;</span></div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* STRIDE_X == 3 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;<span class="comment">/** Extracts a 1D horizontal vector from the input tensor with stride as 1.</span></div><div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;<span class="comment"> * @param[in] input_pixel Pointer to the first pixel.</span></div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;<span class="comment"> * @return extracted input values.</span></div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;<span class="keyword">inline</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8) extract_input_stride1(__global const <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *input_pixel)</div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;{</div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;    <span class="keywordflow">return</span> vload8(0, input_pixel);</div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;}</div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;<span class="comment">/** Extracts a 1D horizontal vector from the input tensor with stride as 2.</span></div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;<span class="comment"> * @param[in] input_pixel Pointer to the first pixel.</span></div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;<span class="comment"> * @return extracted input values.</span></div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;<span class="keyword">inline</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8) extract_input_stride2(__global const <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *input_pixel)</div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;{</div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16)</div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;    temp = vload16(0, input_pixel);</div><div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;    return temp.s02468ace;</div><div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;}</div><div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;<span class="comment">/** Extracts a 1D horizontal vector from the input tensor with stride as 3 and 32-bit data size.</span></div><div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;<span class="comment"> * @param[in] input_pixel Pointer to the first pixel.</span></div><div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;<span class="comment"> * @return extracted input values.</span></div><div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;inline <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8) extract_input_stride3_32(__global const <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *input_pixel)</div><div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;{</div><div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;    temp1 = vload4(0, input_pixel);</div><div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;    temp2 = vload4(0, input_pixel + 6);</div><div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;    temp3 = vload4(0, input_pixel + 12);</div><div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;    temp4 = vload4(0, input_pixel + 18);</div><div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;    return (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))(temp1.s03, temp2.s03, temp3.s03, temp4.s03);</div><div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;}</div><div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;<span class="comment">/** Extracts a 1D horizontal vector from the input tensor with stride as 3 and 16-bit data size.</span></div><div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;<span class="comment"> * @param[in] input_pixel Pointer to the first pixel.</span></div><div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;<span class="comment"> * @return extracted input values.</span></div><div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;inline <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8) extract_input_stride3_16(__global const <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *input_pixel)</div><div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;{</div><div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)</div><div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;    temp1 = vload8(0, input_pixel);</div><div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)</div><div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;    temp2 = vload8(0, input_pixel + 8);</div><div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)</div><div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;    temp3 = vload8(0, input_pixel + 16);</div><div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;    return (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))(temp1.s036, temp2.s147, temp3.s25);</div><div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;}</div><div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;<span class="comment">/** Extracts a 1D horizontal vector from the input tensor with stride as 3 and 8-bit data size.</span></div><div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;<span class="comment"> * @param[in] input_pixel Pointer to the first pixel.</span></div><div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;<span class="comment"> * @return extracted input values.</span></div><div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;inline <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8) extract_input_stride3_8(__global const <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *input_pixel)</div><div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;{</div><div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16)</div><div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;    temp1 = vload16(0, input_pixel);</div><div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16)</div><div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;    temp2 = vload16(0, input_pixel + 12);</div><div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;    return (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))(temp1.s0369, temp2.s0369);</div><div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;}</div><div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;<span class="comment">/** This kernel performs a direct convolution to convolve the low three dimensions.</span></div><div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;<span class="comment"> * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float</span></div><div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;<span class="comment"> * @note The data size must be passed at compile time using -DDATA_SIZE e.g. -DDATA_SIZE=32</span></div><div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;<span class="comment"> * @note The convolution stride x must be passed at compile time using -DSTRIDE_X e.g. -DSTRIDE_X=1</span></div><div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;<span class="comment"> * @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH</span></div><div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;<span class="comment"> * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.</span></div><div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;<span class="comment"> * @param[in]  src_ptr                               Pointer to the source tensor. Supported data types: F16/F32</span></div><div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;<span class="comment"> * @param[in]  src_stride_x                          Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;<span class="comment"> * @param[in]  src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;<span class="comment"> * @param[in]  src_stride_y                          Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;<span class="comment"> * @param[in]  src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;<span class="comment"> * @param[in]  src_stride_z                          Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;<span class="comment"> * @param[in]  src_step_z                            src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;<span class="comment"> * @param[in]  src_offset_first_element_in_bytes     The offset of the first element in the source tensor</span></div><div class="line"><a name="l00252"></a><span class="lineno">  252</span>&#160;<span class="comment"> * @param[out] dst_ptr                               Pointer to the destination tensor. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;<span class="comment"> * @param[in]  dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;<span class="comment"> * @param[in]  dst_step_y                            dst_stride_y * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                          Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;<span class="comment"> * @param[in]  dst_step_z                            dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;<span class="comment"> * @param[in]  weights_ptr                           Pointer to the weights tensor. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;<span class="comment"> * @param[in]  weights_stride_x                      Stride of the weights tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;<span class="comment"> * @param[in]  weights_step_x                        weights_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00263"></a><span class="lineno">  263</span>&#160;<span class="comment"> * @param[in]  weights_stride_y                      Stride of the weights tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;<span class="comment"> * @param[in]  weights_step_y                        weights_stride_y * number of elements along y processed per workitem(in bytes)</span></div><div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;<span class="comment"> * @param[in]  weights_stride_z                      Stride of the weights tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00266"></a><span class="lineno">  266</span>&#160;<span class="comment"> * @param[in]  weights_step_z                        weights_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00267"></a><span class="lineno">  267</span>&#160;<span class="comment"> * @param[in]  weights_offset_first_element_in_bytes The offset of the first element in the weights tensor</span></div><div class="line"><a name="l00268"></a><span class="lineno">  268</span>&#160;<span class="comment"> * @param[in]  biases_ptr                            Pointer to the biases tensor. Same as @p src_ptr</span></div><div class="line"><a name="l00269"></a><span class="lineno">  269</span>&#160;<span class="comment"> * @param[in]  biases_stride_x                       Stride of the biases tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00270"></a><span class="lineno">  270</span>&#160;<span class="comment"> * @param[in]  biases_step_x                         biases_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00271"></a><span class="lineno">  271</span>&#160;<span class="comment"> * @param[in]  biases_offset_first_element_in_bytes  The offset of the first element in the biases tensor</span></div><div class="line"><a name="l00272"></a><span class="lineno">  272</span>&#160;<span class="comment"> * @param[in]  weights_stride_w                      Stride of the weights tensor in the 4th dimension</span></div><div class="line"><a name="l00273"></a><span class="lineno">  273</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00274"></a><span class="lineno">  274</span>&#160;__kernel <span class="keywordtype">void</span> direct_convolution1x1(</div><div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>),</div><div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;<span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a>(biases),</div><div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;    <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> weights_stride_w)</div><div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;{</div><div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a>    <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>     = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>);</div><div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a79e8e562daa6599317d2d1cd86ef1bf2">CONVERT_TO_TENSOR3D_STRUCT_NO_STEP</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>);</div><div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>     = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>);</div><div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;</div><div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;<span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;    <a class="code" href="struct_vector.xhtml">Vector</a> biases = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a>(biases);</div><div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;</div><div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)</div><div class="line"><a name="l00292"></a><span class="lineno">  292</span>&#160;    values = 0;</div><div class="line"><a name="l00293"></a><span class="lineno">  293</span>&#160;</div><div class="line"><a name="l00294"></a><span class="lineno">  294</span>&#160;    const uint z_index = get_global_id(2);</div><div class="line"><a name="l00295"></a><span class="lineno">  295</span>&#160;</div><div class="line"><a name="l00296"></a><span class="lineno">  296</span>&#160;    <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>.ptr += z_index * weights_stride_w;</div><div class="line"><a name="l00297"></a><span class="lineno">  297</span>&#160;    <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a0886942393a3ba0dfefaa7516b159784">for</a>(volatile <span class="keywordtype">int</span> d = 0; d &lt; WEIGHTS_DEPTH; ++d)</div><div class="line"><a name="l00298"></a><span class="lineno">  298</span>&#160;    {</div><div class="line"><a name="l00299"></a><span class="lineno">  299</span>&#160;        <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> weight = *(__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>.ptr;</div><div class="line"><a name="l00300"></a><span class="lineno">  300</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)</div><div class="line"><a name="l00301"></a><span class="lineno">  301</span>&#160;        input_pixel = INPUT_PIXEL(DATA_SIZE)((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>.ptr);</div><div class="line"><a name="l00302"></a><span class="lineno">  302</span>&#160;        values      = <a class="code" href="direct__convolution1x1_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">ADD_OP</a>(values, <a class="code" href="direct__convolution1x1_8cl.xhtml#ad3cc858846806e6b1d3694b9d0a2e6da">MUL_OP</a>((<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))weight, input_pixel));</div><div class="line"><a name="l00303"></a><span class="lineno">  303</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>.ptr += src_stride_z;</div><div class="line"><a name="l00304"></a><span class="lineno">  304</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>.ptr += weights_stride_z;</div><div class="line"><a name="l00305"></a><span class="lineno">  305</span>&#160;    }</div><div class="line"><a name="l00306"></a><span class="lineno">  306</span>&#160;</div><div class="line"><a name="l00307"></a><span class="lineno">  307</span>&#160;<span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00308"></a><span class="lineno">  308</span>&#160;    values = <a class="code" href="direct__convolution1x1_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">ADD_OP</a>(values, (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)) * ((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a>(&amp;biases, z_index))));</div><div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;</div><div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;    vstore8(<a class="code" href="direct__convolution1x1_8cl.xhtml#a1f15728672380ade7a238f5e783d54d2">CONVERT_SAT</a>(values, <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)), 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr);</div><div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;}</div><div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;<span class="preprocessor">#endif // defined(DATA_TYPE) &amp;&amp; defined(DATA_SIZE) &amp;&amp; defined(STRIDE_X) &amp;&amp; defined(WEIGHTS_DEPTH)</span></div><div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;</div><div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;<span class="preprocessor">#if defined(WEIGHTS_DEPTH)</span></div><div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;</div><div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;<span class="preprocessor">#define CONVOLUTION1x1_BIFROST(acc, src, weight_value) \</span></div><div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;<span class="preprocessor">    ({                                                 \</span></div><div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;<span class="preprocessor">        acc.s0 = mad(src.s0, weight_value, acc.s0);    \</span></div><div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;<span class="preprocessor">        acc.s1 = mad(src.s1, weight_value, acc.s1);    \</span></div><div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;<span class="preprocessor">        acc.s2 = mad(src.s2, weight_value, acc.s2);    \</span></div><div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;<span class="preprocessor">        acc.s3 = mad(src.s3, weight_value, acc.s3);    \</span></div><div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;<span class="preprocessor">    })</span></div><div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00325"></a><span class="lineno">  325</span>&#160;<span class="comment">/** An optimized direct convolution 1x1 OpenCL kernel for Bifrost architectures when the data type is F32</span></div><div class="line"><a name="l00326"></a><span class="lineno">  326</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00327"></a><span class="lineno">  327</span>&#160;<span class="comment"> * @note This OpenCL kernel works only with stride_x and stride_y equal to 1</span></div><div class="line"><a name="l00328"></a><span class="lineno">  328</span>&#160;<span class="comment"> * @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH</span></div><div class="line"><a name="l00329"></a><span class="lineno">  329</span>&#160;<span class="comment"> * @note In case biases, -DHAS_BIAS must to be passed at compile</span></div><div class="line"><a name="l00330"></a><span class="lineno">  330</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00331"></a><span class="lineno">  331</span>&#160;<span class="comment"> * @param[in]  src_ptr                               Pointer to the source tensor. Supported data types: F32</span></div><div class="line"><a name="l00332"></a><span class="lineno">  332</span>&#160;<span class="comment"> * @param[in]  src_stride_x                          Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00333"></a><span class="lineno">  333</span>&#160;<span class="comment"> * @param[in]  src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00334"></a><span class="lineno">  334</span>&#160;<span class="comment"> * @param[in]  src_stride_y                          Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00335"></a><span class="lineno">  335</span>&#160;<span class="comment"> * @param[in]  src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00336"></a><span class="lineno">  336</span>&#160;<span class="comment"> * @param[in]  src_stride_z                          Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00337"></a><span class="lineno">  337</span>&#160;<span class="comment"> * @param[in]  src_step_z                            src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00338"></a><span class="lineno">  338</span>&#160;<span class="comment"> * @param[in]  src_offset_first_element_in_bytes     The offset of the first element in the source tensor</span></div><div class="line"><a name="l00339"></a><span class="lineno">  339</span>&#160;<span class="comment"> * @param[out] dst_ptr                               Pointer to the destination tensor. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00340"></a><span class="lineno">  340</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00341"></a><span class="lineno">  341</span>&#160;<span class="comment"> * @param[in]  dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00342"></a><span class="lineno">  342</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00343"></a><span class="lineno">  343</span>&#160;<span class="comment"> * @param[in]  dst_step_y                            dst_stride_y * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00344"></a><span class="lineno">  344</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                          Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00345"></a><span class="lineno">  345</span>&#160;<span class="comment"> * @param[in]  dst_step_z                            dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00346"></a><span class="lineno">  346</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00347"></a><span class="lineno">  347</span>&#160;<span class="comment"> * @param[in]  weights_ptr                           Pointer to the weights tensor. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00348"></a><span class="lineno">  348</span>&#160;<span class="comment"> * @param[in]  weights_stride_x                      Stride of the weights tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00349"></a><span class="lineno">  349</span>&#160;<span class="comment"> * @param[in]  weights_step_x                        weights_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00350"></a><span class="lineno">  350</span>&#160;<span class="comment"> * @param[in]  weights_stride_y                      Stride of the weights tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00351"></a><span class="lineno">  351</span>&#160;<span class="comment"> * @param[in]  weights_step_y                        weights_stride_y * number of elements along y processed per workitem(in bytes)</span></div><div class="line"><a name="l00352"></a><span class="lineno">  352</span>&#160;<span class="comment"> * @param[in]  weights_stride_z                      Stride of the weights tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00353"></a><span class="lineno">  353</span>&#160;<span class="comment"> * @param[in]  weights_step_z                        weights_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00354"></a><span class="lineno">  354</span>&#160;<span class="comment"> * @param[in]  weights_offset_first_element_in_bytes The offset of the first element in the weights tensor</span></div><div class="line"><a name="l00355"></a><span class="lineno">  355</span>&#160;<span class="comment"> * @param[in]  biases_ptr                            Pointer to the biases tensor. Same as @p src_ptr</span></div><div class="line"><a name="l00356"></a><span class="lineno">  356</span>&#160;<span class="comment"> * @param[in]  biases_stride_x                       Stride of the biases tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00357"></a><span class="lineno">  357</span>&#160;<span class="comment"> * @param[in]  biases_step_x                         biases_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00358"></a><span class="lineno">  358</span>&#160;<span class="comment"> * @param[in]  biases_offset_first_element_in_bytes  The offset of the first element in the biases tensor</span></div><div class="line"><a name="l00359"></a><span class="lineno">  359</span>&#160;<span class="comment"> * @param[in]  weights_stride_w                      Stride of the weights tensor in the 4th dimension</span></div><div class="line"><a name="l00360"></a><span class="lineno">  360</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00361"></a><span class="lineno">  361</span>&#160;__kernel <span class="keywordtype">void</span> direct_convolution1x1_f32_bifrost(</div><div class="line"><a name="l00362"></a><span class="lineno">  362</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00363"></a><span class="lineno">  363</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00364"></a><span class="lineno">  364</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">weights</a>),</div><div class="line"><a name="l00365"></a><span class="lineno">  365</span>&#160;#ifdef HAS_BIAS</div><div class="line"><a name="l00366"></a><span class="lineno">  366</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a>(biases),</div><div class="line"><a name="l00367"></a><span class="lineno">  367</span>&#160;#endif <span class="comment">/* defined(HAS_BIAS) */</span></div><div class="line"><a name="l00368"></a><span class="lineno">  368</span>&#160;    <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> weights_stride_w)</div><div class="line"><a name="l00369"></a><span class="lineno">  369</span>&#160;{</div><div class="line"><a name="l00370"></a><span class="lineno">  370</span>&#160;    <span class="comment">// Get the kernel index</span></div><div class="line"><a name="l00371"></a><span class="lineno">  371</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> kernel_index = get_global_id(2);</div><div class="line"><a name="l00372"></a><span class="lineno">  372</span>&#160;</div><div class="line"><a name="l00373"></a><span class="lineno">  373</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a>    <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>);</div><div class="line"><a name="l00374"></a><span class="lineno">  374</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>);</div><div class="line"><a name="l00375"></a><span class="lineno">  375</span>&#160;</div><div class="line"><a name="l00376"></a><span class="lineno">  376</span>&#160;    float4 acc0 = 0.0f;</div><div class="line"><a name="l00377"></a><span class="lineno">  377</span>&#160;    float4 acc1 = 0.0f;</div><div class="line"><a name="l00378"></a><span class="lineno">  378</span>&#160;    float4 acc2 = 0.0f;</div><div class="line"><a name="l00379"></a><span class="lineno">  379</span>&#160;    float4 acc3 = 0.0f;</div><div class="line"><a name="l00380"></a><span class="lineno">  380</span>&#160;</div><div class="line"><a name="l00381"></a><span class="lineno">  381</span>&#160;    __global uchar *weights_addr = (__global uchar *)(weights_ptr + weights_offset_first_element_in_bytes + kernel_index * weights_stride_w);</div><div class="line"><a name="l00382"></a><span class="lineno">  382</span>&#160;    __global uchar *src_addr     = (__global uchar *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, 0, 0);</div><div class="line"><a name="l00383"></a><span class="lineno">  383</span>&#160;</div><div class="line"><a name="l00384"></a><span class="lineno">  384</span>&#160;    <span class="keywordflow">for</span>(ushort d = 0; d &lt; (ushort)WEIGHTS_DEPTH; ++d)</div><div class="line"><a name="l00385"></a><span class="lineno">  385</span>&#160;    {</div><div class="line"><a name="l00386"></a><span class="lineno">  386</span>&#160;        <span class="comment">// Load the weights</span></div><div class="line"><a name="l00387"></a><span class="lineno">  387</span>&#160;        <span class="keywordtype">float</span> weight = *((__global <span class="keywordtype">float</span> *)weights_addr);</div><div class="line"><a name="l00388"></a><span class="lineno">  388</span>&#160;</div><div class="line"><a name="l00389"></a><span class="lineno">  389</span>&#160;        <span class="comment">// Load values from row0 of input tensor</span></div><div class="line"><a name="l00390"></a><span class="lineno">  390</span>&#160;        float4 src0 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 0 * src_stride_y));</div><div class="line"><a name="l00391"></a><span class="lineno">  391</span>&#160;        float4 src1 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 1 * src_stride_y));</div><div class="line"><a name="l00392"></a><span class="lineno">  392</span>&#160;        float4 src2 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 2 * src_stride_y));</div><div class="line"><a name="l00393"></a><span class="lineno">  393</span>&#160;        float4 src3 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 3 * src_stride_y));</div><div class="line"><a name="l00394"></a><span class="lineno">  394</span>&#160;</div><div class="line"><a name="l00395"></a><span class="lineno">  395</span>&#160;        CONVOLUTION1x1_BIFROST(acc0, src0, weight);</div><div class="line"><a name="l00396"></a><span class="lineno">  396</span>&#160;        CONVOLUTION1x1_BIFROST(acc1, src1, weight);</div><div class="line"><a name="l00397"></a><span class="lineno">  397</span>&#160;        CONVOLUTION1x1_BIFROST(acc2, src2, weight);</div><div class="line"><a name="l00398"></a><span class="lineno">  398</span>&#160;        CONVOLUTION1x1_BIFROST(acc3, src3, weight);</div><div class="line"><a name="l00399"></a><span class="lineno">  399</span>&#160;</div><div class="line"><a name="l00400"></a><span class="lineno">  400</span>&#160;        src_addr += src_stride_z;</div><div class="line"><a name="l00401"></a><span class="lineno">  401</span>&#160;        weights_addr += weights_stride_z;</div><div class="line"><a name="l00402"></a><span class="lineno">  402</span>&#160;    }</div><div class="line"><a name="l00403"></a><span class="lineno">  403</span>&#160;</div><div class="line"><a name="l00404"></a><span class="lineno">  404</span>&#160;<span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00405"></a><span class="lineno">  405</span>&#160;    <a class="code" href="struct_vector.xhtml">Vector</a> biases = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a>(biases);</div><div class="line"><a name="l00406"></a><span class="lineno">  406</span>&#160;</div><div class="line"><a name="l00407"></a><span class="lineno">  407</span>&#160;    <span class="keywordtype">float</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a> = (float) * ((__global <span class="keywordtype">float</span> *)(<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a>(&amp;biases, kernel_index)));</div><div class="line"><a name="l00408"></a><span class="lineno">  408</span>&#160;</div><div class="line"><a name="l00409"></a><span class="lineno">  409</span>&#160;    acc0.s0 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00410"></a><span class="lineno">  410</span>&#160;    acc0.s1 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00411"></a><span class="lineno">  411</span>&#160;    acc0.s2 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00412"></a><span class="lineno">  412</span>&#160;    acc0.s3 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00413"></a><span class="lineno">  413</span>&#160;    acc1.s0 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00414"></a><span class="lineno">  414</span>&#160;    acc1.s1 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00415"></a><span class="lineno">  415</span>&#160;    acc1.s2 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00416"></a><span class="lineno">  416</span>&#160;    acc1.s3 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00417"></a><span class="lineno">  417</span>&#160;    acc2.s0 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00418"></a><span class="lineno">  418</span>&#160;    acc2.s1 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00419"></a><span class="lineno">  419</span>&#160;    acc2.s2 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00420"></a><span class="lineno">  420</span>&#160;    acc2.s3 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00421"></a><span class="lineno">  421</span>&#160;    acc3.s0 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00422"></a><span class="lineno">  422</span>&#160;    acc3.s1 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00423"></a><span class="lineno">  423</span>&#160;    acc3.s2 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00424"></a><span class="lineno">  424</span>&#160;    acc3.s3 += <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">bias</a>;</div><div class="line"><a name="l00425"></a><span class="lineno">  425</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00426"></a><span class="lineno">  426</span>&#160;</div><div class="line"><a name="l00427"></a><span class="lineno">  427</span>&#160;    vstore4(acc0, 0, (__global <span class="keywordtype">float</span> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 0 * dst_stride_y));</div><div class="line"><a name="l00428"></a><span class="lineno">  428</span>&#160;    vstore4(acc1, 0, (__global <span class="keywordtype">float</span> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 1 * dst_stride_y));</div><div class="line"><a name="l00429"></a><span class="lineno">  429</span>&#160;    vstore4(acc2, 0, (__global <span class="keywordtype">float</span> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 2 * dst_stride_y));</div><div class="line"><a name="l00430"></a><span class="lineno">  430</span>&#160;    vstore4(acc3, 0, (__global <span class="keywordtype">float</span> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + 3 * dst_stride_y));</div><div class="line"><a name="l00431"></a><span class="lineno">  431</span>&#160;}</div><div class="line"><a name="l00432"></a><span class="lineno">  432</span>&#160;<span class="preprocessor">#endif // defined(WEIGHTS_DEPTH)</span></div><div class="ttc" id="struct_vector_xhtml"><div class="ttname"><a href="struct_vector.xhtml">Vector</a></div><div class="ttdoc">Structure to hold Vector information.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00341">helpers.h:341</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a009469e4d9b8fce3b6d5e97d2077827d"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a></div><div class="ttdeci">__global uchar * offset(const Image *img, int x, int y)</div><div class="ttdoc">Get the pointer position of a Image.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00510">helpers.h:510</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_aebe814363556c244be043b13e7969197"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a></div><div class="ttdeci">#define CONVERT_TO_IMAGE_STRUCT(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00311">helpers.h:311</a></div></div>
 <div class="ttc" id="convolution3x3_8cl_xhtml_afb8c72ce35c4a1f4a2588d6573e54aa1"><div class="ttname"><a href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a></div><div class="ttdeci">#define DATA_TYPE</div><div class="ttdef"><b>Definition:</b> <a href="convolution3x3_8cl_source.xhtml#l00027">convolution3x3.cl:27</a></div></div>
 <div class="ttc" id="direct__convolution1x1_8cl_xhtml_a1f15728672380ade7a238f5e783d54d2"><div class="ttname"><a href="direct__convolution1x1_8cl.xhtml#a1f15728672380ade7a238f5e783d54d2">CONVERT_SAT</a></div><div class="ttdeci">#define CONVERT_SAT(a, b)</div><div class="ttdef"><b>Definition:</b> <a href="direct__convolution1x1_8cl_source.xhtml#l00030">direct_convolution1x1.cl:30</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a0886942393a3ba0dfefaa7516b159784"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a0886942393a3ba0dfefaa7516b159784">arm_compute::test::validation::for</a></div><div class="ttdeci">for(size_t k=0;k&lt; _target.size();++k)</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_unstack_8cpp_source.xhtml#l00091">Unstack.cpp:91</a></div></div>
-<div class="ttc" id="struct_tensor3_d_xhtml"><div class="ttname"><a href="struct_tensor3_d.xhtml">Tensor3D</a></div><div class="ttdoc">Structure to hold 3D tensor information.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00176">helpers.h:176</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a79e8e562daa6599317d2d1cd86ef1bf2"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a79e8e562daa6599317d2d1cd86ef1bf2">CONVERT_TO_TENSOR3D_STRUCT_NO_STEP</a></div><div class="ttdeci">#define CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00148">helpers.h:148</a></div></div>
+<div class="ttc" id="struct_tensor3_d_xhtml"><div class="ttname"><a href="struct_tensor3_d.xhtml">Tensor3D</a></div><div class="ttdoc">Structure to hold 3D tensor information.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00358">helpers.h:358</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a79e8e562daa6599317d2d1cd86ef1bf2"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a79e8e562daa6599317d2d1cd86ef1bf2">CONVERT_TO_TENSOR3D_STRUCT_NO_STEP</a></div><div class="ttdeci">#define CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00330">helpers.h:330</a></div></div>
 <div class="ttc" id="direct__convolution1x1_8cl_xhtml_aebbeb1f22eca3a3f4c3e019e8f419f39"><div class="ttname"><a href="direct__convolution1x1_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">ADD_OP</a></div><div class="ttdeci">#define ADD_OP(a, b)</div><div class="ttdef"><b>Definition:</b> <a href="direct__convolution1x1_8cl_source.xhtml#l00028">direct_convolution1x1.cl:28</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a40a6eb9f2a7712f08d6bb8ff6c9e6ca7"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a></div><div class="ttdeci">#define VECTOR_DECLARATION(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00087">helpers.h:87</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a40a6eb9f2a7712f08d6bb8ff6c9e6ca7"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a></div><div class="ttdeci">#define VECTOR_DECLARATION(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00269">helpers.h:269</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_adbf67dcee294e673cf796f1ed8aeb6a4"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">arm_compute::test::validation::dst</a></div><div class="ttdeci">CLTensor dst</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_absolute_difference_8cpp_source.xhtml#l00102">AbsoluteDifference.cpp:102</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a3a77be8aebd8e00522b32061d46ccdbd"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a3a77be8aebd8e00522b32061d46ccdbd">arm_compute::test::validation::bias</a></div><div class="ttdeci">CLTensor bias</div><div class="ttdef"><b>Definition:</b> <a href="validation_2_c_l_2_convolution_layer_8cpp_source.xhtml#l00181">ConvolutionLayer.cpp:181</a></div></div>
-<div class="ttc" id="struct_image_xhtml"><div class="ttname"><a href="struct_image.xhtml">Image</a></div><div class="ttdoc">Structure to hold Image information.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00167">helpers.h:167</a></div></div>
+<div class="ttc" id="struct_image_xhtml"><div class="ttname"><a href="struct_image.xhtml">Image</a></div><div class="ttdoc">Structure to hold Image information.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00349">helpers.h:349</a></div></div>
 <div class="ttc" id="direct__convolution1x1_8cl_xhtml_ad3cc858846806e6b1d3694b9d0a2e6da"><div class="ttname"><a href="direct__convolution1x1_8cl.xhtml#ad3cc858846806e6b1d3694b9d0a2e6da">MUL_OP</a></div><div class="ttdeci">#define MUL_OP(a, b)</div><div class="ttdef"><b>Definition:</b> <a href="direct__convolution1x1_8cl_source.xhtml#l00029">direct_convolution1x1.cl:29</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a31c8c760f08fb1a331b16b7c204321dc"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a></div><div class="ttdeci">#define CONVERT_TO_TENSOR3D_STRUCT(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00144">helpers.h:144</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a7e4940407322d6f0ccb8b6b86b856019"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a></div><div class="ttdeci">__global const uchar * vector_offset(const Vector *vec, int x)</div><div class="ttdoc">Get the pointer position of a Vector.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00317">helpers.h:317</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a31c8c760f08fb1a331b16b7c204321dc"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a></div><div class="ttdeci">#define CONVERT_TO_TENSOR3D_STRUCT(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00326">helpers.h:326</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a7e4940407322d6f0ccb8b6b86b856019"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a></div><div class="ttdeci">__global const uchar * vector_offset(const Vector *vec, int x)</div><div class="ttdoc">Get the pointer position of a Vector.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00499">helpers.h:499</a></div></div>
 <div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml">helpers.h</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a64a08a9fec5aeee8650e7182b6d171d0"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a64a08a9fec5aeee8650e7182b6d171d0">arm_compute::test::validation::weights</a></div><div class="ttdeci">CLTensor weights</div><div class="ttdef"><b>Definition:</b> <a href="validation_2_c_l_2_convolution_layer_8cpp_source.xhtml#l00180">ConvolutionLayer.cpp:180</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a6b83038822d1ae7ab619b684ed3b7fc0"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a></div><div class="ttdeci">#define TENSOR3D_DECLARATION(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00101">helpers.h:101</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a64d779f80eeb923e0ab2313433f7b40b"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a></div><div class="ttdeci">#define CONVERT_TO_VECTOR_STRUCT_NO_STEP(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00126">helpers.h:126</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a6b83038822d1ae7ab619b684ed3b7fc0"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a></div><div class="ttdeci">#define TENSOR3D_DECLARATION(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00283">helpers.h:283</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a64d779f80eeb923e0ab2313433f7b40b"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a></div><div class="ttdeci">#define CONVERT_TO_VECTOR_STRUCT_NO_STEP(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00308">helpers.h:308</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a989ab3e96426615bb98e04e0235088ca"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">arm_compute::test::validation::src</a></div><div class="ttdeci">cast configure &amp; src</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_cast_8cpp_source.xhtml#l00169">Cast.cpp:169</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a36f754c05b6fddf6df0d8d0a74f8159f"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a></div><div class="ttdeci">#define VEC_DATA_TYPE(type, size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00073">helpers.h:73</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a36f754c05b6fddf6df0d8d0a74f8159f"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a></div><div class="ttdeci">#define VEC_DATA_TYPE(type, size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00255">helpers.h:255</a></div></div>
 </div><!-- fragment --></div><!-- contents -->
 </div><!-- doc-content -->
 <!-- start footer part -->
 <div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
   <ul>
     <li class="navelem"><a class="el" href="dir_68267d1309a1af8e8297ef4c3efbcdba.xhtml">src</a></li><li class="navelem"><a class="el" href="dir_aebb8dcc11953d78e620bbef0b9e2183.xhtml">core</a></li><li class="navelem"><a class="el" href="dir_8c278f79c760e5c5fbd911f9870614c1.xhtml">CL</a></li><li class="navelem"><a class="el" href="dir_25885286e9dad4fa105b7b25a8031bbf.xhtml">cl_kernels</a></li><li class="navelem"><a class="el" href="direct__convolution1x1_8cl.xhtml">direct_convolution1x1.cl</a></li>
-    <li class="footer">Generated on Mon Sep 2 2019 11:47:21 for Compute Library by
+    <li class="footer">Generated on Thu Nov 28 2019 16:52:57 for Compute Library by
     <a href="http://www.doxygen.org/index.html">
     <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.15 </li>
   </ul>