arm_compute v19.11
diff --git a/documentation/softmax__layer_8cl_source.xhtml b/documentation/softmax__layer_8cl_source.xhtml
index 68326fd..391cd46 100644
--- a/documentation/softmax__layer_8cl_source.xhtml
+++ b/documentation/softmax__layer_8cl_source.xhtml
@@ -40,7 +40,7 @@
   <img alt="Compute Library" src="https://raw.githubusercontent.com/ARM-software/ComputeLibrary/gh-pages/ACL_logo.png" style="max-width: 100%;margin-top: 15px;margin-left: 10px"/>
   <td style="padding-left: 0.5em;">
    <div id="projectname">
-   &#160;<span id="projectnumber">19.08</span>
+   &#160;<span id="projectnumber">19.11</span>
    </div>
   </td>
  </tr>
@@ -100,10 +100,10 @@
 <div class="title">softmax_layer.cl</div>  </div>
 </div><!--header-->
 <div class="contents">
-<a href="softmax__layer_8cl.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2017-2018 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> * of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment"> * THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml">helpers.h</a>&quot;</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;</div><div class="line"><a name="l00026"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">   26</a></span>&#160;<span class="preprocessor">#define MAX_OP(x, y, type, size) max((x), (y))</span></div><div class="line"><a name="l00027"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">   27</a></span>&#160;<span class="preprocessor">#define ADD_OP(x, y, type, size) ((x) + (y))</span></div><div class="line"><a name="l00028"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#ac3af2d18008cbbf7247ae48fcd6e0c4e">   28</a></span>&#160;<span class="preprocessor">#define SUB_OP(x, y, type, size) ((x) - (y))</span></div><div class="line"><a name="l00029"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a22303c4047ec5027c1538d53964b9d0d">   29</a></span>&#160;<span class="preprocessor">#define MUL_OP(x, y, type, size) ((x) * (y))</span></div><div class="line"><a name="l00030"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a8cde99b1ce0f3c1dacd49261b0cf03d8">   30</a></span>&#160;<span class="preprocessor">#define DIV_OP(x, y, type, size) ((x) / (y))</span></div><div class="line"><a name="l00031"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">   31</a></span>&#160;<span class="preprocessor">#define EXP_OP(x, type, size) exp((x))</span></div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;</div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;<span class="preprocessor">#ifdef USE_F16</span></div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;<span class="preprocessor">#define MINVAL -HALF_MAX</span></div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;<span class="preprocessor">#define SELECT_DATA_TYPE short</span></div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;<span class="preprocessor">#else </span><span class="comment">/* USE_F16 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00037"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">   37</a></span>&#160;<span class="preprocessor">#define MINVAL -FLT_MAX</span></div><div class="line"><a name="l00038"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">   38</a></span>&#160;<span class="preprocessor">#define SELECT_DATA_TYPE int</span></div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* USE_F16 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;</div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;<span class="comment">/* Number of workitems in dimension 0. */</span></div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;<span class="preprocessor">#if !defined(GRID_SIZE)</span></div><div class="line"><a name="l00043"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">   43</a></span>&#160;<span class="preprocessor">#define GRID_SIZE 1</span></div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* !defined(GRID_SIZE) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;</div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;<span class="comment">/* Vector size, i.e. number of vector elements. */</span></div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;<span class="preprocessor">#if VECTOR_SIZE == 2</span></div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;__constant <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 2) <a class="code" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">type_min_</a> = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 2))(<a class="code" href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">MINVAL</a>);</div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;__constant uint2 <a class="code" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">idx__</a> = (uint2)(0, 1);</div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;</div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;<span class="preprocessor">#elif VECTOR_SIZE == 4</span></div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;__constant <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4) <a class="code" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">type_min_</a> = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4))(<a class="code" href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">MINVAL</a>);</div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;__constant uint4 <a class="code" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">idx__</a> = (uint4)(0, 1, 2, 3);</div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;</div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;<span class="preprocessor">#elif VECTOR_SIZE == 8</span></div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;__constant <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8) <a class="code" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">type_min_</a> = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))(<a class="code" href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">MINVAL</a>);</div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;__constant uint8 <a class="code" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">idx__</a> = (uint8)(0, 1, 2, 3, 4, 5, 6, 7);</div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;</div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;<span class="preprocessor">#else </span><span class="comment">/* VECTOR_SIZE DEFAULT */</span><span class="preprocessor"></span></div><div class="line"><a name="l00060"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">   60</a></span>&#160;<span class="preprocessor">#define VECTOR_SIZE 16</span></div><div class="line"><a name="l00061"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">   61</a></span>&#160;<span class="preprocessor">#define LOG_VECTOR_SIZE 4</span></div><div class="line"><a name="l00062"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">   62</a></span>&#160;__constant <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16) <a class="code" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">type_min_</a> = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16))(<a class="code" href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">MINVAL</a>);</div><div class="line"><a name="l00063"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">   63</a></span>&#160;__constant uint16 <a class="code" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">idx__</a> = (uint16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);</div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;</div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* VECTOR_SIZE END */</span><span class="preprocessor"></span></div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;</div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;<span class="comment">// TODO (COMPMID-661): Remove if the non-fused kernels are removed</span></div><div class="line"><a name="l00068"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a538b4b63f40e7b12891774e03a4f0dec">   68</a></span>&#160;__constant <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16) <a class="code" href="softmax__layer_8cl.xhtml#a538b4b63f40e7b12891774e03a4f0dec">type_min</a> = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16))(<a class="code" href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">MINVAL</a>);</div><div class="line"><a name="l00069"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a0712735973f172ac9efc7d48a31e47ad">   69</a></span>&#160;__constant uint16 <a class="code" href="softmax__layer_8cl.xhtml#a0712735973f172ac9efc7d48a31e47ad">idx16</a> = (uint16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);</div><div class="line"><a name="l00070"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a4884a666a1e93fbf8c27bd7d2da3c8bb">   70</a></span>&#160;__constant uint4 <a class="code" href="softmax__layer_8cl.xhtml#a4884a666a1e93fbf8c27bd7d2da3c8bb">idx4</a>   = (uint4)(0, 1, 2, 3);</div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;</div><div class="line"><a name="l00101"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#ac4247ac0991e85965b7ded764e78f12c">  101</a></span>&#160;__kernel <span class="keywordtype">void</span> <a class="code" href="softmax__layer_8cl.xhtml#ac4247ac0991e85965b7ded764e78f12c">softmax_layer_norm</a>(</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>),</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>))</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;{</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>);</div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>);</div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a071aa45af973feac43b14f62e54a6fce">CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP</a>(<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>);</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;    <span class="comment">// Load max value of 1D logits vector (row)</span></div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;    <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> sum_val = *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>, 0, get_global_id(1)));</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16)</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;    data = vload16(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, 0, 0));</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;    vstore16(<a class="code" href="softmax__layer_8cl.xhtml#a8cde99b1ce0f3c1dacd49261b0cf03d8">DIV_OP</a>(data, sum_val, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16), 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, 0, 0));</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;}</div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;</div><div class="line"><a name="l00158"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a9d74601bcabbb2f14bcf52385ad666dc">  158</a></span>&#160;__kernel <span class="keywordtype">void</span> <a class="code" href="softmax__layer_8cl.xhtml#a9d74601bcabbb2f14bcf52385ad666dc">softmax_layer_max_shift_exp_sum_serial</a>(</div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(maxo),</div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>),</div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;    uint width)</div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;{</div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>  = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>);</div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>  = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>);</div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> maxo = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(maxo);</div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>  = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>);</div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;</div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;<span class="preprocessor">#ifdef BETA</span></div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;    <span class="comment">// Initialize beta</span></div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;    beta = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>))BETA;</div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* BETA */</span><span class="preprocessor"></span></div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;</div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;    <span class="comment">// Initialize local maximum</span></div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;    max_val_vec = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>))<a class="code" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">type_min_</a>;</div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;</div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;    <span class="comment">// Calculate max of row</span></div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;    <span class="keyword">const</span> uint width_ = width &gt;&gt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>;</div><div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;    <span class="keywordflow">for</span>(uint i = 0; i &lt; width_; i++)</div><div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;    {</div><div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;        data_max    = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, i &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>, 0));</div><div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;        max_val_vec = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(data_max, max_val_vec, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;    }</div><div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;</div><div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;<span class="preprocessor">#ifdef NON_MULTIPLE_OF_VECTOR_SIZE</span></div><div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;    data_max = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, width_ &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>, 0));</div><div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;    widx        = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>((<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#ae4b532a93c757194ec73b6790a3e6b1f">EXPAND</a>((<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a0f6ad555d097377151003a5119ccee45">CL_VEC_DATA_TYPE</a>(uint, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)))(width_ &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>) + <a class="code" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">idx__</a>) &lt; width, <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>));</div><div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;    max_val_vec = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(<a class="code" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">type_min_</a>, data_max, widx), <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* NON_MULTIPLE_OF_VECTOR_SIZE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;</div><div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;    <span class="comment">// Perform max reduction</span></div><div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;<span class="preprocessor">#if VECTOR_SIZE == 16</span></div><div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;    max_val_vec.s01234567 = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec.s01234567, max_val_vec.s89ABCDEF, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8);</div><div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* VECTOR SIZE 16 END */</span><span class="preprocessor"></span></div><div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;<span class="preprocessor">#if VECTOR_SIZE &gt;= 8</span></div><div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;    max_val_vec.s0123 = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec.s0123, max_val_vec.s4567, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* VECTOR SIZE 8 END */</span><span class="preprocessor"></span></div><div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;<span class="preprocessor">#if VECTOR_SIZE &gt;= 4</span></div><div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;    max_val_vec.s01 = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec.s01, max_val_vec.s23, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 2);</div><div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* VECTOR SIZE 4 END */</span><span class="preprocessor"></span></div><div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;    max_val_vec.s0 = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec.s0, max_val_vec.s1, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 1);</div><div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;    <span class="comment">// Store result</span></div><div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)maxo.<a class="code" href="struct_image.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a>) = max_val_vec.s0;</div><div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;</div><div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;    <span class="comment">/* Second section */</span></div><div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;</div><div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;    <span class="comment">// Load max value of 1D logits vector (row)</span></div><div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;    <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> max_val = *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;maxo, 0, 0));</div><div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;</div><div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;    <span class="comment">// Set sum vector</span></div><div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;    sum1D = 0;</div><div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;</div><div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;    <span class="comment">// Shift values, exp and sum</span></div><div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;    <span class="keywordflow">for</span>(uint i = 0; i &lt; width_; i++)</div><div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;    {</div><div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;        data = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, i &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>, 0));</div><div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#ac3af2d18008cbbf7247ae48fcd6e0c4e">SUB_OP</a>(data, max_val, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;<span class="preprocessor">#ifdef BETA</span></div><div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a22303c4047ec5027c1538d53964b9d0d">MUL_OP</a>(data, beta, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* BETA */</span><span class="preprocessor"></span></div><div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;        (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, i &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>, 0));</div><div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;        sum1D = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D, data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;    }</div><div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;</div><div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;<span class="preprocessor">#ifdef NON_MULTIPLE_OF_VECTOR_SIZE</span></div><div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;    data = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, width_ &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>, 0));</div><div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;    data = <a class="code" href="softmax__layer_8cl.xhtml#ac3af2d18008cbbf7247ae48fcd6e0c4e">SUB_OP</a>(data, max_val, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;<span class="preprocessor">#ifdef BETA</span></div><div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;    data = <a class="code" href="softmax__layer_8cl.xhtml#a22303c4047ec5027c1538d53964b9d0d">MUL_OP</a>(data, beta, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* BETA */</span><span class="preprocessor"></span></div><div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;    data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;    widx = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>((<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#ae4b532a93c757194ec73b6790a3e6b1f">EXPAND</a>((<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a0f6ad555d097377151003a5119ccee45">CL_VEC_DATA_TYPE</a>(uint, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)))(width_ &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>) + <a class="code" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">idx__</a>) &lt; width, <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>));</div><div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;    data = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(0, data, widx);</div><div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;    (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, width_ &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>, 0));</div><div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;    sum1D = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D, data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* NON_MULTIPLE_OF_VECTOR_SIZE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;</div><div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;    <span class="comment">// Perform sum reduction</span></div><div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;<span class="preprocessor">#if VECTOR_SIZE == 16</span></div><div class="line"><a name="l00252"></a><span class="lineno">  252</span>&#160;    sum1D.s01234567 = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D.s01234567, sum1D.s89ABCDEF, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8);</div><div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* VECTOR SIZE 16 END */</span><span class="preprocessor"></span></div><div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;<span class="preprocessor">#if VECTOR_SIZE &gt;= 8</span></div><div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;    sum1D.s0123 = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D.s0123, sum1D.s4567, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* VECTOR SIZE 8 END */</span><span class="preprocessor"></span></div><div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;<span class="preprocessor">#if VECTOR_SIZE &gt;= 4</span></div><div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;    sum1D.s01 = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D.s01, sum1D.s23, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 2);</div><div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* VECTOR SIZE 4 END */</span><span class="preprocessor"></span></div><div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;    sum1D.s0 = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D.s0, sum1D.s1, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 1);</div><div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;</div><div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;    <span class="comment">// Calculate and store result</span></div><div class="line"><a name="l00263"></a><span class="lineno">  263</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>.ptr) = sum1D.s0;</div><div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;}</div><div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;</div><div class="line"><a name="l00307"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a82bc360279fcf7cf8033dca6022f21f5">  307</a></span>&#160;__kernel <span class="keywordtype">void</span> <a class="code" href="softmax__layer_8cl.xhtml#a82bc360279fcf7cf8033dca6022f21f5">softmax_layer_max_shift_exp_sum_parallel</a>(</div><div class="line"><a name="l00308"></a><span class="lineno">  308</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(maxo),</div><div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>),</div><div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;    uint width)</div><div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;{</div><div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>  = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>);</div><div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>  = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>);</div><div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> maxo = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(maxo);</div><div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>  = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>);</div><div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;</div><div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;    <span class="keyword">const</span> uint lid = get_local_id(0);</div><div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;</div><div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;<span class="preprocessor">#ifdef BETA</span></div><div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;    <span class="comment">// Initialize beta</span></div><div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;    beta = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4))BETA;</div><div class="line"><a name="l00325"></a><span class="lineno">  325</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* BETA */</span><span class="preprocessor"></span></div><div class="line"><a name="l00326"></a><span class="lineno">  326</span>&#160;</div><div class="line"><a name="l00327"></a><span class="lineno">  327</span>&#160;    <span class="comment">// Define one temporary vector per work-item.</span></div><div class="line"><a name="l00328"></a><span class="lineno">  328</span>&#160;    __local <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4) tmp_local[<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a>];</div><div class="line"><a name="l00329"></a><span class="lineno">  329</span>&#160;    __local <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> max_local;</div><div class="line"><a name="l00330"></a><span class="lineno">  330</span>&#160;</div><div class="line"><a name="l00331"></a><span class="lineno">  331</span>&#160;    __constant <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4) type_min4 = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4))(<a class="code" href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">MINVAL</a>);</div><div class="line"><a name="l00332"></a><span class="lineno">  332</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00333"></a><span class="lineno">  333</span>&#160;    max_val_vec = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4))type_min4;</div><div class="line"><a name="l00334"></a><span class="lineno">  334</span>&#160;    <span class="comment">// Number of elements per work-item.</span></div><div class="line"><a name="l00335"></a><span class="lineno">  335</span>&#160;    <span class="keyword">const</span> uint row = width / <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a>;</div><div class="line"><a name="l00336"></a><span class="lineno">  336</span>&#160;    <span class="comment">// Number of iterations per work-item.</span></div><div class="line"><a name="l00337"></a><span class="lineno">  337</span>&#160;    <span class="keyword">const</span> uint width_ = row &gt;&gt; 2;</div><div class="line"><a name="l00338"></a><span class="lineno">  338</span>&#160;    <span class="comment">// Calculate max of row</span></div><div class="line"><a name="l00339"></a><span class="lineno">  339</span>&#160;    uint i = 0;</div><div class="line"><a name="l00340"></a><span class="lineno">  340</span>&#160;    <span class="keywordflow">for</span>(; i &lt; width_; i++)</div><div class="line"><a name="l00341"></a><span class="lineno">  341</span>&#160;    {</div><div class="line"><a name="l00342"></a><span class="lineno">  342</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00343"></a><span class="lineno">  343</span>&#160;        data_max    = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(4)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, i * <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4, 0));</div><div class="line"><a name="l00344"></a><span class="lineno">  344</span>&#160;        max_val_vec = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(data_max, max_val_vec, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00345"></a><span class="lineno">  345</span>&#160;    }</div><div class="line"><a name="l00346"></a><span class="lineno">  346</span>&#160;<span class="preprocessor">#ifdef NON_MULTIPLE_OF_GRID_SIZE</span></div><div class="line"><a name="l00347"></a><span class="lineno">  347</span>&#160;    <span class="comment">// How many work-items needed to complete the computation.</span></div><div class="line"><a name="l00348"></a><span class="lineno">  348</span>&#160;    <span class="comment">//TODO: Optimize this calculation (avoid %).</span></div><div class="line"><a name="l00349"></a><span class="lineno">  349</span>&#160;    <span class="keywordtype">int</span> boundary_workitems = (width % (<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4)) / 4;</div><div class="line"><a name="l00350"></a><span class="lineno">  350</span>&#160;    <span class="keywordflow">if</span>(lid &lt; boundary_workitems)</div><div class="line"><a name="l00351"></a><span class="lineno">  351</span>&#160;    {</div><div class="line"><a name="l00352"></a><span class="lineno">  352</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00353"></a><span class="lineno">  353</span>&#160;        data_max    = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(4)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, i * <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4, 0));</div><div class="line"><a name="l00354"></a><span class="lineno">  354</span>&#160;        max_val_vec = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(data_max, max_val_vec, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00355"></a><span class="lineno">  355</span>&#160;    }</div><div class="line"><a name="l00356"></a><span class="lineno">  356</span>&#160;<span class="preprocessor">#ifdef NON_MULTIPLE_OF_VECTOR_SIZE</span></div><div class="line"><a name="l00357"></a><span class="lineno">  357</span>&#160;    <span class="keywordflow">if</span>(boundary_workitems == 0)</div><div class="line"><a name="l00358"></a><span class="lineno">  358</span>&#160;    {</div><div class="line"><a name="l00359"></a><span class="lineno">  359</span>&#160;        boundary_workitems = <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a>;</div><div class="line"><a name="l00360"></a><span class="lineno">  360</span>&#160;        i--;</div><div class="line"><a name="l00361"></a><span class="lineno">  361</span>&#160;    }</div><div class="line"><a name="l00362"></a><span class="lineno">  362</span>&#160;    <span class="keywordflow">if</span>(lid == (boundary_workitems - 1))</div><div class="line"><a name="l00363"></a><span class="lineno">  363</span>&#160;    {</div><div class="line"><a name="l00364"></a><span class="lineno">  364</span>&#160;        <span class="comment">// Handle non multiple of 4</span></div><div class="line"><a name="l00365"></a><span class="lineno">  365</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00366"></a><span class="lineno">  366</span>&#160;        data_max = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(4)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, (<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * i * 4) + 4, 0));</div><div class="line"><a name="l00367"></a><span class="lineno">  367</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, 4)</div><div class="line"><a name="l00368"></a><span class="lineno">  368</span>&#160;        widx        = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(((uint4)(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * i * 4) + boundary_workitems * 4 + <a class="code" href="softmax__layer_8cl.xhtml#a4884a666a1e93fbf8c27bd7d2da3c8bb">idx4</a>) &lt; width, <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, 4));</div><div class="line"><a name="l00369"></a><span class="lineno">  369</span>&#160;        max_val_vec = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(<a class="code" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">type_min_</a>, data_max, widx), <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00370"></a><span class="lineno">  370</span>&#160;    }</div><div class="line"><a name="l00371"></a><span class="lineno">  371</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* NON_MULTIPLE_OF_VECTOR_SIZE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00372"></a><span class="lineno">  372</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* NON_MULTIPLE_OF_GRID_SIZE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00373"></a><span class="lineno">  373</span>&#160;    tmp_local[lid] = max_val_vec;</div><div class="line"><a name="l00374"></a><span class="lineno">  374</span>&#160;</div><div class="line"><a name="l00375"></a><span class="lineno">  375</span>&#160;    barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00376"></a><span class="lineno">  376</span>&#160;</div><div class="line"><a name="l00377"></a><span class="lineno">  377</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 256)</div><div class="line"><a name="l00378"></a><span class="lineno">  378</span>&#160;    {</div><div class="line"><a name="l00379"></a><span class="lineno">  379</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 128)</div><div class="line"><a name="l00380"></a><span class="lineno">  380</span>&#160;        {</div><div class="line"><a name="l00381"></a><span class="lineno">  381</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 128], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00382"></a><span class="lineno">  382</span>&#160;        }</div><div class="line"><a name="l00383"></a><span class="lineno">  383</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00384"></a><span class="lineno">  384</span>&#160;    }</div><div class="line"><a name="l00385"></a><span class="lineno">  385</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 128)</div><div class="line"><a name="l00386"></a><span class="lineno">  386</span>&#160;    {</div><div class="line"><a name="l00387"></a><span class="lineno">  387</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 64)</div><div class="line"><a name="l00388"></a><span class="lineno">  388</span>&#160;        {</div><div class="line"><a name="l00389"></a><span class="lineno">  389</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 64], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00390"></a><span class="lineno">  390</span>&#160;        }</div><div class="line"><a name="l00391"></a><span class="lineno">  391</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00392"></a><span class="lineno">  392</span>&#160;    }</div><div class="line"><a name="l00393"></a><span class="lineno">  393</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 64)</div><div class="line"><a name="l00394"></a><span class="lineno">  394</span>&#160;    {</div><div class="line"><a name="l00395"></a><span class="lineno">  395</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 32)</div><div class="line"><a name="l00396"></a><span class="lineno">  396</span>&#160;        {</div><div class="line"><a name="l00397"></a><span class="lineno">  397</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 32], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00398"></a><span class="lineno">  398</span>&#160;        }</div><div class="line"><a name="l00399"></a><span class="lineno">  399</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00400"></a><span class="lineno">  400</span>&#160;    }</div><div class="line"><a name="l00401"></a><span class="lineno">  401</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 32)</div><div class="line"><a name="l00402"></a><span class="lineno">  402</span>&#160;    {</div><div class="line"><a name="l00403"></a><span class="lineno">  403</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 16)</div><div class="line"><a name="l00404"></a><span class="lineno">  404</span>&#160;        {</div><div class="line"><a name="l00405"></a><span class="lineno">  405</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 16], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00406"></a><span class="lineno">  406</span>&#160;        }</div><div class="line"><a name="l00407"></a><span class="lineno">  407</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00408"></a><span class="lineno">  408</span>&#160;    }</div><div class="line"><a name="l00409"></a><span class="lineno">  409</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 16)</div><div class="line"><a name="l00410"></a><span class="lineno">  410</span>&#160;    {</div><div class="line"><a name="l00411"></a><span class="lineno">  411</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 8)</div><div class="line"><a name="l00412"></a><span class="lineno">  412</span>&#160;        {</div><div class="line"><a name="l00413"></a><span class="lineno">  413</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 8], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00414"></a><span class="lineno">  414</span>&#160;        }</div><div class="line"><a name="l00415"></a><span class="lineno">  415</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00416"></a><span class="lineno">  416</span>&#160;    }</div><div class="line"><a name="l00417"></a><span class="lineno">  417</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 8)</div><div class="line"><a name="l00418"></a><span class="lineno">  418</span>&#160;    {</div><div class="line"><a name="l00419"></a><span class="lineno">  419</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 4)</div><div class="line"><a name="l00420"></a><span class="lineno">  420</span>&#160;        {</div><div class="line"><a name="l00421"></a><span class="lineno">  421</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 4], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00422"></a><span class="lineno">  422</span>&#160;        }</div><div class="line"><a name="l00423"></a><span class="lineno">  423</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00424"></a><span class="lineno">  424</span>&#160;    }</div><div class="line"><a name="l00425"></a><span class="lineno">  425</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 4)</div><div class="line"><a name="l00426"></a><span class="lineno">  426</span>&#160;    {</div><div class="line"><a name="l00427"></a><span class="lineno">  427</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 2)</div><div class="line"><a name="l00428"></a><span class="lineno">  428</span>&#160;        {</div><div class="line"><a name="l00429"></a><span class="lineno">  429</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 2], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00430"></a><span class="lineno">  430</span>&#160;        }</div><div class="line"><a name="l00431"></a><span class="lineno">  431</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00432"></a><span class="lineno">  432</span>&#160;    }</div><div class="line"><a name="l00433"></a><span class="lineno">  433</span>&#160;    <span class="keywordflow">if</span>(lid == 0)</div><div class="line"><a name="l00434"></a><span class="lineno">  434</span>&#160;    {</div><div class="line"><a name="l00435"></a><span class="lineno">  435</span>&#160;        max_val_vec     = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 1], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00436"></a><span class="lineno">  436</span>&#160;        max_val_vec.s01 = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec.s01, max_val_vec.s23, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 2);</div><div class="line"><a name="l00437"></a><span class="lineno">  437</span>&#160;        max_val_vec.s0  = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec.s0, max_val_vec.s1, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 1);</div><div class="line"><a name="l00438"></a><span class="lineno">  438</span>&#160;        max_local       = max_val_vec.s0;</div><div class="line"><a name="l00439"></a><span class="lineno">  439</span>&#160;    }</div><div class="line"><a name="l00440"></a><span class="lineno">  440</span>&#160;    barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00441"></a><span class="lineno">  441</span>&#160;</div><div class="line"><a name="l00442"></a><span class="lineno">  442</span>&#160;    <span class="comment">/* Second section */</span></div><div class="line"><a name="l00443"></a><span class="lineno">  443</span>&#160;</div><div class="line"><a name="l00444"></a><span class="lineno">  444</span>&#160;    <span class="comment">// Set sum vector</span></div><div class="line"><a name="l00445"></a><span class="lineno">  445</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00446"></a><span class="lineno">  446</span>&#160;    sum1D             = 0;</div><div class="line"><a name="l00447"></a><span class="lineno">  447</span>&#160;    <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> max_val = max_local;</div><div class="line"><a name="l00448"></a><span class="lineno">  448</span>&#160;</div><div class="line"><a name="l00449"></a><span class="lineno">  449</span>&#160;    <span class="comment">// Shift values, exp and sum</span></div><div class="line"><a name="l00450"></a><span class="lineno">  450</span>&#160;    <span class="keywordflow">for</span>(i = 0; i &lt; width_; i++)</div><div class="line"><a name="l00451"></a><span class="lineno">  451</span>&#160;    {</div><div class="line"><a name="l00452"></a><span class="lineno">  452</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00453"></a><span class="lineno">  453</span>&#160;        data = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(4)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, i * <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4, 0));</div><div class="line"><a name="l00454"></a><span class="lineno">  454</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#ac3af2d18008cbbf7247ae48fcd6e0c4e">SUB_OP</a>(data, max_val, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00455"></a><span class="lineno">  455</span>&#160;<span class="preprocessor">#ifdef BETA</span></div><div class="line"><a name="l00456"></a><span class="lineno">  456</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a22303c4047ec5027c1538d53964b9d0d">MUL_OP</a>(data, beta, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00457"></a><span class="lineno">  457</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* BETA */</span><span class="preprocessor"></span></div><div class="line"><a name="l00458"></a><span class="lineno">  458</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00459"></a><span class="lineno">  459</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(4)</div><div class="line"><a name="l00460"></a><span class="lineno">  460</span>&#160;        (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, i * <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4, 0));</div><div class="line"><a name="l00461"></a><span class="lineno">  461</span>&#160;        sum1D = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D, data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00462"></a><span class="lineno">  462</span>&#160;    }</div><div class="line"><a name="l00463"></a><span class="lineno">  463</span>&#160;<span class="preprocessor">#ifdef NON_MULTIPLE_OF_GRID_SIZE</span></div><div class="line"><a name="l00464"></a><span class="lineno">  464</span>&#160;    <span class="comment">//TODO: Optimize the calculation (avoid %).</span></div><div class="line"><a name="l00465"></a><span class="lineno">  465</span>&#160;    boundary_workitems = (width % (<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4)) / 4;</div><div class="line"><a name="l00466"></a><span class="lineno">  466</span>&#160;    <span class="keywordflow">if</span>(lid &lt; boundary_workitems)</div><div class="line"><a name="l00467"></a><span class="lineno">  467</span>&#160;    {</div><div class="line"><a name="l00468"></a><span class="lineno">  468</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00469"></a><span class="lineno">  469</span>&#160;        data = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(4)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, i * <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4, 0));</div><div class="line"><a name="l00470"></a><span class="lineno">  470</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#ac3af2d18008cbbf7247ae48fcd6e0c4e">SUB_OP</a>(data, max_val, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00471"></a><span class="lineno">  471</span>&#160;<span class="preprocessor">#ifdef BETA</span></div><div class="line"><a name="l00472"></a><span class="lineno">  472</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a22303c4047ec5027c1538d53964b9d0d">MUL_OP</a>(data, beta, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00473"></a><span class="lineno">  473</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* BETA */</span><span class="preprocessor"></span></div><div class="line"><a name="l00474"></a><span class="lineno">  474</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00475"></a><span class="lineno">  475</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(4)</div><div class="line"><a name="l00476"></a><span class="lineno">  476</span>&#160;        (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, i * <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4, 0));</div><div class="line"><a name="l00477"></a><span class="lineno">  477</span>&#160;        sum1D = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D, data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00478"></a><span class="lineno">  478</span>&#160;    }</div><div class="line"><a name="l00479"></a><span class="lineno">  479</span>&#160;<span class="preprocessor">#ifdef NON_MULTIPLE_OF_VECTOR_SIZE</span></div><div class="line"><a name="l00480"></a><span class="lineno">  480</span>&#160;    <span class="keywordflow">if</span>(boundary_workitems == 0)</div><div class="line"><a name="l00481"></a><span class="lineno">  481</span>&#160;    {</div><div class="line"><a name="l00482"></a><span class="lineno">  482</span>&#160;        boundary_workitems = <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a>;</div><div class="line"><a name="l00483"></a><span class="lineno">  483</span>&#160;        i--;</div><div class="line"><a name="l00484"></a><span class="lineno">  484</span>&#160;    }</div><div class="line"><a name="l00485"></a><span class="lineno">  485</span>&#160;    <span class="keywordflow">if</span>(lid == (boundary_workitems - 1))</div><div class="line"><a name="l00486"></a><span class="lineno">  486</span>&#160;    {</div><div class="line"><a name="l00487"></a><span class="lineno">  487</span>&#160;        <span class="comment">// Handle non multiple of vector size ((GRID_SIZE * i * 4) + 4, 0); move 4 float positions ahead, *4 is due to the stride</span></div><div class="line"><a name="l00488"></a><span class="lineno">  488</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00489"></a><span class="lineno">  489</span>&#160;        data = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(4)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, (<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * i * 4) + 4, 0));</div><div class="line"><a name="l00490"></a><span class="lineno">  490</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#ac3af2d18008cbbf7247ae48fcd6e0c4e">SUB_OP</a>(data, max_val, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00491"></a><span class="lineno">  491</span>&#160;<span class="preprocessor">#ifdef BETA</span></div><div class="line"><a name="l00492"></a><span class="lineno">  492</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a22303c4047ec5027c1538d53964b9d0d">MUL_OP</a>(data, beta, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00493"></a><span class="lineno">  493</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* BETA */</span><span class="preprocessor"></span></div><div class="line"><a name="l00494"></a><span class="lineno">  494</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00495"></a><span class="lineno">  495</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, 4)</div><div class="line"><a name="l00496"></a><span class="lineno">  496</span>&#160;        widx = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(((uint4)(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * i * 4) + boundary_workitems * 4 + <a class="code" href="softmax__layer_8cl.xhtml#a4884a666a1e93fbf8c27bd7d2da3c8bb">idx4</a>) &lt; width, <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, 4));</div><div class="line"><a name="l00497"></a><span class="lineno">  497</span>&#160;        data = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(0, data, widx);</div><div class="line"><a name="l00498"></a><span class="lineno">  498</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(4)</div><div class="line"><a name="l00499"></a><span class="lineno">  499</span>&#160;        (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, (<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * i * 4) + 4, 0));</div><div class="line"><a name="l00500"></a><span class="lineno">  500</span>&#160;        sum1D = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D, data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00501"></a><span class="lineno">  501</span>&#160;    }</div><div class="line"><a name="l00502"></a><span class="lineno">  502</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* NON_MULTIPLE_OF_VECTOR_SIZE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00503"></a><span class="lineno">  503</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* NON_MULTIPLE_OF_GRID_SIZE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00504"></a><span class="lineno">  504</span>&#160;    tmp_local[lid] = sum1D;</div><div class="line"><a name="l00505"></a><span class="lineno">  505</span>&#160;</div><div class="line"><a name="l00506"></a><span class="lineno">  506</span>&#160;    barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00507"></a><span class="lineno">  507</span>&#160;</div><div class="line"><a name="l00508"></a><span class="lineno">  508</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 256)</div><div class="line"><a name="l00509"></a><span class="lineno">  509</span>&#160;    {</div><div class="line"><a name="l00510"></a><span class="lineno">  510</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 128)</div><div class="line"><a name="l00511"></a><span class="lineno">  511</span>&#160;        {</div><div class="line"><a name="l00512"></a><span class="lineno">  512</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 128], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00513"></a><span class="lineno">  513</span>&#160;        }</div><div class="line"><a name="l00514"></a><span class="lineno">  514</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00515"></a><span class="lineno">  515</span>&#160;    }</div><div class="line"><a name="l00516"></a><span class="lineno">  516</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 128)</div><div class="line"><a name="l00517"></a><span class="lineno">  517</span>&#160;    {</div><div class="line"><a name="l00518"></a><span class="lineno">  518</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 64)</div><div class="line"><a name="l00519"></a><span class="lineno">  519</span>&#160;        {</div><div class="line"><a name="l00520"></a><span class="lineno">  520</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 64], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00521"></a><span class="lineno">  521</span>&#160;        }</div><div class="line"><a name="l00522"></a><span class="lineno">  522</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00523"></a><span class="lineno">  523</span>&#160;    }</div><div class="line"><a name="l00524"></a><span class="lineno">  524</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 64)</div><div class="line"><a name="l00525"></a><span class="lineno">  525</span>&#160;    {</div><div class="line"><a name="l00526"></a><span class="lineno">  526</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 32)</div><div class="line"><a name="l00527"></a><span class="lineno">  527</span>&#160;        {</div><div class="line"><a name="l00528"></a><span class="lineno">  528</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 32], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00529"></a><span class="lineno">  529</span>&#160;        }</div><div class="line"><a name="l00530"></a><span class="lineno">  530</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00531"></a><span class="lineno">  531</span>&#160;    }</div><div class="line"><a name="l00532"></a><span class="lineno">  532</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 32)</div><div class="line"><a name="l00533"></a><span class="lineno">  533</span>&#160;    {</div><div class="line"><a name="l00534"></a><span class="lineno">  534</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 16)</div><div class="line"><a name="l00535"></a><span class="lineno">  535</span>&#160;        {</div><div class="line"><a name="l00536"></a><span class="lineno">  536</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 16], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00537"></a><span class="lineno">  537</span>&#160;        }</div><div class="line"><a name="l00538"></a><span class="lineno">  538</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00539"></a><span class="lineno">  539</span>&#160;    }</div><div class="line"><a name="l00540"></a><span class="lineno">  540</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 16)</div><div class="line"><a name="l00541"></a><span class="lineno">  541</span>&#160;    {</div><div class="line"><a name="l00542"></a><span class="lineno">  542</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 8)</div><div class="line"><a name="l00543"></a><span class="lineno">  543</span>&#160;        {</div><div class="line"><a name="l00544"></a><span class="lineno">  544</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 8], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00545"></a><span class="lineno">  545</span>&#160;        }</div><div class="line"><a name="l00546"></a><span class="lineno">  546</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00547"></a><span class="lineno">  547</span>&#160;    }</div><div class="line"><a name="l00548"></a><span class="lineno">  548</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 8)</div><div class="line"><a name="l00549"></a><span class="lineno">  549</span>&#160;    {</div><div class="line"><a name="l00550"></a><span class="lineno">  550</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 4)</div><div class="line"><a name="l00551"></a><span class="lineno">  551</span>&#160;        {</div><div class="line"><a name="l00552"></a><span class="lineno">  552</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 4], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00553"></a><span class="lineno">  553</span>&#160;        }</div><div class="line"><a name="l00554"></a><span class="lineno">  554</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00555"></a><span class="lineno">  555</span>&#160;    }</div><div class="line"><a name="l00556"></a><span class="lineno">  556</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 4)</div><div class="line"><a name="l00557"></a><span class="lineno">  557</span>&#160;    {</div><div class="line"><a name="l00558"></a><span class="lineno">  558</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 2)</div><div class="line"><a name="l00559"></a><span class="lineno">  559</span>&#160;        {</div><div class="line"><a name="l00560"></a><span class="lineno">  560</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 2], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00561"></a><span class="lineno">  561</span>&#160;        }</div><div class="line"><a name="l00562"></a><span class="lineno">  562</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00563"></a><span class="lineno">  563</span>&#160;    }</div><div class="line"><a name="l00564"></a><span class="lineno">  564</span>&#160;    <span class="keywordflow">if</span>(lid == 0)</div><div class="line"><a name="l00565"></a><span class="lineno">  565</span>&#160;    {</div><div class="line"><a name="l00566"></a><span class="lineno">  566</span>&#160;        sum1D = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 1], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00567"></a><span class="lineno">  567</span>&#160;        <span class="comment">// Perform max reduction</span></div><div class="line"><a name="l00568"></a><span class="lineno">  568</span>&#160;        sum1D.s01                        = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D.s01, sum1D.s23, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 2);</div><div class="line"><a name="l00569"></a><span class="lineno">  569</span>&#160;        sum1D.s0                         = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D.s0, sum1D.s1, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 1);</div><div class="line"><a name="l00570"></a><span class="lineno">  570</span>&#160;        *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>.ptr) = sum1D.s0;</div><div class="line"><a name="l00571"></a><span class="lineno">  571</span>&#160;    }</div><div class="line"><a name="l00572"></a><span class="lineno">  572</span>&#160;}</div><div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a009469e4d9b8fce3b6d5e97d2077827d"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a></div><div class="ttdeci">__global uchar * offset(const Image *img, int x, int y)</div><div class="ttdoc">Get the pointer position of a Image.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00328">helpers.h:328</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a071aa45af973feac43b14f62e54a6fce"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a071aa45af973feac43b14f62e54a6fce">CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP</a></div><div class="ttdeci">#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00138">helpers.h:138</a></div></div>
+<a href="softmax__layer_8cl.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2017-2019 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> * of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment"> * THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml">helpers.h</a>&quot;</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;</div><div class="line"><a name="l00026"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">   26</a></span>&#160;<span class="preprocessor">#define MAX_OP(x, y, type, size) max((x), (y))</span></div><div class="line"><a name="l00027"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">   27</a></span>&#160;<span class="preprocessor">#define ADD_OP(x, y, type, size) ((x) + (y))</span></div><div class="line"><a name="l00028"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#ac3af2d18008cbbf7247ae48fcd6e0c4e">   28</a></span>&#160;<span class="preprocessor">#define SUB_OP(x, y, type, size) ((x) - (y))</span></div><div class="line"><a name="l00029"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a22303c4047ec5027c1538d53964b9d0d">   29</a></span>&#160;<span class="preprocessor">#define MUL_OP(x, y, type, size) ((x) * (y))</span></div><div class="line"><a name="l00030"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a8cde99b1ce0f3c1dacd49261b0cf03d8">   30</a></span>&#160;<span class="preprocessor">#define DIV_OP(x, y, type, size) ((x) / (y))</span></div><div class="line"><a name="l00031"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">   31</a></span>&#160;<span class="preprocessor">#define EXP_OP(x, type, size) exp((x))</span></div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;</div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;<span class="preprocessor">#ifdef USE_F16</span></div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;<span class="preprocessor">#define MINVAL -HALF_MAX</span></div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;<span class="preprocessor">#define SELECT_DATA_TYPE short</span></div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;<span class="preprocessor">#else </span><span class="comment">/* USE_F16 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00037"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">   37</a></span>&#160;<span class="preprocessor">#define MINVAL -FLT_MAX</span></div><div class="line"><a name="l00038"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">   38</a></span>&#160;<span class="preprocessor">#define SELECT_DATA_TYPE int</span></div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* USE_F16 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;</div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;<span class="comment">/* Number of workitems in dimension 0. */</span></div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;<span class="preprocessor">#if !defined(GRID_SIZE)</span></div><div class="line"><a name="l00043"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">   43</a></span>&#160;<span class="preprocessor">#define GRID_SIZE 1</span></div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* !defined(GRID_SIZE) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;</div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;<span class="comment">/* Vector size, i.e. number of vector elements. */</span></div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;<span class="preprocessor">#if VECTOR_SIZE == 2</span></div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;__constant <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 2) <a class="code" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">type_min_</a> = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 2))(<a class="code" href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">MINVAL</a>);</div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;__constant uint2 <a class="code" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">idx__</a> = (uint2)(0, 1);</div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;</div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;<span class="preprocessor">#elif VECTOR_SIZE == 4</span></div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;__constant <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4) <a class="code" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">type_min_</a> = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4))(<a class="code" href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">MINVAL</a>);</div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;__constant uint4 <a class="code" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">idx__</a> = (uint4)(0, 1, 2, 3);</div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;</div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;<span class="preprocessor">#elif VECTOR_SIZE == 8</span></div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;__constant <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8) <a class="code" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">type_min_</a> = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8))(<a class="code" href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">MINVAL</a>);</div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;__constant uint8 <a class="code" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">idx__</a> = (uint8)(0, 1, 2, 3, 4, 5, 6, 7);</div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;</div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;<span class="preprocessor">#else </span><span class="comment">/* VECTOR_SIZE DEFAULT */</span><span class="preprocessor"></span></div><div class="line"><a name="l00060"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">   60</a></span>&#160;<span class="preprocessor">#define VECTOR_SIZE 16</span></div><div class="line"><a name="l00061"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">   61</a></span>&#160;<span class="preprocessor">#define LOG_VECTOR_SIZE 4</span></div><div class="line"><a name="l00062"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">   62</a></span>&#160;__constant <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16) <a class="code" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">type_min_</a> = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16))(<a class="code" href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">MINVAL</a>);</div><div class="line"><a name="l00063"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">   63</a></span>&#160;__constant uint16 <a class="code" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">idx__</a> = (uint16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);</div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;</div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* VECTOR_SIZE END */</span><span class="preprocessor"></span></div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;</div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;<span class="comment">// TODO (COMPMID-661): Remove if the non-fused kernels are removed</span></div><div class="line"><a name="l00068"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a538b4b63f40e7b12891774e03a4f0dec">   68</a></span>&#160;__constant <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16) <a class="code" href="softmax__layer_8cl.xhtml#a538b4b63f40e7b12891774e03a4f0dec">type_min</a> = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16))(<a class="code" href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">MINVAL</a>);</div><div class="line"><a name="l00069"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a0712735973f172ac9efc7d48a31e47ad">   69</a></span>&#160;__constant uint16 <a class="code" href="softmax__layer_8cl.xhtml#a0712735973f172ac9efc7d48a31e47ad">idx16</a> = (uint16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);</div><div class="line"><a name="l00070"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a4884a666a1e93fbf8c27bd7d2da3c8bb">   70</a></span>&#160;__constant uint4 <a class="code" href="softmax__layer_8cl.xhtml#a4884a666a1e93fbf8c27bd7d2da3c8bb">idx4</a>   = (uint4)(0, 1, 2, 3);</div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;<span class="comment">/** Divides all the values of the input tensor by the sum calculated from softmax_layer_shift_exp_sum kernel.</span></div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;<span class="comment"> * @note Datatype must be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short</span></div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;<span class="comment"> * @param[in]  src_ptr                           Pointer to the source tensor slice. Supported data types: F16/F32</span></div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;<span class="comment"> * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;<span class="comment"> * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;<span class="comment"> * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;<span class="comment"> * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;<span class="comment"> * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;<span class="comment"> * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;<span class="comment"> * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;<span class="comment"> * @param[in]  sum_ptr                           Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;<span class="comment"> * @param[in]  sum_stride_x                      Stride of the sum values tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;<span class="comment"> * @param[in]  sum_step_x                        sum_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;<span class="comment"> * @param[in]  sum_stride_y                      Stride of the sum values tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;<span class="comment"> * @param[in]  sum_step_y                        sum_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;<span class="comment"> * @param[in]  sum_stride_z                      Stride of the sum values tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;<span class="comment"> * @param[in]  sum_step_z                        sum_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;<span class="comment"> * @param[in]  sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor</span></div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;<span class="comment"> * @param[out] dst_ptr                           Pointer to the destination tensor slice. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;<span class="comment"> * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;<span class="comment"> * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;<span class="comment"> * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00101"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#ac4247ac0991e85965b7ded764e78f12c">  101</a></span>&#160;__kernel <span class="keywordtype">void</span> <a class="code" href="softmax__layer_8cl.xhtml#ac4247ac0991e85965b7ded764e78f12c">softmax_layer_norm</a>(</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>),</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>))</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;{</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>);</div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>);</div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a071aa45af973feac43b14f62e54a6fce">CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP</a>(<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>);</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;    <span class="comment">// Load max value of 1D logits vector (row)</span></div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;    <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> sum_val = *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>, 0, get_global_id(1)));</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16)</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;    data = vload16(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, 0, 0));</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;<span class="preprocessor">#ifdef LOG_SOFTMAX</span></div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;    vstore16(<a class="code" href="softmax__layer_8cl.xhtml#ac3af2d18008cbbf7247ae48fcd6e0c4e">SUB_OP</a>(data, sum_val, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16), 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, 0, 0));</div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;<span class="preprocessor">#else  </span><span class="comment">/* LOG_SOFTMAX */</span><span class="preprocessor"></span></div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;    vstore16(<a class="code" href="softmax__layer_8cl.xhtml#a8cde99b1ce0f3c1dacd49261b0cf03d8">DIV_OP</a>(data, sum_val, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 16), 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, 0, 0));</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* LOG_SOFTMAX */</span><span class="preprocessor"></span></div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;}</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;<span class="comment">/** Identifies the maximum value across the 1st dimension and shifts the values of the input tensor by this maximum value,</span></div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;<span class="comment"> * then gets the exponent of each element as sums all elements across each row.</span></div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;<span class="comment"> * @note Datatype must be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short</span></div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;<span class="comment"> * @note In case the input is not a multiple of VECTOR_SIZE (2,4,8,16) -DNON_MULTIPLE_OF_VECTOR_SIZE must be passed.</span></div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;<span class="comment"> * @note Beta can be optionally passed at compile time using -DBETA (by default, it is 1.0).</span></div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;<span class="comment"> * @param[in]  src_ptr                            Pointer to the source tensor slice. Supported data types: F16/F32</span></div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;<span class="comment"> * @param[in]  src_stride_x                       Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;<span class="comment"> * @param[in]  src_step_x                         src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;<span class="comment"> * @param[in]  src_stride_y                       Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;<span class="comment"> * @param[in]  src_step_y                         src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;<span class="comment"> * @param[in]  src_stride_z                       Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;<span class="comment"> * @param[in]  src_step_z                         src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;<span class="comment"> * @param[in]  src_offset_first_element_in_bytes  The offset of the first element in the source tensor</span></div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;<span class="comment"> * @param[in]  maxo_ptr                           Pointer to the max values tensor slice. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;<span class="comment"> * @param[in]  maxo_stride_x                      Stride of the max values tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;<span class="comment"> * @param[in]  maxo_step_x                        max_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;<span class="comment"> * @param[in]  maxo_stride_y                      Stride of the max values tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;<span class="comment"> * @param[in]  maxo_step_y                        max_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;<span class="comment"> * @param[in]  maxo_stride_z                      Stride of the max values tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;<span class="comment"> * @param[in]  maxo_step_z                        max_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;<span class="comment"> * @param[in]  maxo_offset_first_element_in_bytes The offset of the first element in the max values tensor</span></div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;<span class="comment"> * @param[out] dst_ptr                            Pointer to the destination tensor slice. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                       Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;<span class="comment"> * @param[in]  dst_step_x                         dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                       Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;<span class="comment"> * @param[in]  dst_step_y                         dst_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                       Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;<span class="comment"> * @param[in]  dst_step_z                         dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes  The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;<span class="comment"> * @param[out] sum_ptr                            Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;<span class="comment"> * @param[in]  sum_stride_x                       Stride of the sum values tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;<span class="comment"> * @param[in]  sum_step_x                         sum_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;<span class="comment"> * @param[in]  sum_stride_y                       Stride of the sum values tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;<span class="comment"> * @param[in]  sum_step_y                         sum_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;<span class="comment"> * @param[in]  sum_stride_z                       Stride of the sum values tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;<span class="comment"> * @param[in]  sum_step_z                         sum_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;<span class="comment"> * @param[in]  sum_offset_first_element_in_bytes  The offset of the first element in the sum values tensor</span></div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;<span class="comment"> * @param[in]  width                              Input image width</span></div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00162"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a9d74601bcabbb2f14bcf52385ad666dc">  162</a></span>&#160;__kernel <span class="keywordtype">void</span> <a class="code" href="softmax__layer_8cl.xhtml#a9d74601bcabbb2f14bcf52385ad666dc">softmax_layer_max_shift_exp_sum_serial</a>(</div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(maxo),</div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>),</div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;    uint width)</div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;{</div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>  = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>);</div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>  = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>);</div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> maxo = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(maxo);</div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>  = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>);</div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;</div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;<span class="preprocessor">#ifdef BETA</span></div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;    <span class="comment">// Initialize beta</span></div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;    beta = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>))BETA;</div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* BETA */</span><span class="preprocessor"></span></div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;</div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;    <span class="comment">// Initialize local maximum</span></div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;    max_val_vec = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>))<a class="code" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">type_min_</a>;</div><div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;</div><div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;    <span class="comment">// Calculate max of row</span></div><div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;    <span class="keyword">const</span> uint width_ = width &gt;&gt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>;</div><div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;    <span class="keywordflow">for</span>(uint i = 0; i &lt; width_; i++)</div><div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;    {</div><div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;        data_max    = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, i &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>, 0));</div><div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;        max_val_vec = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(data_max, max_val_vec, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;    }</div><div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;</div><div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;<span class="preprocessor">#ifdef NON_MULTIPLE_OF_VECTOR_SIZE</span></div><div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;    data_max = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, width_ &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>, 0));</div><div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;    widx        = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>((<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#ae4b532a93c757194ec73b6790a3e6b1f">EXPAND</a>((<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a0f6ad555d097377151003a5119ccee45">CL_VEC_DATA_TYPE</a>(uint, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)))(width_ &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>) + <a class="code" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">idx__</a>) &lt; width, <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>));</div><div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;    max_val_vec = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(<a class="code" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">type_min_</a>, data_max, widx), <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* NON_MULTIPLE_OF_VECTOR_SIZE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;</div><div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;    <span class="comment">// Perform max reduction</span></div><div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;<span class="preprocessor">#if VECTOR_SIZE == 16</span></div><div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;    max_val_vec.s01234567 = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec.s01234567, max_val_vec.s89ABCDEF, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8);</div><div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* VECTOR SIZE 16 END */</span><span class="preprocessor"></span></div><div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;<span class="preprocessor">#if VECTOR_SIZE &gt;= 8</span></div><div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;    max_val_vec.s0123 = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec.s0123, max_val_vec.s4567, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* VECTOR SIZE 8 END */</span><span class="preprocessor"></span></div><div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;<span class="preprocessor">#if VECTOR_SIZE &gt;= 4</span></div><div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;    max_val_vec.s01 = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec.s01, max_val_vec.s23, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 2);</div><div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* VECTOR SIZE 4 END */</span><span class="preprocessor"></span></div><div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;    max_val_vec.s0 = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec.s0, max_val_vec.s1, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 1);</div><div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;    <span class="comment">// Store result</span></div><div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)maxo.<a class="code" href="struct_image.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a>) = max_val_vec.s0;</div><div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;</div><div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;    <span class="comment">/* Second section */</span></div><div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;</div><div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;    <span class="comment">// Load max value of 1D logits vector (row)</span></div><div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;    <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> max_val = *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;maxo, 0, 0));</div><div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;</div><div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;    <span class="comment">// Set sum vector</span></div><div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;    sum1D = 0;</div><div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;</div><div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;    <span class="comment">// Shift values, exp and sum</span></div><div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;    <span class="keywordflow">for</span>(uint i = 0; i &lt; width_; i++)</div><div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;    {</div><div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;        data = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, i &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>, 0));</div><div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#ac3af2d18008cbbf7247ae48fcd6e0c4e">SUB_OP</a>(data, max_val, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;<span class="preprocessor">#ifdef BETA</span></div><div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a22303c4047ec5027c1538d53964b9d0d">MUL_OP</a>(data, beta, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* BETA */</span><span class="preprocessor"></span></div><div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;<span class="preprocessor">#ifdef LOG_SOFTMAX</span></div><div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;        (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, i &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>, 0));</div><div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;<span class="preprocessor">#else  </span><span class="comment">/* LOG_SOFTMAX */</span><span class="preprocessor"></span></div><div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;        (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, i &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>, 0));</div><div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* LOG_SOFTMAX */</span><span class="preprocessor"></span></div><div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;        sum1D = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D, data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;    }</div><div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;</div><div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;<span class="preprocessor">#ifdef NON_MULTIPLE_OF_VECTOR_SIZE</span></div><div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;    data = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, width_ &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>, 0));</div><div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;    data = <a class="code" href="softmax__layer_8cl.xhtml#ac3af2d18008cbbf7247ae48fcd6e0c4e">SUB_OP</a>(data, max_val, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;<span class="preprocessor">#ifdef BETA</span></div><div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;    data = <a class="code" href="softmax__layer_8cl.xhtml#a22303c4047ec5027c1538d53964b9d0d">MUL_OP</a>(data, beta, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* BETA */</span><span class="preprocessor"></span></div><div class="line"><a name="l00252"></a><span class="lineno">  252</span>&#160;<span class="preprocessor">#ifdef LOG_SOFTMAX</span></div><div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;    (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, width_ &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>, 0));</div><div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;    data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;    widx = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>((<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#ae4b532a93c757194ec73b6790a3e6b1f">EXPAND</a>((<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a0f6ad555d097377151003a5119ccee45">CL_VEC_DATA_TYPE</a>(uint, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)))(width_ &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>) + <a class="code" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">idx__</a>) &lt; width, <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>));</div><div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;    data = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(0, data, widx);</div><div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;<span class="preprocessor">#else  </span><span class="comment">/* LOG_SOFTMAX */</span><span class="preprocessor"></span></div><div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;    data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;    widx = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>((<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#ae4b532a93c757194ec73b6790a3e6b1f">EXPAND</a>((<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a0f6ad555d097377151003a5119ccee45">CL_VEC_DATA_TYPE</a>(uint, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)))(width_ &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>) + <a class="code" href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">idx__</a>) &lt; width, <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>));</div><div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;    data = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(0, data, widx);</div><div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>)</div><div class="line"><a name="l00263"></a><span class="lineno">  263</span>&#160;    (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, width_ &lt;&lt; <a class="code" href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a>, 0));</div><div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* LOG_SOFTMAX */</span><span class="preprocessor"></span></div><div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;    sum1D = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D, data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a>);</div><div class="line"><a name="l00266"></a><span class="lineno">  266</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* NON_MULTIPLE_OF_VECTOR_SIZE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00267"></a><span class="lineno">  267</span>&#160;</div><div class="line"><a name="l00268"></a><span class="lineno">  268</span>&#160;    <span class="comment">// Perform sum reduction</span></div><div class="line"><a name="l00269"></a><span class="lineno">  269</span>&#160;<span class="preprocessor">#if VECTOR_SIZE == 16</span></div><div class="line"><a name="l00270"></a><span class="lineno">  270</span>&#160;    sum1D.s01234567 = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D.s01234567, sum1D.s89ABCDEF, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8);</div><div class="line"><a name="l00271"></a><span class="lineno">  271</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* VECTOR SIZE 16 END */</span><span class="preprocessor"></span></div><div class="line"><a name="l00272"></a><span class="lineno">  272</span>&#160;<span class="preprocessor">#if VECTOR_SIZE &gt;= 8</span></div><div class="line"><a name="l00273"></a><span class="lineno">  273</span>&#160;    sum1D.s0123 = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D.s0123, sum1D.s4567, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00274"></a><span class="lineno">  274</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* VECTOR SIZE 8 END */</span><span class="preprocessor"></span></div><div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;<span class="preprocessor">#if VECTOR_SIZE &gt;= 4</span></div><div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;    sum1D.s01 = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D.s01, sum1D.s23, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 2);</div><div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* VECTOR SIZE 4 END */</span><span class="preprocessor"></span></div><div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;    sum1D.s0 = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D.s0, sum1D.s1, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 1);</div><div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;</div><div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;    <span class="comment">// Calculate and store result</span></div><div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;    *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>.ptr) = sum1D.s0;</div><div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;}</div><div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;<span class="comment">/** Identifies the maximum value across the 1st dimension and shifts the values of the input tensor by this maximum value,</span></div><div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;<span class="comment"> * then gets the exponent of each element as sums all elements across each row.</span></div><div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;<span class="comment"> * @note Datatype must be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short</span></div><div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;<span class="comment"> * @note In case the input is not a multiple of VECTOR_SIZE (2,4,8,16) -DNON_MULTIPLE_OF_VECTOR_SIZE must be passed.</span></div><div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;<span class="comment"> * @note Beta can be optionally passed at compile time using -DBETA (by default, it is 1.0).</span></div><div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;<span class="comment"> * @param[in]  src_ptr                            Pointer to the source tensor slice. Supported data types: F16/F32</span></div><div class="line"><a name="l00292"></a><span class="lineno">  292</span>&#160;<span class="comment"> * @param[in]  src_stride_x                       Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00293"></a><span class="lineno">  293</span>&#160;<span class="comment"> * @param[in]  src_step_x                         src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00294"></a><span class="lineno">  294</span>&#160;<span class="comment"> * @param[in]  src_stride_y                       Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00295"></a><span class="lineno">  295</span>&#160;<span class="comment"> * @param[in]  src_step_y                         src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00296"></a><span class="lineno">  296</span>&#160;<span class="comment"> * @param[in]  src_stride_z                       Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00297"></a><span class="lineno">  297</span>&#160;<span class="comment"> * @param[in]  src_step_z                         src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00298"></a><span class="lineno">  298</span>&#160;<span class="comment"> * @param[in]  src_offset_first_element_in_bytes  The offset of the first element in the source tensor</span></div><div class="line"><a name="l00299"></a><span class="lineno">  299</span>&#160;<span class="comment"> * @param[in]  maxo_ptr                           Pointer to the max values tensor slice. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00300"></a><span class="lineno">  300</span>&#160;<span class="comment"> * @param[in]  maxo_stride_x                      Stride of the max values tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00301"></a><span class="lineno">  301</span>&#160;<span class="comment"> * @param[in]  maxo_step_x                        max_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00302"></a><span class="lineno">  302</span>&#160;<span class="comment"> * @param[in]  maxo_stride_y                      Stride of the max values tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00303"></a><span class="lineno">  303</span>&#160;<span class="comment"> * @param[in]  maxo_step_y                        max_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00304"></a><span class="lineno">  304</span>&#160;<span class="comment"> * @param[in]  maxo_stride_z                      Stride of the max values tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00305"></a><span class="lineno">  305</span>&#160;<span class="comment"> * @param[in]  maxo_step_z                        max_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00306"></a><span class="lineno">  306</span>&#160;<span class="comment"> * @param[in]  maxo_offset_first_element_in_bytes The offset of the first element in the max values tensor</span></div><div class="line"><a name="l00307"></a><span class="lineno">  307</span>&#160;<span class="comment"> * @param[out] dst_ptr                            Pointer to the destination tensor slice. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00308"></a><span class="lineno">  308</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                       Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;<span class="comment"> * @param[in]  dst_step_x                         dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                       Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;<span class="comment"> * @param[in]  dst_step_y                         dst_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                       Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;<span class="comment"> * @param[in]  dst_step_z                         dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes  The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;<span class="comment"> * @param[out] sum_ptr                            Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;<span class="comment"> * @param[in]  sum_stride_x                       Stride of the sum values tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;<span class="comment"> * @param[in]  sum_step_x                         sum_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;<span class="comment"> * @param[in]  sum_stride_y                       Stride of the sum values tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;<span class="comment"> * @param[in]  sum_step_y                         sum_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;<span class="comment"> * @param[in]  sum_stride_z                       Stride of the sum values tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;<span class="comment"> * @param[in]  sum_step_z                         sum_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;<span class="comment"> * @param[in]  sum_offset_first_element_in_bytes  The offset of the first element in the sum values tensor</span></div><div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;<span class="comment"> * @param[in]  width                              Input image width</span></div><div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00325"></a><span class="lineno"><a class="line" href="softmax__layer_8cl.xhtml#a82bc360279fcf7cf8033dca6022f21f5">  325</a></span>&#160;__kernel <span class="keywordtype">void</span> <a class="code" href="softmax__layer_8cl.xhtml#a82bc360279fcf7cf8033dca6022f21f5">softmax_layer_max_shift_exp_sum_parallel</a>(</div><div class="line"><a name="l00326"></a><span class="lineno">  326</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00327"></a><span class="lineno">  327</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(maxo),</div><div class="line"><a name="l00328"></a><span class="lineno">  328</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00329"></a><span class="lineno">  329</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>),</div><div class="line"><a name="l00330"></a><span class="lineno">  330</span>&#160;    uint width)</div><div class="line"><a name="l00331"></a><span class="lineno">  331</span>&#160;{</div><div class="line"><a name="l00332"></a><span class="lineno">  332</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>  = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>);</div><div class="line"><a name="l00333"></a><span class="lineno">  333</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>  = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>);</div><div class="line"><a name="l00334"></a><span class="lineno">  334</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> maxo = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(maxo);</div><div class="line"><a name="l00335"></a><span class="lineno">  335</span>&#160;    <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>  = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a>(<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>);</div><div class="line"><a name="l00336"></a><span class="lineno">  336</span>&#160;</div><div class="line"><a name="l00337"></a><span class="lineno">  337</span>&#160;    <span class="keyword">const</span> uint lid = get_local_id(0);</div><div class="line"><a name="l00338"></a><span class="lineno">  338</span>&#160;</div><div class="line"><a name="l00339"></a><span class="lineno">  339</span>&#160;<span class="preprocessor">#ifdef BETA</span></div><div class="line"><a name="l00340"></a><span class="lineno">  340</span>&#160;    <span class="comment">// Initialize beta</span></div><div class="line"><a name="l00341"></a><span class="lineno">  341</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00342"></a><span class="lineno">  342</span>&#160;    beta = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4))BETA;</div><div class="line"><a name="l00343"></a><span class="lineno">  343</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* BETA */</span><span class="preprocessor"></span></div><div class="line"><a name="l00344"></a><span class="lineno">  344</span>&#160;</div><div class="line"><a name="l00345"></a><span class="lineno">  345</span>&#160;    <span class="comment">// Define one temporary vector per work-item.</span></div><div class="line"><a name="l00346"></a><span class="lineno">  346</span>&#160;    __local <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4) tmp_local[<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a>];</div><div class="line"><a name="l00347"></a><span class="lineno">  347</span>&#160;    __local <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> max_local;</div><div class="line"><a name="l00348"></a><span class="lineno">  348</span>&#160;</div><div class="line"><a name="l00349"></a><span class="lineno">  349</span>&#160;    __constant <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4) type_min4 = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4))(<a class="code" href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">MINVAL</a>);</div><div class="line"><a name="l00350"></a><span class="lineno">  350</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00351"></a><span class="lineno">  351</span>&#160;    max_val_vec = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4))type_min4;</div><div class="line"><a name="l00352"></a><span class="lineno">  352</span>&#160;    <span class="comment">// Number of elements per work-item.</span></div><div class="line"><a name="l00353"></a><span class="lineno">  353</span>&#160;    <span class="keyword">const</span> uint row = width / <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a>;</div><div class="line"><a name="l00354"></a><span class="lineno">  354</span>&#160;    <span class="comment">// Number of iterations per work-item.</span></div><div class="line"><a name="l00355"></a><span class="lineno">  355</span>&#160;    <span class="keyword">const</span> uint width_ = row &gt;&gt; 2;</div><div class="line"><a name="l00356"></a><span class="lineno">  356</span>&#160;    <span class="comment">// Calculate max of row</span></div><div class="line"><a name="l00357"></a><span class="lineno">  357</span>&#160;    uint i = 0;</div><div class="line"><a name="l00358"></a><span class="lineno">  358</span>&#160;    <span class="keywordflow">for</span>(; i &lt; width_; i++)</div><div class="line"><a name="l00359"></a><span class="lineno">  359</span>&#160;    {</div><div class="line"><a name="l00360"></a><span class="lineno">  360</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00361"></a><span class="lineno">  361</span>&#160;        data_max    = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(4)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, i * <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4, 0));</div><div class="line"><a name="l00362"></a><span class="lineno">  362</span>&#160;        max_val_vec = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(data_max, max_val_vec, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00363"></a><span class="lineno">  363</span>&#160;    }</div><div class="line"><a name="l00364"></a><span class="lineno">  364</span>&#160;<span class="preprocessor">#ifdef NON_MULTIPLE_OF_GRID_SIZE</span></div><div class="line"><a name="l00365"></a><span class="lineno">  365</span>&#160;    <span class="comment">// How many work-items needed to complete the computation.</span></div><div class="line"><a name="l00366"></a><span class="lineno">  366</span>&#160;    <span class="comment">//TODO: Optimize this calculation (avoid %).</span></div><div class="line"><a name="l00367"></a><span class="lineno">  367</span>&#160;    <span class="keywordtype">int</span> boundary_workitems = (width % (<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4)) / 4;</div><div class="line"><a name="l00368"></a><span class="lineno">  368</span>&#160;    <span class="keywordflow">if</span>(lid &lt; boundary_workitems)</div><div class="line"><a name="l00369"></a><span class="lineno">  369</span>&#160;    {</div><div class="line"><a name="l00370"></a><span class="lineno">  370</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00371"></a><span class="lineno">  371</span>&#160;        data_max    = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(4)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, i * <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4, 0));</div><div class="line"><a name="l00372"></a><span class="lineno">  372</span>&#160;        max_val_vec = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(data_max, max_val_vec, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00373"></a><span class="lineno">  373</span>&#160;    }</div><div class="line"><a name="l00374"></a><span class="lineno">  374</span>&#160;<span class="preprocessor">#ifdef NON_MULTIPLE_OF_VECTOR_SIZE</span></div><div class="line"><a name="l00375"></a><span class="lineno">  375</span>&#160;    <span class="keywordflow">if</span>(boundary_workitems == 0)</div><div class="line"><a name="l00376"></a><span class="lineno">  376</span>&#160;    {</div><div class="line"><a name="l00377"></a><span class="lineno">  377</span>&#160;        boundary_workitems = <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a>;</div><div class="line"><a name="l00378"></a><span class="lineno">  378</span>&#160;        i--;</div><div class="line"><a name="l00379"></a><span class="lineno">  379</span>&#160;    }</div><div class="line"><a name="l00380"></a><span class="lineno">  380</span>&#160;    <span class="keywordflow">if</span>(lid == (boundary_workitems - 1))</div><div class="line"><a name="l00381"></a><span class="lineno">  381</span>&#160;    {</div><div class="line"><a name="l00382"></a><span class="lineno">  382</span>&#160;        <span class="comment">// Handle non multiple of 4</span></div><div class="line"><a name="l00383"></a><span class="lineno">  383</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00384"></a><span class="lineno">  384</span>&#160;        data_max = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(4)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, (<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * i * 4) + 4, 0));</div><div class="line"><a name="l00385"></a><span class="lineno">  385</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, 4)</div><div class="line"><a name="l00386"></a><span class="lineno">  386</span>&#160;        widx        = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(((uint4)(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * i * 4) + boundary_workitems * 4 + <a class="code" href="softmax__layer_8cl.xhtml#a4884a666a1e93fbf8c27bd7d2da3c8bb">idx4</a>) &lt; width, <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, 4));</div><div class="line"><a name="l00387"></a><span class="lineno">  387</span>&#160;        max_val_vec = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(<a class="code" href="softmax__layer_8cl.xhtml#af7a08044d0e491a0ee1520a24a107a2b">type_min_</a>, data_max, widx), <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00388"></a><span class="lineno">  388</span>&#160;    }</div><div class="line"><a name="l00389"></a><span class="lineno">  389</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* NON_MULTIPLE_OF_VECTOR_SIZE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00390"></a><span class="lineno">  390</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* NON_MULTIPLE_OF_GRID_SIZE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00391"></a><span class="lineno">  391</span>&#160;    tmp_local[lid] = max_val_vec;</div><div class="line"><a name="l00392"></a><span class="lineno">  392</span>&#160;</div><div class="line"><a name="l00393"></a><span class="lineno">  393</span>&#160;    barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00394"></a><span class="lineno">  394</span>&#160;</div><div class="line"><a name="l00395"></a><span class="lineno">  395</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 256)</div><div class="line"><a name="l00396"></a><span class="lineno">  396</span>&#160;    {</div><div class="line"><a name="l00397"></a><span class="lineno">  397</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 128)</div><div class="line"><a name="l00398"></a><span class="lineno">  398</span>&#160;        {</div><div class="line"><a name="l00399"></a><span class="lineno">  399</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 128], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00400"></a><span class="lineno">  400</span>&#160;        }</div><div class="line"><a name="l00401"></a><span class="lineno">  401</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00402"></a><span class="lineno">  402</span>&#160;    }</div><div class="line"><a name="l00403"></a><span class="lineno">  403</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 128)</div><div class="line"><a name="l00404"></a><span class="lineno">  404</span>&#160;    {</div><div class="line"><a name="l00405"></a><span class="lineno">  405</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 64)</div><div class="line"><a name="l00406"></a><span class="lineno">  406</span>&#160;        {</div><div class="line"><a name="l00407"></a><span class="lineno">  407</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 64], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00408"></a><span class="lineno">  408</span>&#160;        }</div><div class="line"><a name="l00409"></a><span class="lineno">  409</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00410"></a><span class="lineno">  410</span>&#160;    }</div><div class="line"><a name="l00411"></a><span class="lineno">  411</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 64)</div><div class="line"><a name="l00412"></a><span class="lineno">  412</span>&#160;    {</div><div class="line"><a name="l00413"></a><span class="lineno">  413</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 32)</div><div class="line"><a name="l00414"></a><span class="lineno">  414</span>&#160;        {</div><div class="line"><a name="l00415"></a><span class="lineno">  415</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 32], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00416"></a><span class="lineno">  416</span>&#160;        }</div><div class="line"><a name="l00417"></a><span class="lineno">  417</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00418"></a><span class="lineno">  418</span>&#160;    }</div><div class="line"><a name="l00419"></a><span class="lineno">  419</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 32)</div><div class="line"><a name="l00420"></a><span class="lineno">  420</span>&#160;    {</div><div class="line"><a name="l00421"></a><span class="lineno">  421</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 16)</div><div class="line"><a name="l00422"></a><span class="lineno">  422</span>&#160;        {</div><div class="line"><a name="l00423"></a><span class="lineno">  423</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 16], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00424"></a><span class="lineno">  424</span>&#160;        }</div><div class="line"><a name="l00425"></a><span class="lineno">  425</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00426"></a><span class="lineno">  426</span>&#160;    }</div><div class="line"><a name="l00427"></a><span class="lineno">  427</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 16)</div><div class="line"><a name="l00428"></a><span class="lineno">  428</span>&#160;    {</div><div class="line"><a name="l00429"></a><span class="lineno">  429</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 8)</div><div class="line"><a name="l00430"></a><span class="lineno">  430</span>&#160;        {</div><div class="line"><a name="l00431"></a><span class="lineno">  431</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 8], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00432"></a><span class="lineno">  432</span>&#160;        }</div><div class="line"><a name="l00433"></a><span class="lineno">  433</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00434"></a><span class="lineno">  434</span>&#160;    }</div><div class="line"><a name="l00435"></a><span class="lineno">  435</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 8)</div><div class="line"><a name="l00436"></a><span class="lineno">  436</span>&#160;    {</div><div class="line"><a name="l00437"></a><span class="lineno">  437</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 4)</div><div class="line"><a name="l00438"></a><span class="lineno">  438</span>&#160;        {</div><div class="line"><a name="l00439"></a><span class="lineno">  439</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 4], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00440"></a><span class="lineno">  440</span>&#160;        }</div><div class="line"><a name="l00441"></a><span class="lineno">  441</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00442"></a><span class="lineno">  442</span>&#160;    }</div><div class="line"><a name="l00443"></a><span class="lineno">  443</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 4)</div><div class="line"><a name="l00444"></a><span class="lineno">  444</span>&#160;    {</div><div class="line"><a name="l00445"></a><span class="lineno">  445</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 2)</div><div class="line"><a name="l00446"></a><span class="lineno">  446</span>&#160;        {</div><div class="line"><a name="l00447"></a><span class="lineno">  447</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 2], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00448"></a><span class="lineno">  448</span>&#160;        }</div><div class="line"><a name="l00449"></a><span class="lineno">  449</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00450"></a><span class="lineno">  450</span>&#160;    }</div><div class="line"><a name="l00451"></a><span class="lineno">  451</span>&#160;    <span class="keywordflow">if</span>(lid == 0)</div><div class="line"><a name="l00452"></a><span class="lineno">  452</span>&#160;    {</div><div class="line"><a name="l00453"></a><span class="lineno">  453</span>&#160;        max_val_vec     = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(tmp_local[lid + 1], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00454"></a><span class="lineno">  454</span>&#160;        max_val_vec.s01 = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec.s01, max_val_vec.s23, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 2);</div><div class="line"><a name="l00455"></a><span class="lineno">  455</span>&#160;        max_val_vec.s0  = <a class="code" href="softmax__layer_8cl.xhtml#abaa48ad818c44e415fd3f9dd0f27bf01">MAX_OP</a>(max_val_vec.s0, max_val_vec.s1, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 1);</div><div class="line"><a name="l00456"></a><span class="lineno">  456</span>&#160;        max_local       = max_val_vec.s0;</div><div class="line"><a name="l00457"></a><span class="lineno">  457</span>&#160;    }</div><div class="line"><a name="l00458"></a><span class="lineno">  458</span>&#160;    barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00459"></a><span class="lineno">  459</span>&#160;</div><div class="line"><a name="l00460"></a><span class="lineno">  460</span>&#160;    <span class="comment">/* Second section */</span></div><div class="line"><a name="l00461"></a><span class="lineno">  461</span>&#160;</div><div class="line"><a name="l00462"></a><span class="lineno">  462</span>&#160;    <span class="comment">// Set sum vector</span></div><div class="line"><a name="l00463"></a><span class="lineno">  463</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00464"></a><span class="lineno">  464</span>&#160;    sum1D             = 0;</div><div class="line"><a name="l00465"></a><span class="lineno">  465</span>&#160;    <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> max_val = max_local;</div><div class="line"><a name="l00466"></a><span class="lineno">  466</span>&#160;</div><div class="line"><a name="l00467"></a><span class="lineno">  467</span>&#160;    <span class="comment">// Shift values, exp and sum</span></div><div class="line"><a name="l00468"></a><span class="lineno">  468</span>&#160;    <span class="keywordflow">for</span>(i = 0; i &lt; width_; i++)</div><div class="line"><a name="l00469"></a><span class="lineno">  469</span>&#160;    {</div><div class="line"><a name="l00470"></a><span class="lineno">  470</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00471"></a><span class="lineno">  471</span>&#160;        data = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(4)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, i * <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4, 0));</div><div class="line"><a name="l00472"></a><span class="lineno">  472</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#ac3af2d18008cbbf7247ae48fcd6e0c4e">SUB_OP</a>(data, max_val, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00473"></a><span class="lineno">  473</span>&#160;<span class="preprocessor">#ifdef BETA</span></div><div class="line"><a name="l00474"></a><span class="lineno">  474</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a22303c4047ec5027c1538d53964b9d0d">MUL_OP</a>(data, beta, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00475"></a><span class="lineno">  475</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* BETA */</span><span class="preprocessor"></span></div><div class="line"><a name="l00476"></a><span class="lineno">  476</span>&#160;<span class="preprocessor">#ifdef LOG_SOFTMAX</span></div><div class="line"><a name="l00477"></a><span class="lineno">  477</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(4)</div><div class="line"><a name="l00478"></a><span class="lineno">  478</span>&#160;        (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, i * <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4, 0));</div><div class="line"><a name="l00479"></a><span class="lineno">  479</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00480"></a><span class="lineno">  480</span>&#160;<span class="preprocessor">#else  </span><span class="comment">/* LOG_SOFTMAX */</span><span class="preprocessor"></span></div><div class="line"><a name="l00481"></a><span class="lineno">  481</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00482"></a><span class="lineno">  482</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(4)</div><div class="line"><a name="l00483"></a><span class="lineno">  483</span>&#160;        (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, i * <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4, 0));</div><div class="line"><a name="l00484"></a><span class="lineno">  484</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* LOG_SOFTMAX */</span><span class="preprocessor"></span></div><div class="line"><a name="l00485"></a><span class="lineno">  485</span>&#160;        sum1D = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D, data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00486"></a><span class="lineno">  486</span>&#160;    }</div><div class="line"><a name="l00487"></a><span class="lineno">  487</span>&#160;<span class="preprocessor">#ifdef NON_MULTIPLE_OF_GRID_SIZE</span></div><div class="line"><a name="l00488"></a><span class="lineno">  488</span>&#160;    <span class="comment">//TODO: Optimize the calculation (avoid %).</span></div><div class="line"><a name="l00489"></a><span class="lineno">  489</span>&#160;    boundary_workitems = (width % (<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4)) / 4;</div><div class="line"><a name="l00490"></a><span class="lineno">  490</span>&#160;    <span class="keywordflow">if</span>(lid &lt; boundary_workitems)</div><div class="line"><a name="l00491"></a><span class="lineno">  491</span>&#160;    {</div><div class="line"><a name="l00492"></a><span class="lineno">  492</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00493"></a><span class="lineno">  493</span>&#160;        data = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(4)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, i * <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4, 0));</div><div class="line"><a name="l00494"></a><span class="lineno">  494</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#ac3af2d18008cbbf7247ae48fcd6e0c4e">SUB_OP</a>(data, max_val, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00495"></a><span class="lineno">  495</span>&#160;<span class="preprocessor">#ifdef BETA</span></div><div class="line"><a name="l00496"></a><span class="lineno">  496</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a22303c4047ec5027c1538d53964b9d0d">MUL_OP</a>(data, beta, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00497"></a><span class="lineno">  497</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* BETA */</span><span class="preprocessor"></span></div><div class="line"><a name="l00498"></a><span class="lineno">  498</span>&#160;<span class="preprocessor">#ifdef LOG_SOFTMAX</span></div><div class="line"><a name="l00499"></a><span class="lineno">  499</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(4)</div><div class="line"><a name="l00500"></a><span class="lineno">  500</span>&#160;        (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, i * <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4, 0));</div><div class="line"><a name="l00501"></a><span class="lineno">  501</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00502"></a><span class="lineno">  502</span>&#160;<span class="preprocessor">#else  </span><span class="comment">/* LOG_SOFTMAX */</span><span class="preprocessor"></span></div><div class="line"><a name="l00503"></a><span class="lineno">  503</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00504"></a><span class="lineno">  504</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(4)</div><div class="line"><a name="l00505"></a><span class="lineno">  505</span>&#160;        (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, i * <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * 4, 0));</div><div class="line"><a name="l00506"></a><span class="lineno">  506</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* LOG_SOFTMAX */</span><span class="preprocessor"></span></div><div class="line"><a name="l00507"></a><span class="lineno">  507</span>&#160;        sum1D = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D, data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00508"></a><span class="lineno">  508</span>&#160;    }</div><div class="line"><a name="l00509"></a><span class="lineno">  509</span>&#160;<span class="preprocessor">#ifdef NON_MULTIPLE_OF_VECTOR_SIZE</span></div><div class="line"><a name="l00510"></a><span class="lineno">  510</span>&#160;    <span class="keywordflow">if</span>(boundary_workitems == 0)</div><div class="line"><a name="l00511"></a><span class="lineno">  511</span>&#160;    {</div><div class="line"><a name="l00512"></a><span class="lineno">  512</span>&#160;        boundary_workitems = <a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a>;</div><div class="line"><a name="l00513"></a><span class="lineno">  513</span>&#160;        i--;</div><div class="line"><a name="l00514"></a><span class="lineno">  514</span>&#160;    }</div><div class="line"><a name="l00515"></a><span class="lineno">  515</span>&#160;    <span class="keywordflow">if</span>(lid == (boundary_workitems - 1))</div><div class="line"><a name="l00516"></a><span class="lineno">  516</span>&#160;    {</div><div class="line"><a name="l00517"></a><span class="lineno">  517</span>&#160;        <span class="comment">// Handle non multiple of vector size ((GRID_SIZE * i * 4) + 4, 0); move 4 float positions ahead, *4 is due to the stride</span></div><div class="line"><a name="l00518"></a><span class="lineno">  518</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4)</div><div class="line"><a name="l00519"></a><span class="lineno">  519</span>&#160;        data = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(4)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, (<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * i * 4) + 4, 0));</div><div class="line"><a name="l00520"></a><span class="lineno">  520</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#ac3af2d18008cbbf7247ae48fcd6e0c4e">SUB_OP</a>(data, max_val, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00521"></a><span class="lineno">  521</span>&#160;<span class="preprocessor">#ifdef BETA</span></div><div class="line"><a name="l00522"></a><span class="lineno">  522</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a22303c4047ec5027c1538d53964b9d0d">MUL_OP</a>(data, beta, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00523"></a><span class="lineno">  523</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* BETA */</span><span class="preprocessor"></span></div><div class="line"><a name="l00524"></a><span class="lineno">  524</span>&#160;<span class="preprocessor">#ifdef LOG_SOFTMAX</span></div><div class="line"><a name="l00525"></a><span class="lineno">  525</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(4)</div><div class="line"><a name="l00526"></a><span class="lineno">  526</span>&#160;        (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, (<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * i * 4) + 4, 0));</div><div class="line"><a name="l00527"></a><span class="lineno">  527</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00528"></a><span class="lineno">  528</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, 4)</div><div class="line"><a name="l00529"></a><span class="lineno">  529</span>&#160;        widx = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(((uint4)(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * i * 4) + boundary_workitems * 4 + <a class="code" href="softmax__layer_8cl.xhtml#a4884a666a1e93fbf8c27bd7d2da3c8bb">idx4</a>) &lt; width, <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, 4));</div><div class="line"><a name="l00530"></a><span class="lineno">  530</span>&#160;        data = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(0, data, widx);</div><div class="line"><a name="l00531"></a><span class="lineno">  531</span>&#160;<span class="preprocessor">#else  </span><span class="comment">/* LOG_SOFTMAX */</span><span class="preprocessor"></span></div><div class="line"><a name="l00532"></a><span class="lineno">  532</span>&#160;        data = <a class="code" href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a>(data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00533"></a><span class="lineno">  533</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, 4)</div><div class="line"><a name="l00534"></a><span class="lineno">  534</span>&#160;        widx = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(((uint4)(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * i * 4) + boundary_workitems * 4 + <a class="code" href="softmax__layer_8cl.xhtml#a4884a666a1e93fbf8c27bd7d2da3c8bb">idx4</a>) &lt; width, <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a>, 4));</div><div class="line"><a name="l00535"></a><span class="lineno">  535</span>&#160;        data = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(0, data, widx);</div><div class="line"><a name="l00536"></a><span class="lineno">  536</span>&#160;        <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(4)</div><div class="line"><a name="l00537"></a><span class="lineno">  537</span>&#160;        (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, (<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> * i * 4) + 4, 0));</div><div class="line"><a name="l00538"></a><span class="lineno">  538</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* LOG_SOFTMAX */</span><span class="preprocessor"></span></div><div class="line"><a name="l00539"></a><span class="lineno">  539</span>&#160;        sum1D = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D, data, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00540"></a><span class="lineno">  540</span>&#160;    }</div><div class="line"><a name="l00541"></a><span class="lineno">  541</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* NON_MULTIPLE_OF_VECTOR_SIZE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00542"></a><span class="lineno">  542</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* NON_MULTIPLE_OF_GRID_SIZE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00543"></a><span class="lineno">  543</span>&#160;    tmp_local[lid] = sum1D;</div><div class="line"><a name="l00544"></a><span class="lineno">  544</span>&#160;</div><div class="line"><a name="l00545"></a><span class="lineno">  545</span>&#160;    barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00546"></a><span class="lineno">  546</span>&#160;</div><div class="line"><a name="l00547"></a><span class="lineno">  547</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 256)</div><div class="line"><a name="l00548"></a><span class="lineno">  548</span>&#160;    {</div><div class="line"><a name="l00549"></a><span class="lineno">  549</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 128)</div><div class="line"><a name="l00550"></a><span class="lineno">  550</span>&#160;        {</div><div class="line"><a name="l00551"></a><span class="lineno">  551</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 128], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00552"></a><span class="lineno">  552</span>&#160;        }</div><div class="line"><a name="l00553"></a><span class="lineno">  553</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00554"></a><span class="lineno">  554</span>&#160;    }</div><div class="line"><a name="l00555"></a><span class="lineno">  555</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 128)</div><div class="line"><a name="l00556"></a><span class="lineno">  556</span>&#160;    {</div><div class="line"><a name="l00557"></a><span class="lineno">  557</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 64)</div><div class="line"><a name="l00558"></a><span class="lineno">  558</span>&#160;        {</div><div class="line"><a name="l00559"></a><span class="lineno">  559</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 64], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00560"></a><span class="lineno">  560</span>&#160;        }</div><div class="line"><a name="l00561"></a><span class="lineno">  561</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00562"></a><span class="lineno">  562</span>&#160;    }</div><div class="line"><a name="l00563"></a><span class="lineno">  563</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 64)</div><div class="line"><a name="l00564"></a><span class="lineno">  564</span>&#160;    {</div><div class="line"><a name="l00565"></a><span class="lineno">  565</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 32)</div><div class="line"><a name="l00566"></a><span class="lineno">  566</span>&#160;        {</div><div class="line"><a name="l00567"></a><span class="lineno">  567</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 32], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00568"></a><span class="lineno">  568</span>&#160;        }</div><div class="line"><a name="l00569"></a><span class="lineno">  569</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00570"></a><span class="lineno">  570</span>&#160;    }</div><div class="line"><a name="l00571"></a><span class="lineno">  571</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 32)</div><div class="line"><a name="l00572"></a><span class="lineno">  572</span>&#160;    {</div><div class="line"><a name="l00573"></a><span class="lineno">  573</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 16)</div><div class="line"><a name="l00574"></a><span class="lineno">  574</span>&#160;        {</div><div class="line"><a name="l00575"></a><span class="lineno">  575</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 16], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00576"></a><span class="lineno">  576</span>&#160;        }</div><div class="line"><a name="l00577"></a><span class="lineno">  577</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00578"></a><span class="lineno">  578</span>&#160;    }</div><div class="line"><a name="l00579"></a><span class="lineno">  579</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 16)</div><div class="line"><a name="l00580"></a><span class="lineno">  580</span>&#160;    {</div><div class="line"><a name="l00581"></a><span class="lineno">  581</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 8)</div><div class="line"><a name="l00582"></a><span class="lineno">  582</span>&#160;        {</div><div class="line"><a name="l00583"></a><span class="lineno">  583</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 8], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00584"></a><span class="lineno">  584</span>&#160;        }</div><div class="line"><a name="l00585"></a><span class="lineno">  585</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00586"></a><span class="lineno">  586</span>&#160;    }</div><div class="line"><a name="l00587"></a><span class="lineno">  587</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 8)</div><div class="line"><a name="l00588"></a><span class="lineno">  588</span>&#160;    {</div><div class="line"><a name="l00589"></a><span class="lineno">  589</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 4)</div><div class="line"><a name="l00590"></a><span class="lineno">  590</span>&#160;        {</div><div class="line"><a name="l00591"></a><span class="lineno">  591</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 4], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00592"></a><span class="lineno">  592</span>&#160;        }</div><div class="line"><a name="l00593"></a><span class="lineno">  593</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00594"></a><span class="lineno">  594</span>&#160;    }</div><div class="line"><a name="l00595"></a><span class="lineno">  595</span>&#160;    <span class="keywordflow">if</span>(<a class="code" href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a> &gt;= 4)</div><div class="line"><a name="l00596"></a><span class="lineno">  596</span>&#160;    {</div><div class="line"><a name="l00597"></a><span class="lineno">  597</span>&#160;        <span class="keywordflow">if</span>(lid &lt; 2)</div><div class="line"><a name="l00598"></a><span class="lineno">  598</span>&#160;        {</div><div class="line"><a name="l00599"></a><span class="lineno">  599</span>&#160;            tmp_local[lid] = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 2], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00600"></a><span class="lineno">  600</span>&#160;        }</div><div class="line"><a name="l00601"></a><span class="lineno">  601</span>&#160;        barrier(CLK_LOCAL_MEM_FENCE);</div><div class="line"><a name="l00602"></a><span class="lineno">  602</span>&#160;    }</div><div class="line"><a name="l00603"></a><span class="lineno">  603</span>&#160;    <span class="keywordflow">if</span>(lid == 0)</div><div class="line"><a name="l00604"></a><span class="lineno">  604</span>&#160;    {</div><div class="line"><a name="l00605"></a><span class="lineno">  605</span>&#160;        sum1D = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(tmp_local[lid + 1], tmp_local[lid], <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 4);</div><div class="line"><a name="l00606"></a><span class="lineno">  606</span>&#160;        <span class="comment">// Perform max reduction</span></div><div class="line"><a name="l00607"></a><span class="lineno">  607</span>&#160;        sum1D.s01                        = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D.s01, sum1D.s23, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 2);</div><div class="line"><a name="l00608"></a><span class="lineno">  608</span>&#160;        sum1D.s0                         = <a class="code" href="softmax__layer_8cl.xhtml#a44206a4e5783c7aabacec88aad878c88">ADD_OP</a>(sum1D.s0, sum1D.s1, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 1);</div><div class="line"><a name="l00609"></a><span class="lineno">  609</span>&#160;        *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="reduction__operation_8cl.xhtml#ab0df00f5333da51860deb93deb44a782">sum</a>.ptr) = sum1D.s0;</div><div class="line"><a name="l00610"></a><span class="lineno">  610</span>&#160;    }</div><div class="line"><a name="l00611"></a><span class="lineno">  611</span>&#160;}</div><div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a009469e4d9b8fce3b6d5e97d2077827d"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a></div><div class="ttdeci">__global uchar * offset(const Image *img, int x, int y)</div><div class="ttdoc">Get the pointer position of a Image.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00510">helpers.h:510</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a071aa45af973feac43b14f62e54a6fce"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a071aa45af973feac43b14f62e54a6fce">CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP</a></div><div class="ttdeci">#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00320">helpers.h:320</a></div></div>
 <div class="ttc" id="softmax__layer_8cl_xhtml_aa1dd94b8d98f1c6d790bdf0fc5de29e9"><div class="ttname"><a href="softmax__layer_8cl.xhtml#aa1dd94b8d98f1c6d790bdf0fc5de29e9">idx__</a></div><div class="ttdeci">__constant uint16 idx__</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00063">softmax_layer.cl:63</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_aa8d95ba04fc73845abc6045952cae5be"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a></div><div class="ttdeci">#define CONVERT(x, type)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00079">helpers.h:79</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_aa8d95ba04fc73845abc6045952cae5be"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a></div><div class="ttdeci">#define CONVERT(x, type)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00261">helpers.h:261</a></div></div>
 <div class="ttc" id="softmax__layer_8cl_xhtml_a93cf800667317d96574477b9f0a75234"><div class="ttname"><a href="softmax__layer_8cl.xhtml#a93cf800667317d96574477b9f0a75234">EXP_OP</a></div><div class="ttdeci">#define EXP_OP(x, type, size)</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00031">softmax_layer.cl:31</a></div></div>
 <div class="ttc" id="convolution3x3_8cl_xhtml_afb8c72ce35c4a1f4a2588d6573e54aa1"><div class="ttname"><a href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a></div><div class="ttdeci">#define DATA_TYPE</div><div class="ttdef"><b>Definition:</b> <a href="convolution3x3_8cl_source.xhtml#l00027">convolution3x3.cl:27</a></div></div>
 <div class="ttc" id="softmax__layer_8cl_xhtml_a372393c380805985b813dbb16d589a64"><div class="ttname"><a href="softmax__layer_8cl.xhtml#a372393c380805985b813dbb16d589a64">LOG_VECTOR_SIZE</a></div><div class="ttdeci">#define LOG_VECTOR_SIZE</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00061">softmax_layer.cl:61</a></div></div>
@@ -114,36 +114,36 @@
 <div class="ttc" id="softmax__layer_8cl_xhtml_a8cde99b1ce0f3c1dacd49261b0cf03d8"><div class="ttname"><a href="softmax__layer_8cl.xhtml#a8cde99b1ce0f3c1dacd49261b0cf03d8">DIV_OP</a></div><div class="ttdeci">#define DIV_OP(x, y, type, size)</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00030">softmax_layer.cl:30</a></div></div>
 <div class="ttc" id="softmax__layer_8cl_xhtml_ac4247ac0991e85965b7ded764e78f12c"><div class="ttname"><a href="softmax__layer_8cl.xhtml#ac4247ac0991e85965b7ded764e78f12c">softmax_layer_norm</a></div><div class="ttdeci">__kernel void softmax_layer_norm(__global uchar *src_ptr, uint src_stride_x, uint src_step_x, uint src_stride_y, uint src_step_y, uint src_stride_z, uint src_step_z, uint src_offset_first_element_in_bytes, __global uchar *sum_ptr, uint sum_stride_x, uint sum_step_x, uint sum_stride_y, uint sum_step_y, uint sum_stride_z, uint sum_step_z, uint sum_offset_first_element_in_bytes, __global uchar *dst_ptr, uint dst_stride_x, uint dst_step_x, uint dst_stride_y, uint dst_step_y, uint dst_stride_z, uint dst_step_z, uint dst_offset_first_element_in_bytes)</div><div class="ttdoc">Divides all the values of the input tensor by the sum calculated from softmax_layer_shift_exp_sum ker...</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00101">softmax_layer.cl:101</a></div></div>
 <div class="ttc" id="softmax__layer_8cl_xhtml_a7c78836761fa3b5b124efea237dac70f"><div class="ttname"><a href="softmax__layer_8cl.xhtml#a7c78836761fa3b5b124efea237dac70f">VECTOR_SIZE</a></div><div class="ttdeci">#define VECTOR_SIZE</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00060">softmax_layer.cl:60</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a541f8db866a0fa93ee67d58ea31a7d0c"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a></div><div class="ttdeci">#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00141">helpers.h:141</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a541f8db866a0fa93ee67d58ea31a7d0c"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a541f8db866a0fa93ee67d58ea31a7d0c">CONVERT_TENSOR3D_TO_IMAGE_STRUCT</a></div><div class="ttdeci">#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00323">helpers.h:323</a></div></div>
 <div class="ttc" id="softmax__layer_8cl_xhtml_af5b2e33e3c5fcaab3a213f26c2300170"><div class="ttname"><a href="softmax__layer_8cl.xhtml#af5b2e33e3c5fcaab3a213f26c2300170">SELECT_DATA_TYPE</a></div><div class="ttdeci">#define SELECT_DATA_TYPE</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00038">softmax_layer.cl:38</a></div></div>
-<div class="ttc" id="softmax__layer_8cl_xhtml_a82bc360279fcf7cf8033dca6022f21f5"><div class="ttname"><a href="softmax__layer_8cl.xhtml#a82bc360279fcf7cf8033dca6022f21f5">softmax_layer_max_shift_exp_sum_parallel</a></div><div class="ttdeci">__kernel void softmax_layer_max_shift_exp_sum_parallel(__global uchar *src_ptr, uint src_stride_x, uint src_step_x, uint src_stride_y, uint src_step_y, uint src_stride_z, uint src_step_z, uint src_offset_first_element_in_bytes, __global uchar *maxo_ptr, uint maxo_stride_x, uint maxo_step_x, uint maxo_stride_y, uint maxo_step_y, uint maxo_stride_z, uint maxo_step_z, uint maxo_offset_first_element_in_bytes, __global uchar *dst_ptr, uint dst_stride_x, uint dst_step_x, uint dst_stride_y, uint dst_step_y, uint dst_stride_z, uint dst_step_z, uint dst_offset_first_element_in_bytes, __global uchar *sum_ptr, uint sum_stride_x, uint sum_step_x, uint sum_stride_y, uint sum_step_y, uint sum_stride_z, uint sum_step_z, uint sum_offset_first_element_in_bytes, uint width)</div><div class="ttdoc">Identifies the maximum value across the 1st dimension and shifts the values of the input tensor by th...</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00307">softmax_layer.cl:307</a></div></div>
+<div class="ttc" id="softmax__layer_8cl_xhtml_a82bc360279fcf7cf8033dca6022f21f5"><div class="ttname"><a href="softmax__layer_8cl.xhtml#a82bc360279fcf7cf8033dca6022f21f5">softmax_layer_max_shift_exp_sum_parallel</a></div><div class="ttdeci">__kernel void softmax_layer_max_shift_exp_sum_parallel(__global uchar *src_ptr, uint src_stride_x, uint src_step_x, uint src_stride_y, uint src_step_y, uint src_stride_z, uint src_step_z, uint src_offset_first_element_in_bytes, __global uchar *maxo_ptr, uint maxo_stride_x, uint maxo_step_x, uint maxo_stride_y, uint maxo_step_y, uint maxo_stride_z, uint maxo_step_z, uint maxo_offset_first_element_in_bytes, __global uchar *dst_ptr, uint dst_stride_x, uint dst_step_x, uint dst_stride_y, uint dst_step_y, uint dst_stride_z, uint dst_step_z, uint dst_offset_first_element_in_bytes, __global uchar *sum_ptr, uint sum_stride_x, uint sum_step_x, uint sum_stride_y, uint sum_step_y, uint sum_stride_z, uint sum_step_z, uint sum_offset_first_element_in_bytes, uint width)</div><div class="ttdoc">Identifies the maximum value across the 1st dimension and shifts the values of the input tensor by th...</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00325">softmax_layer.cl:325</a></div></div>
 <div class="ttc" id="softmax__layer_8cl_xhtml_a4884a666a1e93fbf8c27bd7d2da3c8bb"><div class="ttname"><a href="softmax__layer_8cl.xhtml#a4884a666a1e93fbf8c27bd7d2da3c8bb">idx4</a></div><div class="ttdeci">__constant uint4 idx4</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00070">softmax_layer.cl:70</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_ae4b532a93c757194ec73b6790a3e6b1f"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#ae4b532a93c757194ec73b6790a3e6b1f">EXPAND</a></div><div class="ttdeci">#define EXPAND(x)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00048">helpers.h:48</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_ae4b532a93c757194ec73b6790a3e6b1f"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#ae4b532a93c757194ec73b6790a3e6b1f">EXPAND</a></div><div class="ttdeci">#define EXPAND(x)</div><div class="ttdoc">Expand the given vector.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00061">helpers.h:61</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_adbf67dcee294e673cf796f1ed8aeb6a4"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">arm_compute::test::validation::dst</a></div><div class="ttdeci">CLTensor dst</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_absolute_difference_8cpp_source.xhtml#l00102">AbsoluteDifference.cpp:102</a></div></div>
 <div class="ttc" id="softmax__layer_8cl_xhtml_a22303c4047ec5027c1538d53964b9d0d"><div class="ttname"><a href="softmax__layer_8cl.xhtml#a22303c4047ec5027c1538d53964b9d0d">MUL_OP</a></div><div class="ttdeci">#define MUL_OP(x, y, type, size)</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00029">softmax_layer.cl:29</a></div></div>
-<div class="ttc" id="struct_image_xhtml"><div class="ttname"><a href="struct_image.xhtml">Image</a></div><div class="ttdoc">Structure to hold Image information.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00167">helpers.h:167</a></div></div>
-<div class="ttc" id="struct_image_xhtml_acf52c23cbd7424606c10a606524e3e32"><div class="ttname"><a href="struct_image.xhtml#acf52c23cbd7424606c10a606524e3e32">Image::ptr</a></div><div class="ttdeci">__global uchar * ptr</div><div class="ttdoc">Pointer to the starting postion of the buffer.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00169">helpers.h:169</a></div></div>
+<div class="ttc" id="struct_image_xhtml"><div class="ttname"><a href="struct_image.xhtml">Image</a></div><div class="ttdoc">Structure to hold Image information.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00349">helpers.h:349</a></div></div>
+<div class="ttc" id="struct_image_xhtml_acf52c23cbd7424606c10a606524e3e32"><div class="ttname"><a href="struct_image.xhtml#acf52c23cbd7424606c10a606524e3e32">Image::ptr</a></div><div class="ttdeci">__global uchar * ptr</div><div class="ttdoc">Pointer to the starting postion of the buffer.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00351">helpers.h:351</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_af77145fbdc6b0c8931148f5597d9de53"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">arm_compute::test::validation::select</a></div><div class="ttdeci">CLSelect select</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_select_8cpp_source.xhtml#l00164">Select.cpp:164</a></div></div>
 <div class="ttc" id="softmax__layer_8cl_xhtml_ac3af2d18008cbbf7247ae48fcd6e0c4e"><div class="ttname"><a href="softmax__layer_8cl.xhtml#ac3af2d18008cbbf7247ae48fcd6e0c4e">SUB_OP</a></div><div class="ttdeci">#define SUB_OP(x, y, type, size)</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00028">softmax_layer.cl:28</a></div></div>
 <div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml">helpers.h</a></div></div>
 <div class="ttc" id="softmax__layer_8cl_xhtml_a0712735973f172ac9efc7d48a31e47ad"><div class="ttname"><a href="softmax__layer_8cl.xhtml#a0712735973f172ac9efc7d48a31e47ad">idx16</a></div><div class="ttdeci">__constant uint16 idx16</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00069">softmax_layer.cl:69</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_acb282042d1edeeaa3cc979a206f78b54"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a></div><div class="ttdeci">#define VSTORE(size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00056">helpers.h:56</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_acb282042d1edeeaa3cc979a206f78b54"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a></div><div class="ttdeci">#define VSTORE(size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00198">helpers.h:198</a></div></div>
 <div class="ttc" id="softmax__layer_8cl_xhtml_a80b22c555ddadb47cc6ca338a9c49126"><div class="ttname"><a href="softmax__layer_8cl.xhtml#a80b22c555ddadb47cc6ca338a9c49126">MINVAL</a></div><div class="ttdeci">#define MINVAL</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00037">softmax_layer.cl:37</a></div></div>
 <div class="ttc" id="softmax__layer_8cl_xhtml_a08246606c233e7785a497c09672f366f"><div class="ttname"><a href="softmax__layer_8cl.xhtml#a08246606c233e7785a497c09672f366f">GRID_SIZE</a></div><div class="ttdeci">#define GRID_SIZE</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00043">softmax_layer.cl:43</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a287e2fc366c312b468382c95bb90f91f"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a></div><div class="ttdeci">#define VLOAD(size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00053">helpers.h:53</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a6b83038822d1ae7ab619b684ed3b7fc0"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a></div><div class="ttdeci">#define TENSOR3D_DECLARATION(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00101">helpers.h:101</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a287e2fc366c312b468382c95bb90f91f"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a></div><div class="ttdeci">#define VLOAD(size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00195">helpers.h:195</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a6b83038822d1ae7ab619b684ed3b7fc0"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a></div><div class="ttdeci">#define TENSOR3D_DECLARATION(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00283">helpers.h:283</a></div></div>
 <div class="ttc" id="softmax__layer_8cl_xhtml_a538b4b63f40e7b12891774e03a4f0dec"><div class="ttname"><a href="softmax__layer_8cl.xhtml#a538b4b63f40e7b12891774e03a4f0dec">type_min</a></div><div class="ttdeci">__constant DATA_TYPE16 type_min</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00068">softmax_layer.cl:68</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a0f6ad555d097377151003a5119ccee45"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a0f6ad555d097377151003a5119ccee45">CL_VEC_DATA_TYPE</a></div><div class="ttdeci">#define CL_VEC_DATA_TYPE(type, size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00076">helpers.h:76</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a0f6ad555d097377151003a5119ccee45"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a0f6ad555d097377151003a5119ccee45">CL_VEC_DATA_TYPE</a></div><div class="ttdeci">#define CL_VEC_DATA_TYPE(type, size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00258">helpers.h:258</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a989ab3e96426615bb98e04e0235088ca"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">arm_compute::test::validation::src</a></div><div class="ttdeci">cast configure &amp; src</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_cast_8cpp_source.xhtml#l00169">Cast.cpp:169</a></div></div>
-<div class="ttc" id="softmax__layer_8cl_xhtml_a9d74601bcabbb2f14bcf52385ad666dc"><div class="ttname"><a href="softmax__layer_8cl.xhtml#a9d74601bcabbb2f14bcf52385ad666dc">softmax_layer_max_shift_exp_sum_serial</a></div><div class="ttdeci">__kernel void softmax_layer_max_shift_exp_sum_serial(__global uchar *src_ptr, uint src_stride_x, uint src_step_x, uint src_stride_y, uint src_step_y, uint src_stride_z, uint src_step_z, uint src_offset_first_element_in_bytes, __global uchar *maxo_ptr, uint maxo_stride_x, uint maxo_step_x, uint maxo_stride_y, uint maxo_step_y, uint maxo_stride_z, uint maxo_step_z, uint maxo_offset_first_element_in_bytes, __global uchar *dst_ptr, uint dst_stride_x, uint dst_step_x, uint dst_stride_y, uint dst_step_y, uint dst_stride_z, uint dst_step_z, uint dst_offset_first_element_in_bytes, __global uchar *sum_ptr, uint sum_stride_x, uint sum_step_x, uint sum_stride_y, uint sum_step_y, uint sum_stride_z, uint sum_step_z, uint sum_offset_first_element_in_bytes, uint width)</div><div class="ttdoc">Identifies the maximum value across the 1st dimension and shifts the values of the input tensor by th...</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00158">softmax_layer.cl:158</a></div></div>
-<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a36f754c05b6fddf6df0d8d0a74f8159f"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a></div><div class="ttdeci">#define VEC_DATA_TYPE(type, size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00073">helpers.h:73</a></div></div>
+<div class="ttc" id="softmax__layer_8cl_xhtml_a9d74601bcabbb2f14bcf52385ad666dc"><div class="ttname"><a href="softmax__layer_8cl.xhtml#a9d74601bcabbb2f14bcf52385ad666dc">softmax_layer_max_shift_exp_sum_serial</a></div><div class="ttdeci">__kernel void softmax_layer_max_shift_exp_sum_serial(__global uchar *src_ptr, uint src_stride_x, uint src_step_x, uint src_stride_y, uint src_step_y, uint src_stride_z, uint src_step_z, uint src_offset_first_element_in_bytes, __global uchar *maxo_ptr, uint maxo_stride_x, uint maxo_step_x, uint maxo_stride_y, uint maxo_step_y, uint maxo_stride_z, uint maxo_step_z, uint maxo_offset_first_element_in_bytes, __global uchar *dst_ptr, uint dst_stride_x, uint dst_step_x, uint dst_stride_y, uint dst_step_y, uint dst_stride_z, uint dst_step_z, uint dst_offset_first_element_in_bytes, __global uchar *sum_ptr, uint sum_stride_x, uint sum_step_x, uint sum_stride_y, uint sum_step_y, uint sum_stride_z, uint sum_step_z, uint sum_offset_first_element_in_bytes, uint width)</div><div class="ttdoc">Identifies the maximum value across the 1st dimension and shifts the values of the input tensor by th...</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer_8cl_source.xhtml#l00162">softmax_layer.cl:162</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a36f754c05b6fddf6df0d8d0a74f8159f"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a></div><div class="ttdeci">#define VEC_DATA_TYPE(type, size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00255">helpers.h:255</a></div></div>
 </div><!-- fragment --></div><!-- contents -->
 </div><!-- doc-content -->
 <!-- start footer part -->
 <div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
   <ul>
     <li class="navelem"><a class="el" href="dir_68267d1309a1af8e8297ef4c3efbcdba.xhtml">src</a></li><li class="navelem"><a class="el" href="dir_aebb8dcc11953d78e620bbef0b9e2183.xhtml">core</a></li><li class="navelem"><a class="el" href="dir_8c278f79c760e5c5fbd911f9870614c1.xhtml">CL</a></li><li class="navelem"><a class="el" href="dir_25885286e9dad4fa105b7b25a8031bbf.xhtml">cl_kernels</a></li><li class="navelem"><a class="el" href="softmax__layer_8cl.xhtml">softmax_layer.cl</a></li>
-    <li class="footer">Generated on Mon Sep 2 2019 11:47:21 for Compute Library by
+    <li class="footer">Generated on Thu Nov 28 2019 16:52:58 for Compute Library by
     <a href="http://www.doxygen.org/index.html">
     <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.15 </li>
   </ul>