arm_compute v19.11
diff --git a/src/runtime/CL/functions/CLGEMMConvolutionLayer.cpp b/src/runtime/CL/functions/CLGEMMConvolutionLayer.cpp
index be6be04..d322723 100644
--- a/src/runtime/CL/functions/CLGEMMConvolutionLayer.cpp
+++ b/src/runtime/CL/functions/CLGEMMConvolutionLayer.cpp
@@ -27,6 +27,7 @@
 #include "arm_compute/core/Size2D.h"
 #include "arm_compute/core/Utils.h"
 #include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/Cast.h"
 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
 #include "arm_compute/runtime/CL/CLScheduler.h"
@@ -35,8 +36,10 @@
 #include <memory>
 #include <tuple>
 
-using namespace arm_compute;
+namespace arm_compute
+{
 using namespace arm_compute::misc::shape_calculator;
+using namespace arm_compute::utils::cast;
 
 CLConvolutionLayerReshapeWeights::CLConvolutionLayerReshapeWeights()
     : _weights_reshape_kernel()
@@ -63,13 +66,14 @@
 Status CLConvolutionLayerReshapeWeights::validate(const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, unsigned int num_groups)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(weights);
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::QSYMM8_PER_CHANNEL, DataType::F16, DataType::F32);
     ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
 
     if(biases != nullptr)
     {
         const int idx_kernels = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::BATCHES);
-        ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(weights->data_type()));
+        ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized(weights->data_type()));
+
         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
         ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels));
         ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
@@ -78,7 +82,6 @@
     if((output != nullptr) && (output->total_size() != 0))
     {
         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output);
-
         CLWeightsReshapeKernel::validate(weights, biases, output, num_groups);
     }
 
@@ -90,9 +93,10 @@
     CLScheduler::get().enqueue(_weights_reshape_kernel);
 }
 
-CLGEMMConvolutionLayer::CLGEMMConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
-    : _memory_group(memory_manager), _reshape_weights(), _im2col_kernel(), _mm_gemm(memory_manager), _mm_gemmlowp(memory_manager), _col2im_kernel(), _activationlayer_function(),
-      _original_weights(nullptr), _im2col_output(), _weights_reshaped(), _gemm_output(), _skip_im2col(false), _skip_col2im(false), _is_quantized(false), _fuse_activation(true), _is_prepared(false)
+CLGEMMConvolutionLayer::CLGEMMConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager, IWeightsManager *weights_manager)
+    : _memory_group(memory_manager), _weights_manager(weights_manager), _reshape_weights(), _reshape_weights_managed(), _im2col_kernel(), _mm_gemm(memory_manager, weights_manager),
+      _mm_gemmlowp(memory_manager), _col2im_kernel(), _activationlayer_function(), _original_weights(nullptr), _im2col_output(), _weights_reshaped(), _gemm_output(), _skip_im2col(false),
+      _skip_col2im(false), _is_quantized(false), _fuse_activation(true), _is_prepared(false)
 {
 }
 
@@ -197,9 +201,9 @@
 
     const unsigned int kernel_width  = weights->info()->dimension(idx_width);
     const unsigned int kernel_height = weights->info()->dimension(idx_height);
+    const unsigned int num_kernels   = weights->info()->dimension(idx_kernels);
 
     const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform();
-    const UniformQuantizationInfo wq_info = weights->info()->quantization_info().uniform();
     const UniformQuantizationInfo oq_info = output->info()->quantization_info().uniform();
 
     _is_prepared      = weights_info.retain_internal_weights();
@@ -233,11 +237,12 @@
                                                  conv_info,
                                                  dilation);
 
-    unsigned int mat_weights_cols = weights->info()->dimension(idx_kernels) / num_groups;
+    unsigned int mat_weights_cols = num_kernels / num_groups;
 
     const ICLTensor *biases_to_use = biases;
     bool             append_bias   = false;
 
+    ICLTensor *weights_to_use = &_weights_reshaped;
     if(num_groups != 1 && biases != nullptr)
     {
         // num_groups != 1 can only be for NCHW
@@ -245,11 +250,27 @@
         biases_to_use = nullptr;
         append_bias   = true;
 
-        _reshape_weights.configure(weights, biases, &_weights_reshaped, num_groups);
+        if(_weights_manager && _weights_manager->are_weights_managed(weights))
+        {
+            _reshape_weights_managed.configure(weights, biases, num_groups);
+            weights_to_use = utils::cast::polymorphic_downcast<ICLTensor *>(_weights_manager->acquire(weights, &_reshape_weights_managed));
+        }
+        else
+        {
+            _reshape_weights.configure(weights, biases, &_weights_reshaped, num_groups);
+        }
     }
     else
     {
-        _reshape_weights.configure(weights, nullptr, &_weights_reshaped, num_groups);
+        if(_weights_manager && _weights_manager->are_weights_managed(weights))
+        {
+            _reshape_weights_managed.configure(weights, nullptr, num_groups);
+            weights_to_use = utils::cast::polymorphic_downcast<ICLTensor *>(_weights_manager->acquire(weights, &_reshape_weights_managed));
+        }
+        else
+        {
+            _reshape_weights.configure(weights, nullptr, &_weights_reshaped, num_groups);
+        }
     }
 
     // Create tensor to store im2col reshaped inputs
@@ -289,20 +310,28 @@
     }
 
     GEMMLowpOutputStageInfo gemmlowp_output_stage;
-    gemmlowp_output_stage.type                = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
-    gemmlowp_output_stage.gemmlowp_offset     = 0;
-    gemmlowp_output_stage.gemmlowp_multiplier = 0;
-    gemmlowp_output_stage.gemmlowp_shift      = 0;
+    gemmlowp_output_stage.type            = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
+    gemmlowp_output_stage.gemmlowp_offset = 0;
 
     // Configure output stage for quantized case
     if(_is_quantized)
     {
-        const auto output_quant_info = (output->info()->total_size() == 0) ? iq_info : oq_info;
+        const auto         output_quant_info        = (output->info()->total_size() == 0) ? iq_info : oq_info;
+        const bool         is_quantized_per_channel = is_data_type_quantized_per_channel(weights->info()->data_type());
+        const unsigned int num_filters              = (is_quantized_per_channel) ? num_kernels : 1;
 
-        const float multiplier        = (iq_info.scale * wq_info.scale) / output_quant_info.scale;
-        int         output_multiplier = 0;
-        int         output_shift      = 0;
-        quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
+        gemmlowp_output_stage.is_quantized_per_channel = is_quantized_per_channel;
+
+        gemmlowp_output_stage.gemmlowp_multipliers.resize(num_filters);
+        gemmlowp_output_stage.gemmlowp_shifts.resize(num_filters);
+        quantization::compute_quantized_multipliers_and_shifts(input->info(),
+                                                               weights->info(),
+                                                               output->info(),
+                                                               idx_kernels,
+                                                               gemmlowp_output_stage.gemmlowp_multipliers.data(),
+                                                               gemmlowp_output_stage.gemmlowp_shifts.data());
+        gemmlowp_output_stage.gemmlowp_multiplier = gemmlowp_output_stage.gemmlowp_multipliers[0];
+        gemmlowp_output_stage.gemmlowp_shift      = gemmlowp_output_stage.gemmlowp_shifts[0];
 
         int min_activation = 0;
         int max_activation = 0;
@@ -329,18 +358,16 @@
         }
 
         // Set the GEMMLowp output stage info
-        gemmlowp_output_stage.gemmlowp_offset     = output_quant_info.offset;
-        gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier;
-        gemmlowp_output_stage.gemmlowp_shift      = output_shift;
-        gemmlowp_output_stage.gemmlowp_min_bound  = min_activation;
-        gemmlowp_output_stage.gemmlowp_max_bound  = max_activation;
+        gemmlowp_output_stage.gemmlowp_offset    = output_quant_info.offset;
+        gemmlowp_output_stage.gemmlowp_min_bound = min_activation;
+        gemmlowp_output_stage.gemmlowp_max_bound = max_activation;
     }
 
     // Configure and tune GEMM
     // In case of NHWC, we need to run GEMM3D (gemm_3d_depth != 0) in order to avoid reshaping the output matrix
     const unsigned int gemm_3d_depth = (data_layout == DataLayout::NHWC) ? conv_h : 0;
 
-    configure_mm(gemm_input_to_use, &_weights_reshaped, biases_to_use, gemm_output_to_use, gemmlowp_output_stage, gemm_3d_depth, act_info);
+    configure_mm(gemm_input_to_use, weights_to_use, biases_to_use, gemm_output_to_use, gemmlowp_output_stage, gemm_3d_depth, act_info);
 
     if(!_skip_im2col)
     {
@@ -375,8 +402,17 @@
 {
     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
     ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!");
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
-    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QSYMM8_PER_CHANNEL, DataType::F16, DataType::F32);
+    const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights->data_type());
+
+    if(is_quantized_per_channel)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_type() != DataType::QASYMM8, "Input data type not compatible with Weights");
+    }
+    else
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
+    }
     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights);
     ARM_COMPUTE_RETURN_ERROR_ON_MSG((num_groups != 1) && (input->data_layout() != DataLayout::NCHW), "Grouping (num_groups != 1) with NHWC data layout is not supported");
     ARM_COMPUTE_RETURN_ERROR_ON_MSG((num_groups != 1) && (input->data_type() == DataType::QASYMM8), "Grouping (num_groups != 1) is not supported with QASYMM8");
@@ -391,6 +427,7 @@
 
     const unsigned int kernel_width  = weights->dimension(idx_width);
     const unsigned int kernel_height = weights->dimension(idx_height);
+    const unsigned int num_kernels   = weights->dimension(idx_kernels);
 
     TensorInfo         im2col_reshaped_info{};
     TensorInfo         info_gemm{};
@@ -398,15 +435,10 @@
     const ITensorInfo *gemm_input_to_use  = input;
     const ITensorInfo *gemm_output_to_use = output;
     const ITensorInfo *weights_to_use     = weights;
-
-    const bool is_quantized    = is_data_type_quantized_asymmetric(data_type);
-    const bool skip_im2col     = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
-    const bool skip_col2im     = data_layout == DataLayout::NHWC;
-    bool       fuse_activation = true;
-
-    const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
-    const UniformQuantizationInfo wq_info = weights->quantization_info().uniform();
-    const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
+    const bool         is_quantized       = is_data_type_quantized_asymmetric(data_type);
+    const bool         skip_im2col        = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
+    const bool         skip_col2im        = data_layout == DataLayout::NHWC;
+    bool               fuse_activation    = true;
 
     ARM_COMPUTE_RETURN_ERROR_ON((weights->dimension(idx_channel) * num_groups) != input->dimension(idx_channel));
     ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
@@ -442,7 +474,7 @@
                                                  conv_info,
                                                  dilation);
 
-    unsigned int mat_weights_cols = weights->dimension(idx_kernels) / num_groups;
+    unsigned int mat_weights_cols = num_kernels / num_groups;
 
     const ITensorInfo *biases_to_use = biases;
     bool               append_bias   = false;
@@ -493,20 +525,27 @@
     }
 
     GEMMLowpOutputStageInfo gemmlowp_output_stage;
-    gemmlowp_output_stage.type                = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
-    gemmlowp_output_stage.gemmlowp_offset     = 0;
-    gemmlowp_output_stage.gemmlowp_multiplier = 0;
-    gemmlowp_output_stage.gemmlowp_shift      = 0;
+    gemmlowp_output_stage.type                     = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
+    gemmlowp_output_stage.gemmlowp_offset          = 0;
+    gemmlowp_output_stage.is_quantized_per_channel = is_quantized_per_channel;
 
     if(is_quantized)
     {
-        const auto output_quant_info = (output->total_size() == 0) ? iq_info : oq_info;
+        const UniformQuantizationInfo iq_info           = input->quantization_info().uniform();
+        const UniformQuantizationInfo oq_info           = output->quantization_info().uniform();
+        const auto                    output_quant_info = (output->total_size() == 0) ? iq_info : oq_info;
+        const unsigned int            num_filters       = (is_quantized_per_channel) ? num_kernels : 1;
 
-        const float multiplier        = (iq_info.scale * wq_info.scale) / output_quant_info.scale;
-        int         output_multiplier = 0;
-        int         output_shift      = 0;
-
-        ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift));
+        gemmlowp_output_stage.gemmlowp_multipliers.resize(num_filters);
+        gemmlowp_output_stage.gemmlowp_shifts.resize(num_filters);
+        quantization::compute_quantized_multipliers_and_shifts(input,
+                                                               weights,
+                                                               output,
+                                                               idx_kernels,
+                                                               gemmlowp_output_stage.gemmlowp_multipliers.data(),
+                                                               gemmlowp_output_stage.gemmlowp_shifts.data());
+        gemmlowp_output_stage.gemmlowp_multiplier = gemmlowp_output_stage.gemmlowp_multipliers[0];
+        gemmlowp_output_stage.gemmlowp_shift      = gemmlowp_output_stage.gemmlowp_shifts[0];
 
         int min_activation = 0;
         int max_activation = 0;
@@ -533,11 +572,9 @@
         }
 
         // Set the GEMMLowp output stage info
-        gemmlowp_output_stage.gemmlowp_offset     = output_quant_info.offset;
-        gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier;
-        gemmlowp_output_stage.gemmlowp_shift      = output_shift;
-        gemmlowp_output_stage.gemmlowp_min_bound  = min_activation;
-        gemmlowp_output_stage.gemmlowp_max_bound  = max_activation;
+        gemmlowp_output_stage.gemmlowp_offset    = output_quant_info.offset;
+        gemmlowp_output_stage.gemmlowp_min_bound = min_activation;
+        gemmlowp_output_stage.gemmlowp_max_bound = max_activation;
     }
 
     // In case of NHWC, we need to run GEMM3D (gemm_3d_depth != 0) in order to avoid reshaping the output matrix
@@ -602,11 +639,17 @@
     if(!_is_prepared)
     {
         ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
-
-        // Run weights reshaping and mark original weights tensor as unused
-        _weights_reshaped.allocator()->allocate();
-        _reshape_weights.run();
-        _original_weights->mark_as_unused();
+        if(_weights_manager && _weights_manager->are_weights_managed(_original_weights))
+        {
+            _weights_manager->run(_original_weights, &_reshape_weights_managed);
+        }
+        else
+        {
+            // Run weights reshaping and mark original weights tensor as unused
+            _weights_reshaped.allocator()->allocate();
+            _reshape_weights.run();
+            _original_weights->mark_as_unused();
+        }
 
         // Prepare GEMM
         _is_quantized ? _mm_gemmlowp.prepare() : _mm_gemm.prepare();
@@ -619,3 +662,4 @@
         _is_prepared = true;
     }
 }
+} // namespace arm_compute