arm_compute v19.11
diff --git a/tests/validate_examples/RunExample.cpp b/tests/validate_examples/RunExample.cpp
new file mode 100644
index 0000000..f00460a
--- /dev/null
+++ b/tests/validate_examples/RunExample.cpp
@@ -0,0 +1,206 @@
+/*
+ * Copyright (c) 2018-2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "utils/Utils.h"
+
+#define BENCHMARK_EXAMPLES
+#include "utils/Utils.cpp"
+
+#include "ValidateExample.h"
+#include "arm_compute/runtime/Scheduler.h"
+#include "tests/AssetsLibrary.h"
+#include "tests/Globals.h"
+#include "tests/framework/Framework.h"
+#include "tests/framework/Macros.h"
+#include "tests/framework/command_line/CommonOptions.h"
+#include "tests/framework/instruments/Instruments.h"
+#include "utils/command_line/CommandLineParser.h"
+
+#ifdef ARM_COMPUTE_CL
+#include "arm_compute/runtime/CL/CLScheduler.h"
+#endif /* ARM_COMPUTE_CL */
+#ifdef ARM_COMPUTE_GC
+#include "arm_compute/runtime/GLES_COMPUTE/GCScheduler.h"
+#endif /* ARM_COMPUTE_GC */
+
+#include <libgen.h>
+
+using namespace arm_compute;
+using namespace arm_compute::test;
+
+namespace arm_compute
+{
+namespace test
+{
+std::unique_ptr<AssetsLibrary> library;
+} // namespace test
+namespace utils
+{
+static std::unique_ptr<ValidateExample> g_example      = nullptr;
+static std::vector<char *>              g_example_argv = {};
+
+namespace
+{
+std::string command_line(int argc, char **argv)
+{
+    std::stringstream ss;
+    for(int i = 0; i < argc; i++)
+    {
+        ss << argv[i] << " ";
+    }
+    return ss.str();
+}
+
+template <bool validate>
+class ExampleTest : public arm_compute::test::framework::TestCase
+{
+public:
+    ExampleTest() = default;
+    void do_setup() override
+    {
+        ARM_COMPUTE_ERROR_ON_NULLPTR(g_example.get());
+        _is_setup = g_example->do_setup(g_example_argv.size(), &g_example_argv[0]);
+    }
+    void do_run() override
+    {
+        if(_is_setup)
+        {
+            g_example->do_run();
+        }
+    }
+    void do_teardown() override
+    {
+        if(_is_setup)
+        {
+            if(validate)
+            {
+                g_example->do_validate();
+            }
+            g_example->do_teardown();
+        }
+        g_example = nullptr;
+    }
+
+private:
+    bool _is_setup{ false };
+};
+
+} // namespace
+int run_example(int argc, char **argv, std::unique_ptr<ValidateExample> example)
+{
+    utils::CommandLineParser parser;
+    framework::CommonOptions options(parser);
+    auto                     example_args = parser.add_option<utils::ListOption<std::string>>("example_args");
+    example_args->set_help("Arguments to pass to the example separated by commas (e.g: arg0,arg1,arg2)");
+    auto seed = parser.add_option<utils::SimpleOption<std::random_device::result_type>>("seed", std::random_device()());
+    seed->set_help("Global seed for random number generation");
+    auto validate = parser.add_option<utils::SimpleOption<int>>("validate", 1);
+    validate->set_help("Enable / disable output validation (0/1)");
+
+    framework::Framework &framework = framework::Framework::get();
+
+    parser.parse(argc, argv);
+
+    if(options.help->is_set() && options.help->value())
+    {
+        parser.print_help(argv[0]);
+        return 0;
+    }
+
+    std::vector<std::unique_ptr<framework::Printer>> printers = options.create_printers();
+    g_example                                                 = std::move(example);
+    g_example_argv.clear();
+    g_example_argv.emplace_back(argv[0]);
+    for(auto &arg : example_args->value())
+    {
+        g_example_argv.emplace_back(const_cast<char *>(arg.c_str())); // NOLINT
+    }
+
+    library = support::cpp14::make_unique<AssetsLibrary>("." /* Only using random values */, seed->value());
+
+    if(options.log_level->value() > framework::LogLevel::NONE)
+    {
+        for(auto &p : printers)
+        {
+            p->print_global_header();
+        }
+    }
+
+    if(options.log_level->value() >= framework::LogLevel::CONFIG)
+    {
+        for(auto &p : printers)
+        {
+            p->print_entry("Version", build_information());
+            p->print_entry("CommandLine", command_line(argc, argv));
+            p->print_entry("Seed", support::cpp11::to_string(seed->value()));
+#ifdef ARM_COMPUTE_CL
+            if(opencl_is_available())
+            {
+                if(!CLScheduler::get().is_initialised())
+                {
+                    CLScheduler::get().default_init();
+                }
+                p->print_entry("CL_DEVICE_VERSION", CLKernelLibrary::get().get_device_version());
+            }
+            else
+            {
+                p->print_entry("CL_DEVICE_VERSION", "Unavailable");
+            }
+#endif /* ARM_COMPUTE_CL */
+            p->print_entry("Iterations", support::cpp11::to_string(options.iterations->value()));
+            g_example->print_parameters(*p);
+        }
+    }
+
+    framework.init(options.instruments->value(), options.iterations->value(), framework::DatasetMode::ALL, "", "", options.log_level->value());
+    for(auto &p : printers)
+    {
+        framework.add_printer(p.get());
+    }
+
+    framework.set_throw_errors(options.throw_errors->value());
+    arm_compute::test::framework::detail::TestSuiteRegistrar suite{ "Examples" };
+    if(validate->value() != 0)
+    {
+        framework.add_test_case<ExampleTest<true>>(basename(argv[0]), framework::DatasetMode::ALL, arm_compute::test::framework::TestCaseFactory::Status::ACTIVE);
+    }
+    else
+    {
+        framework.add_test_case<ExampleTest<false>>(basename(argv[0]), framework::DatasetMode::ALL, arm_compute::test::framework::TestCaseFactory::Status::ACTIVE);
+    }
+
+    //func(argc, argv);
+    bool success = framework.run();
+    if(options.log_level->value() > framework::LogLevel::NONE)
+    {
+        for(auto &p : printers)
+        {
+            p->print_global_footer();
+        }
+    }
+
+    return (success ? 0 : 1);
+}
+
+} // namespace utils
+} // namespace arm_compute
diff --git a/tests/validate_examples/ValidateExample.h b/tests/validate_examples/ValidateExample.h
new file mode 100644
index 0000000..8076006
--- /dev/null
+++ b/tests/validate_examples/ValidateExample.h
@@ -0,0 +1,87 @@
+/*
+ * Copyright (c) 2016-2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef __VALIDATE_EXAMPLE_H__
+#define __VALIDATE_EXAMPLE_H__
+
+#include "utils/Utils.h"
+namespace arm_compute
+{
+namespace test
+{
+namespace framework
+{
+class Printer;
+} // namespace framework
+} // namespace test
+namespace utils
+{
+/** Abstract ValidateExample class.
+ *
+ * All examples with a validation stage have to inherit from this class.
+ */
+class ValidateExample
+{
+public:
+    /** Setup the example.
+     *
+     * @param[in] argc Argument count.
+     * @param[in] argv Argument values.
+     */
+    virtual bool do_setup(int argc, char **argv)
+    {
+        ARM_COMPUTE_UNUSED(argc, argv);
+        return true;
+    };
+    /** Run the example. */
+    virtual void do_run() {};
+    /** Run reference implementation and validate against the target output
+     */
+    virtual void do_validate()
+    {
+    }
+    /** Teardown the example. */
+    virtual void do_teardown() {};
+    /** Print the example parameters
+     *
+     * @param[in,out] printer Printer to use to print the parameters
+     */
+    virtual void print_parameters(test::framework::Printer &printer)
+    {
+        ARM_COMPUTE_UNUSED(printer);
+    }
+
+    /** Default destructor */
+    virtual ~ValidateExample() = default;
+};
+/** Run an example and handle the potential exceptions it throws
+ *
+ * @param[in] argc    Number of command line arguments
+ * @param[in] argv    Command line arguments
+ * @param[in] example Example to run
+ */
+int run_example(int argc, char **argv, std::unique_ptr<ValidateExample> example);
+
+} // namespace utils
+} // namespace arm_compute
+#endif /* __VALIDATE_EXAMPLE_H__ */
diff --git a/tests/validate_examples/cl_gemm.cpp b/tests/validate_examples/cl_gemm.cpp
new file mode 100644
index 0000000..128c5f6
--- /dev/null
+++ b/tests/validate_examples/cl_gemm.cpp
@@ -0,0 +1,429 @@
+/*
+ * Copyright (c) 2017-2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CL /* Needed by Utils.cpp to handle OpenCL exceptions properly */
+#error "This example needs to be built with -DARM_COMPUTE_CL"
+#endif /* ARM_COMPUTE_CL */
+
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+#include "arm_compute/runtime/CL/CLFunctions.h"
+#include "arm_compute/runtime/CL/CLScheduler.h"
+
+#include "tests/AssetsLibrary.h"
+#include "tests/CL/CLAccessor.h"
+#include "tests/Globals.h"
+#include "tests/IAccessor.h"
+#include "tests/SimpleTensor.h"
+#include "tests/validation/Validation.h"
+#include "tests/validation/reference/GEMM.h"
+#include "tests/validation/reference/GEMMLowp.h"
+
+#include "utils/TypePrinter.h"
+#include "utils/Utils.h"
+#include "utils/command_line/CommandLineOptions.h"
+#include "utils/command_line/CommandLineParser.h"
+
+#include "ValidateExample.h"
+
+#include <cstdlib>
+
+using namespace arm_compute;
+using namespace utils;
+using namespace arm_compute::test;
+using namespace arm_compute::test::validation;
+
+constexpr float                     abs_tolerance_f32(0.0001f); /**< F32 Absolute tolerance value for comparing reference's output against implementation's output for
+                                                               * floating point data types in case using relative tolerance fails because of small values */
+RelativeTolerance<float>            tolerance_f32(0.001f);      /**< F32 Tolerance value for comparing reference's output against implementation's output for floating point data types */
+RelativeTolerance<half_float::half> tolerance_f16(half(0.2));   /**< F16 Tolerance value for comparing reference's output against implementation's output for floating point data types */
+constexpr float                     tolerance_num_f16 = 0.02f;  /**< F16 Tolerance number */
+
+namespace arm_compute
+{
+DataType data_type_from_name(const std::string &name)
+{
+    static const std::map<std::string, DataType> data_types =
+    {
+        { "f16", DataType::F16 },
+        { "f32", DataType::F32 },
+        { "qasymm8", DataType::QASYMM8 },
+    };
+
+#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
+    try
+    {
+#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
+        return data_types.at(utility::tolower(name));
+
+#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
+    }
+    catch(const std::out_of_range &)
+    {
+        throw std::invalid_argument(name);
+    }
+#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
+}
+
+inline ::std::istream &operator>>(::std::istream &stream, DataType &data_type)
+{
+    std::string value;
+    stream >> value;
+    data_type = data_type_from_name(value);
+    return stream;
+}
+} // namespace arm_compute
+namespace
+{
+class GEMMCommandLineOptions final
+{
+public:
+    explicit GEMMCommandLineOptions(CommandLineParser &parser) noexcept
+        : help(parser.add_option<ToggleOption>("help")),
+          add_bias(parser.add_option<ToggleOption>("add_bias")),
+          M(parser.add_option<SimpleOption<int>>("m", 7)),
+          N(parser.add_option<SimpleOption<int>>("n", 3)),
+          K(parser.add_option<SimpleOption<int>>("k", 5)),
+          B(parser.add_option<SimpleOption<int>>("b", 1)),
+          alpha(parser.add_option<SimpleOption<float>>("alpha", 1.f)),
+          beta(parser.add_option<SimpleOption<float>>("beta", 0.f)),
+          offset_src0(parser.add_option<SimpleOption<int>>("offset_i0", 10)),
+          offset_src1(parser.add_option<SimpleOption<int>>("offset_i1", 10)),
+          offset_dst(parser.add_option<SimpleOption<int>>("offset_o", 10)),
+          scale_src0(parser.add_option<SimpleOption<float>>("scale_i0", 1.f / 255)),
+          scale_src1(parser.add_option<SimpleOption<float>>("scale_i1", 1.f / 255)),
+          scale_dst(parser.add_option<SimpleOption<float>>("scale_o", 1.f / 255)),
+          data_type()
+    {
+        // Setup data type
+        const std::set<arm_compute::DataType> supported_data_types
+        {
+            DataType::F16,
+            DataType::F32,
+            DataType::QASYMM8,
+        };
+        data_type = parser.add_option<EnumOption<DataType>>("type", supported_data_types, DataType::F32);
+
+        // Setup help strings
+        help->set_help("Show this help message");
+        add_bias->set_help("Add bias to the GEMM. Used when running in QASYMM8");
+        M->set_help("M value");
+        N->set_help("N value");
+        K->set_help("K value");
+        B->set_help("B value - number of batches");
+        alpha->set_help("Alpha value");
+        beta->set_help("Beta value");
+        offset_src0->set_help("Offset of first input. Used when running in QASYMM8");
+        offset_src1->set_help("Offset of second input. Used when running in QASYMM8");
+        offset_dst->set_help("Offset of output. Used when running in QASYMM8");
+        scale_src0->set_help("Scale of first input. Used when running in QASYMM8");
+        scale_src1->set_help("Scale of second input. Used when running in QASYMM8");
+        scale_dst->set_help("Scale of output. Used when running in QASYMM8");
+        data_type->set_help("Data type to use");
+    }
+    /** Prevent instances of this class from being copied (As this class contains pointers) */
+    GEMMCommandLineOptions(const GEMMCommandLineOptions &) = delete;
+    /** Prevent instances of this class from being copied (As this class contains pointers) */
+    GEMMCommandLineOptions &operator=(const GEMMCommandLineOptions &) = delete;
+    /** Allow instances of this class to be moved */
+    GEMMCommandLineOptions(GEMMCommandLineOptions &&) noexcept(true) = default;
+    /** Allow instances of this class to be moved */
+    GEMMCommandLineOptions &operator=(GEMMCommandLineOptions &&) noexcept(true) = default;
+    /** Default destructor */
+    ~GEMMCommandLineOptions() = default;
+
+public:
+    ToggleOption                      *help;
+    ToggleOption                      *add_bias;
+    SimpleOption<int>                 *M;
+    SimpleOption<int>                 *N;
+    SimpleOption<int>                 *K;
+    SimpleOption<int>                 *B;
+    SimpleOption<float>               *alpha;
+    SimpleOption<float>               *beta;
+    SimpleOption<int>                 *offset_src0;
+    SimpleOption<int>                 *offset_src1;
+    SimpleOption<int>                 *offset_dst;
+    SimpleOption<float>               *scale_src0;
+    SimpleOption<float>               *scale_src1;
+    SimpleOption<float>               *scale_dst;
+    EnumOption<arm_compute::DataType> *data_type;
+};
+} // namespace
+
+class CLGEMMValidateExample : public ValidateExample
+{
+public:
+    bool do_setup(int argc, char **argv) override
+    {
+        CLScheduler::get().default_init();
+
+        // Parse options
+        CommandLineParser      parser;
+        GEMMCommandLineOptions gemm_options(parser);
+        parser.parse(argc, argv);
+
+        // Print help
+        const bool print_help = gemm_options.help->is_set() ? gemm_options.help->value() : false;
+        if(print_help)
+        {
+            parser.print_help(argv[0]);
+            return false;
+        }
+
+        // Consume parameters
+        consume_params(gemm_options);
+        print_parameters_internal();
+
+        // Calculate re-quantization parameters
+        if(data_type == DataType::QASYMM8)
+        {
+            float multiplier = scale_src0 * scale_src1 / scale_dst;
+            quantization::calculate_quantized_multiplier_less_than_one(multiplier, &dst_multiplier, &dst_shift);
+        }
+
+        // Initialize GEMM inputs/outputs
+        src0.allocator()->init(TensorInfo(TensorShape(K, M, B), 1, data_type));
+        src1.allocator()->init(TensorInfo(TensorShape(N, K, B), 1, data_type));
+        src2.allocator()->init(TensorInfo(TensorShape(N, M, B), 1, data_type));
+        init_sgemm_output(dst, src0, src1, data_type);
+
+        // Configure function
+        if(data_type == DataType::QASYMM8)
+        {
+            src0.info()->set_quantization_info(QuantizationInfo(scale_src0, offset_src0));
+            src1.info()->set_quantization_info(QuantizationInfo(scale_src1, offset_src1));
+            dst.info()->set_quantization_info(QuantizationInfo(scale_dst, offset_dst));
+            biases.allocator()->init(TensorInfo(TensorShape(N), 1, DataType::S32));
+            init_sgemm_output(tmp_dst, src0, src1, DataType::S32);
+
+            // Configure GEMMlowp matrix multiply function
+            mm_gemmlowp.configure(&src0, &src1, nullptr, &tmp_dst);
+
+            // Configure GEMMlowp output stage
+            mm_gemmlowp_output_stage.configure(&tmp_dst, add_bias ? &biases : nullptr, &dst, dst_multiplier, dst_shift, offset_dst);
+            tmp_dst.allocator()->allocate();
+            biases.allocator()->allocate();
+            fill(CLAccessor(biases), 3);
+        }
+        else
+        {
+            // Configure matrix multiply function
+            mm_gemm.configure(&src0, &src1, &src2, &dst, alpha, beta);
+        }
+
+        // Allocate all the tensors
+        src0.allocator()->allocate();
+        src1.allocator()->allocate();
+        dst.allocator()->allocate();
+        src2.allocator()->allocate();
+
+        fill(CLAccessor(src0), 0);
+        fill(CLAccessor(src1), 1);
+        fill(CLAccessor(src2), 2);
+
+        return true;
+    }
+
+    void print_parameters_internal()
+    {
+        std::cout << "Datatype : " << string_from_data_type(data_type) << "\n";
+        std::cout << "M : " << support::cpp11::to_string(M) << "\n";
+        std::cout << "N : " << support::cpp11::to_string(N) << "\n";
+        std::cout << "K : " << support::cpp11::to_string(K) << "\n";
+        std::cout << "B : " << support::cpp11::to_string(B) << "\n";
+        if(data_type == DataType::QASYMM8)
+        {
+            std::cout << "Scale_Src0 : " << support::cpp11::to_string(scale_src0) << "\n";
+            std::cout << "Offset_Src0 : " << support::cpp11::to_string(offset_src0) << "\n";
+            std::cout << "Scale_Scr1 : " << support::cpp11::to_string(scale_src1) << "\n";
+            std::cout << "Offset_Src1 : " << support::cpp11::to_string(offset_src1) << "\n";
+            std::cout << "Scale_Dst : " << support::cpp11::to_string(scale_dst) << "\n";
+            std::cout << "Offset_Dst : " << support::cpp11::to_string(offset_dst) << "\n";
+            std::cout << "Bias : " << support::cpp11::to_string(add_bias) << "\n";
+        }
+        else
+        {
+            std::cout << "Alpha : " << support::cpp11::to_string(alpha) << "\n";
+            std::cout << "Beta : " << support::cpp11::to_string(beta) << "\n";
+        }
+    }
+
+    void do_validate() override
+    {
+        switch(data_type)
+        {
+            case DataType::F16:
+            {
+                SimpleTensor<half> ref_src0 = { TensorShape(K, M, B), data_type, 1 };
+                SimpleTensor<half> ref_src1 = { TensorShape(N, K, B), data_type, 1 };
+                SimpleTensor<half> ref_src2 = { TensorShape(N, M, B), data_type, 1 };
+
+                fill(ref_src0, 0);
+                fill(ref_src1, 1);
+                fill(ref_src2, 2);
+
+                SimpleTensor<half> ref_dst = reference::gemm<half>(ref_src0, ref_src1, ref_src2, alpha, beta);
+                validate(CLAccessor(dst), ref_dst, tolerance_f16, tolerance_num_f16);
+                break;
+            }
+            case DataType::F32:
+            {
+                SimpleTensor<float> ref_src0 = { TensorShape(K, M, B), data_type, 1 };
+                SimpleTensor<float> ref_src1 = { TensorShape(N, K, B), data_type, 1 };
+                SimpleTensor<float> ref_src2 = { TensorShape(N, M, B), data_type, 1 };
+
+                fill(ref_src0, 0);
+                fill(ref_src1, 1);
+                fill(ref_src2, 2);
+
+                SimpleTensor<float> ref_dst = reference::gemm<float>(ref_src0, ref_src1, ref_src2, alpha, beta);
+                validate(CLAccessor(dst), ref_dst, tolerance_f32, 0.f, abs_tolerance_f32);
+                break;
+            }
+            case DataType::QASYMM8:
+            {
+                SimpleTensor<uint8_t> ref_src0{ TensorShape(K, M, B), data_type, 1 };
+                SimpleTensor<uint8_t> ref_src1{ TensorShape(N, K, B), data_type, 1 };
+                SimpleTensor<uint8_t> ref_dst;
+
+                // Fill reference
+                fill(ref_src0, 0);
+                fill(ref_src1, 1);
+
+                SimpleTensor<int32_t> ref_tmp_dst = reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(ref_src0, ref_src1, TensorShape(N, M, B), offset_src0, offset_src1);
+
+                const std::vector<int32_t> dst_multiplier_vec = { dst_multiplier };
+                const std::vector<int32_t> dst_shift_vec      = { dst_shift };
+
+                if(add_bias)
+                {
+                    SimpleTensor<int32_t> biases{ TensorShape(N), DataType::S32, 1 };
+                    // Fill bias
+                    fill(biases, 3);
+                    ref_dst = reference::gemmlowp_quantize_down_int32_to_uint8_scale_by_fixedpoint<int32_t>(ref_tmp_dst, biases, dst_multiplier_vec, dst_shift_vec, offset_dst);
+                }
+                else
+                {
+                    ref_dst = reference::gemmlowp_quantize_down_int32_to_uint8_scale_by_fixedpoint<int32_t>(ref_tmp_dst, dst_multiplier_vec, dst_shift_vec, offset_dst);
+                }
+                validate(CLAccessor(dst), ref_dst);
+                break;
+            }
+            default:
+                break;
+        }
+    }
+    void do_run() override
+    {
+        // Execute the function
+        if(data_type == DataType::QASYMM8)
+        {
+            // Run gemmlowp
+            mm_gemmlowp.run();
+            // Run output stage
+            mm_gemmlowp_output_stage.run();
+        }
+        else
+        {
+            // Run gemm
+            mm_gemm.run();
+        }
+
+        // Make sure all the OpenCL jobs are done executing:
+        CLScheduler::get().sync();
+    }
+
+private:
+    template <typename U>
+    void fill(U &&tensor, int i)
+    {
+        switch(tensor.data_type())
+        {
+            case DataType::F16:
+            case DataType::F32:
+            {
+                std::uniform_real_distribution<> distribution(-1.0f, 1.0f);
+                library->fill(tensor, distribution, i);
+                break;
+            }
+            case DataType::S32:
+            case DataType::QASYMM8:
+            {
+                std::uniform_int_distribution<> distribution(-6000, 6000);
+                library->fill(tensor, distribution, i);
+                break;
+            }
+            default:
+                library->fill_tensor_uniform(tensor, i);
+        }
+    }
+
+    void consume_params(const GEMMCommandLineOptions &opts)
+    {
+        ARM_COMPUTE_ERROR_ON(opts.M->value() <= 0);
+        ARM_COMPUTE_ERROR_ON(opts.N->value() <= 0);
+        ARM_COMPUTE_ERROR_ON(opts.K->value() <= 0);
+        ARM_COMPUTE_ERROR_ON(opts.B->value() <= 0);
+        M           = opts.M->value();
+        N           = opts.N->value();
+        K           = opts.K->value();
+        B           = opts.B->value();
+        alpha       = opts.alpha->value();
+        beta        = opts.beta->value();
+        offset_src0 = opts.offset_src0->value();
+        offset_src1 = opts.offset_src1->value();
+        offset_dst  = opts.offset_dst->value();
+        scale_src0  = opts.scale_src0->value();
+        scale_src1  = opts.scale_src1->value();
+        scale_dst   = opts.scale_dst->value();
+        add_bias    = opts.add_bias->is_set() ? opts.add_bias->value() : true;
+        data_type   = opts.data_type->value();
+    }
+
+    CLTensor src0{}, src1{}, src2{}, dst{};
+    CLTensor tmp_dst{}, biases{};
+
+    CLGEMM                                              mm_gemm{};
+    CLGEMMLowpMatrixMultiplyCore                        mm_gemmlowp{};
+    CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint mm_gemmlowp_output_stage{};
+
+    size_t   M{ 7 }, N{ 3 }, K{ 5 }, B{ 1 };
+    DataType data_type{ DataType::F32 };
+    float    alpha{ 1.0 }, beta{ 0.0 };
+    int      offset_src0{ 10 }, offset_src1{ 10 }, offset_dst{ 10 };
+    float    scale_src0{ 1.0f / 255 }, scale_src1{ 1.0f / 255 }, scale_dst{ 1.0f / 255 };
+    int32_t  dst_multiplier{ 0 }, dst_shift{ 0 };
+    bool     add_bias{ true };
+};
+
+/** Main program for gemm test
+ *
+ * @param[in] argc Number of arguments
+ * @param[in] argv Arguments
+ *
+ */
+int main(int argc, char **argv)
+{
+    return utils::run_example<CLGEMMValidateExample>(argc, argv);
+}
diff --git a/tests/validate_examples/graph_convolution.cpp b/tests/validate_examples/graph_convolution.cpp
new file mode 100644
index 0000000..1ab6691
--- /dev/null
+++ b/tests/validate_examples/graph_convolution.cpp
@@ -0,0 +1,398 @@
+/*
+ * Copyright (c) 2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/graph.h"
+
+#include "support/ToolchainSupport.h"
+
+#include "tests/NEON/Accessor.h"
+#include "tests/validation/Validation.h"
+#include "tests/validation/reference/ConvolutionLayer.h"
+#include "tests/validation/reference/Permute.h"
+
+#include "utils/CommonGraphOptions.h"
+#include "utils/GraphUtils.h"
+#include "utils/Utils.h"
+
+#include "ValidateExample.h"
+#include "graph_validate_utils.h"
+
+#include <utility>
+
+using namespace arm_compute::utils;
+using namespace arm_compute::graph::frontend;
+using namespace arm_compute::graph_utils;
+using namespace arm_compute::graph;
+using namespace arm_compute;
+using namespace arm_compute::test;
+using namespace arm_compute::test::validation;
+
+namespace
+{
+/** Convolution command line options used to configure the graph examples
+ *
+ * (Similar to common options)
+ * The options in this object get populated when "parse()" is called on the parser used to construct it.
+ * The expected workflow is:
+ *
+ * CommandLineParser parser;
+ * CommonOptions options( parser );
+ * parser.parse(argc, argv);
+ */
+class ConvolutionOptions final : public CommonGraphValidateOptions
+{
+public:
+    explicit ConvolutionOptions(CommandLineParser &parser) noexcept
+        : CommonGraphValidateOptions(parser),
+          width(parser.add_option<SimpleOption<int>>("width", 9)),
+          height(parser.add_option<SimpleOption<int>>("height", 9)),
+          channels(parser.add_option<SimpleOption<int>>("channels", 1)),
+          batch(parser.add_option<SimpleOption<int>>("batch", 1)),
+          weights_width(parser.add_option<SimpleOption<int>>("weights_width", 3)),
+          weights_height(parser.add_option<SimpleOption<int>>("weights_height", 3)),
+          OFM(parser.add_option<SimpleOption<int>>("OFM", 1)),
+          padding_top(parser.add_option<SimpleOption<int>>("padding_top", 0)),
+          padding_left(parser.add_option<SimpleOption<int>>("padding_left", 0)),
+          padding_bottom(parser.add_option<SimpleOption<int>>("padding_bottom", 0)),
+          padding_right(parser.add_option<SimpleOption<int>>("padding_right", 0)),
+          stride_x(parser.add_option<SimpleOption<int>>("stride_x", 1)),
+          stride_y(parser.add_option<SimpleOption<int>>("stride_y", 1)),
+          padding_mode(),
+          conv_mode(),
+          data_layout(),
+          scale(parser.add_option<SimpleOption<float>>("scale", 1.0f)),
+          offset(parser.add_option<SimpleOption<int>>("offset", 0)),
+          weights_scale(parser.add_option<SimpleOption<float>>("weights_scale", 1.0f)),
+          weights_offset(parser.add_option<SimpleOption<int>>("weights_offset", 0)),
+          output_scale(parser.add_option<SimpleOption<float>>("output_scale", 1.0f)),
+          output_offset(parser.add_option<SimpleOption<int>>("output_offset", 0)),
+          input_range_low(parser.add_option<SimpleOption<uint64_t>>("input_range_low")),
+          input_range_high(parser.add_option<SimpleOption<uint64_t>>("input_range_high")),
+          weights_range_low(parser.add_option<SimpleOption<uint64_t>>("weights_range_low")),
+          weights_range_high(parser.add_option<SimpleOption<uint64_t>>("weights_range_high")),
+          input_npy(parser.add_option<SimpleOption<std::string>>("input_image")),
+          output_npy(parser.add_option<SimpleOption<std::string>>("reference_image")),
+          weights_npy(parser.add_option<SimpleOption<std::string>>("weights_npy")),
+          bias_npy(parser.add_option<SimpleOption<std::string>>("bias_image"))
+    {
+        const std::set<ConvolutionPaddingMode> available_padding_modes
+        {
+            ConvolutionPaddingMode::Valid,
+            ConvolutionPaddingMode::Same
+        };
+
+        const std::set<arm_compute::graph::ConvolutionMethod> supported_convolution_methods
+        {
+            arm_compute::graph::ConvolutionMethod::Default,
+            arm_compute::graph::ConvolutionMethod::GEMM,
+            arm_compute::graph::ConvolutionMethod::Winograd,
+            arm_compute::graph::ConvolutionMethod::Direct
+        };
+
+        const std::set<DataLayout> supported_data_layouts
+        {
+            DataLayout::NHWC,
+            DataLayout::NCHW,
+        };
+
+        padding_mode = parser.add_option<EnumOption<ConvolutionPaddingMode>>("padding_mode", available_padding_modes, ConvolutionPaddingMode::Valid);
+        conv_mode    = parser.add_option<EnumOption<arm_compute::graph::ConvolutionMethod>>("convolution_method", supported_convolution_methods, arm_compute::graph::ConvolutionMethod::Default);
+        data_layout  = parser.add_option<EnumOption<DataLayout>>("layout", supported_data_layouts, DataLayout::NHWC);
+
+        padding_mode->set_help("Set padding mode");
+        help->set_help("Show this help message");
+        width->set_help("Set Input dimension width");
+        height->set_help("Set Input dimension height");
+        channels->set_help("Set Input dimension channels");
+        batch->set_help("Set Input dimension batch");
+        weights_width->set_help("Set weights_dimensions width");
+        weights_height->set_help("Set weights_dimensions height");
+        OFM->set_help("Set OFM");
+        padding_top->set_help("Set padding top");
+        padding_bottom->set_help("Set padding bottom");
+        padding_left->set_help("Set padding left");
+        padding_right->set_help("Set padding right");
+        stride_x->set_help("Set padding stride x");
+        stride_y->set_help("Set padding stride y");
+        conv_mode->set_help("Set convolution method");
+        scale->set_help("Quantization scale from QASYMM8");
+        offset->set_help("Quantization offset from QASYMM8");
+        weights_scale->set_help("Quantization scale from QASYMM8");
+        weights_offset->set_help("Quantization offset from QASYMM8");
+        output_scale->set_help("Quantization scale from QASYMM8");
+        output_offset->set_help("Quantization offset from QASYMM8");
+        input_npy->set_help("Use input .npy instead");
+        output_npy->set_help("Use .npy as a reference");
+        input_range_low->set_help("Lower bound for input randomization range");
+        input_range_high->set_help("Lower bound for input randomization range");
+        weights_range_low->set_help("Lower bound for input randomization range");
+        weights_range_high->set_help("Lower bound for input randomization range");
+    }
+
+    /** Fill out the supplied parameters with user supplied parameters
+     *
+     * @param[out] os            Output stream.
+     * @param[in]  common_params Example parameters to output
+     *
+     * @return None.
+     */
+    void consume_parameters(ExampleParams &common_params)
+    {
+        common_params.input.width      = width->value();
+        common_params.input.height     = height->value();
+        common_params.input.fm         = channels->value();
+        common_params.input.batch      = batch->value();
+        common_params.input.quant_info = QuantizationInfo(scale->value(), offset->value());
+        common_params.input.npy        = input_npy->value();
+        common_params.input.range_low  = input_range_low->value();
+        common_params.input.range_high = input_range_high->value();
+
+        common_params.weights.width      = weights_width->value();
+        common_params.weights.height     = weights_height->value();
+        common_params.weights.fm         = OFM->value();
+        common_params.weights.npy        = weights_npy->value();
+        common_params.weights.quant_info = QuantizationInfo(weights_scale->value(), weights_offset->value());
+        common_params.weights.range_low  = weights_range_low->value();
+        common_params.weights.range_high = weights_range_high->value();
+
+        common_params.bias.npy = bias_npy->value();
+
+        common_params.output.quant_info = QuantizationInfo(output_scale->value(), output_offset->value());
+        common_params.output.npy        = output_npy->value();
+
+        common_params.convolution.padding_mode     = padding_mode->value();
+        common_params.convolution.padding_top      = padding_top->value();
+        common_params.convolution.padding_bottom   = padding_bottom->value();
+        common_params.convolution.padding_left     = padding_left->value();
+        common_params.convolution.padding_right    = padding_right->value();
+        common_params.convolution.padding_stride_x = stride_x->value();
+        common_params.convolution.padding_stride_y = stride_y->value();
+
+        common_params.data_type          = data_type->value();
+        common_params.data_layout        = data_layout->value();
+        common_params.convolution_method = conv_mode->value();
+    }
+
+    void print_parameters(::std::ostream &os, const ExampleParams &common_params) override
+    {
+        os << "Threads : " << common_params.common_params.threads << std::endl;
+        os << "Target : " << common_params.common_params.target << std::endl;
+        os << "Data type : " << common_params.data_type << std::endl;
+        os << "Input dimensions(X,Y, Channels, Batch) : (" << common_params.input.width << "," << common_params.input.height << "," << common_params.input.fm << "," << common_params.input.batch << ")"
+           << std::endl;
+        os << "Weight dimensions(X,Y, Channels(same as input), OFM) : (" << common_params.weights.width << "," << common_params.weights.height << "," << common_params.input.fm << "," <<
+           common_params.weights.fm << ")" << std::endl;
+        os << "Padding(top, bottom, left, right) (stride x, stride y) : (" << common_params.convolution.padding_top << "," << common_params.convolution.padding_bottom << "," <<
+           common_params.convolution.padding_left << "," << common_params.convolution.padding_right << ") (" << common_params.convolution.padding_stride_x << "," << common_params.convolution.padding_stride_y <<
+           ")" << std::endl;
+        os << "Padding Mode: " << common_params.convolution.padding_mode << std::endl;
+        os << "Convolution Method: " << common_params.convolution_method << std::endl;
+    }
+
+    /** Prevent instances of this class from being copied (As this class contains pointers) */
+    ConvolutionOptions(const ConvolutionOptions &) = delete;
+    /** Prevent instances of this class from being copied (As this class contains pointers) */
+    ConvolutionOptions &operator=(const ConvolutionOptions &) = delete;
+    /** Allow instances of this class to be moved */
+    ConvolutionOptions(ConvolutionOptions &&) noexcept(true) = default;
+    /** Allow instances of this class to be moved */
+    ConvolutionOptions &operator=(ConvolutionOptions &&) noexcept(true) = default;
+    /** Default destructor */
+    ~ConvolutionOptions() override = default;
+
+private:
+    SimpleOption<int>                                 *width;              /**< Input width */
+    SimpleOption<int>                                 *height;             /**< Input height */
+    SimpleOption<int>                                 *channels;           /**< Input channels */
+    SimpleOption<int>                                 *batch;              /**< Input batch */
+    SimpleOption<int>                                 *weights_width;      /**< weights width */
+    SimpleOption<int>                                 *weights_height;     /**< weights height */
+    SimpleOption<int>                                 *OFM;                /**< Output Feature Map */
+    SimpleOption<int>                                 *padding_top;        /**< Padding top */
+    SimpleOption<int>                                 *padding_left;       /**< Padding left */
+    SimpleOption<int>                                 *padding_bottom;     /**< Padding bottom */
+    SimpleOption<int>                                 *padding_right;      /**< Padding right */
+    SimpleOption<int>                                 *stride_x;           /**< Padding stride x */
+    SimpleOption<int>                                 *stride_y;           /**< Padding stride y */
+    EnumOption<ConvolutionPaddingMode>                *padding_mode;       /**< Padding mode */
+    EnumOption<arm_compute::graph::ConvolutionMethod> *conv_mode;          /**< Convolution method */
+    EnumOption<arm_compute::DataLayout>               *data_layout;        /**< Graph data layout */
+    SimpleOption<float>                               *scale;              /**< Input Quantization scale from QASYMM8 */
+    SimpleOption<int>                                 *offset;             /**< Input Quantization offset from QASYMM8 */
+    SimpleOption<float>                               *weights_scale;      /**< Weights Quantization scale from QASYMM8 */
+    SimpleOption<int>                                 *weights_offset;     /**< Weights Quantization offset from QASYMM8 */
+    SimpleOption<float>                               *output_scale;       /**< Output Quantization scale from QASYMM8 */
+    SimpleOption<int>                                 *output_offset;      /**< Output Quantization offset from QASYMM8 */
+    SimpleOption<uint64_t>                            *input_range_low;    /**< Lower bound for input randomization range */
+    SimpleOption<uint64_t>                            *input_range_high;   /**< Upper bound for input randomization range */
+    SimpleOption<uint64_t>                            *weights_range_low;  /**< Lower bound for weights randomization range */
+    SimpleOption<uint64_t>                            *weights_range_high; /**< Upper bound for weights randomization range */
+
+    SimpleOption<std::string> *input_npy;   /**< Use input .npy image */
+    SimpleOption<std::string> *output_npy;  /**< Use output .npy image to verify*/
+    SimpleOption<std::string> *weights_npy; /**< Use weights .npy image */
+    SimpleOption<std::string> *bias_npy;    /**< Use bias .npy image */
+};
+
+/** ConvolutionLayer Graph example validation accessor class */
+template <typename D>
+class ConvolutionVerifyAccessor final : public VerifyAccessor<D>
+{
+    using BaseClassType = VerifyAccessor<D>;
+    using BaseClassType::BaseClassType;
+    using BaseClassType::_params;
+    using TBias = typename std::conditional<std::is_same<typename std::decay<D>::type, uint8_t>::value, int32_t, D>::type;
+
+    SimpleTensor<D> reference(SimpleTensor<D> &src, SimpleTensor<D> &weights, SimpleTensor<TBias> &bias, const TensorShape &output_shape) override
+    {
+        // Calculate padding information
+        const PadStrideInfo padding_info = calculate_convolution_padding(_params);
+
+        //Calculate reference
+        return reference::convolution_layer<D>(src, weights, bias, output_shape, padding_info, Size2D(1, 1),
+                                               1, _params.output.quant_info);
+    }
+
+    float relative_tolerance() override
+    {
+        const std::map<arm_compute::graph::Target, const std::map<DataType, float>> relative_tolerance
+        {
+            {
+                arm_compute::graph::Target::CL,
+                {   { DataType::F16, 0.2f },
+                    { DataType::F32, 0.5f },
+                    { DataType::QASYMM8, 1.0f }
+                }
+            },
+            {
+                arm_compute::graph::Target::NEON,
+                {   { DataType::F16, 0.2f },
+                    { DataType::F32, 0.01f },
+                    { DataType::QASYMM8, 0.0f }
+                }
+            }
+        };
+
+        if(_params.convolution_method == arm_compute::graph::ConvolutionMethod::Winograd
+           && _params.data_type == DataType::F32
+           && _params.common_params.target == arm_compute::graph::Target::NEON)
+        {
+            return 0.05f;
+        }
+        else
+        {
+            return relative_tolerance.at(_params.common_params.target).at(_params.data_type);
+        }
+    }
+
+    float absolute_tolerance() override
+    {
+        const std::map<Target, const std::map<DataType, float>> absolute_tolerance
+        {
+            {
+                Target::CL,
+                {   { DataType::F16, 0.0f },
+                    { DataType::F32, 0.0001f },
+                    { DataType::QASYMM8, 0.0f }
+                }
+            },
+            {
+                Target::NEON,
+                {   { DataType::F16, 0.2f },
+                    { DataType::F32, 0.002f },
+                    { DataType::QASYMM8, 0.0f }
+                }
+            }
+        };
+
+        return absolute_tolerance.at(_params.common_params.target).at(_params.data_type);
+    }
+
+    float tolerance_number() override
+    {
+        const std::map<Target, const std::map<DataType, float>> absolute_tolerance
+        {
+            {
+                Target::CL,
+                {   { DataType::F16, 0.07f },
+                    { DataType::F32, 0.07f },
+                    { DataType::QASYMM8, 0.0f }
+                }
+            },
+            {
+                Target::NEON,
+                {   { DataType::F16, 0.07f },
+                    { DataType::F32, 0.0f },
+                    { DataType::QASYMM8, 0.0f }
+                }
+            }
+        };
+
+        return absolute_tolerance.at(_params.common_params.target).at(_params.data_type);
+    }
+};
+
+} // namespace
+
+class GraphConvolutionValidateExample final : public GraphValidateExample<ConvolutionLayer, ConvolutionOptions, ConvolutionVerifyAccessor>
+{
+    using GraphValidateExample::graph;
+
+public:
+    GraphConvolutionValidateExample()
+        : GraphValidateExample("Convolution Graph example")
+    {
+    }
+
+    ConvolutionLayer GraphFunctionLayer(ExampleParams &params) override
+    {
+        const PixelValue lower = PixelValue(params.input.range_low, params.data_type, params.input.quant_info);
+        const PixelValue upper = PixelValue(params.input.range_high, params.data_type, params.input.quant_info);
+
+        const PixelValue weights_lower = PixelValue(params.weights.range_low, params.data_type, params.weights.quant_info);
+        const PixelValue weights_upper = PixelValue(params.weights.range_high, params.data_type, params.weights.quant_info);
+
+        // Calculate padding information
+        const PadStrideInfo padding_info = calculate_convolution_padding(params);
+
+        return ConvolutionLayer(params.weights.width, params.weights.height, params.weights.fm,
+                                get_accessor(params.weights, weights_lower, weights_upper, 1),
+                                get_accessor(params.bias, lower, upper, 2),
+                                padding_info, 1, params.weights.quant_info, params.output.quant_info);
+    }
+};
+
+/** Main program for Graph Convolution test
+ *
+ * @param[in] argc Number of arguments
+ * @param[in] argv Arguments ( Input dimensions [width, height, channels, batch]
+ *                             Weights dimensions [width, height, OFM]
+ *                             Padding [top,bottom,left,right, Stride x, Stride y, mode [Valid / Same / Manual] )
+ *                             Convolution Method[ Auto/GEMM/Winograd/Direct]
+ *                             Verification[tolerance_number,absolute_tolerance,relative_tolerance] )
+ *
+ */
+int main(int argc, char **argv)
+{
+    return arm_compute::utils::run_example<GraphConvolutionValidateExample>(argc, argv);
+}
diff --git a/tests/validate_examples/graph_depthwiseconvolution.cpp b/tests/validate_examples/graph_depthwiseconvolution.cpp
new file mode 100644
index 0000000..3ea33e1
--- /dev/null
+++ b/tests/validate_examples/graph_depthwiseconvolution.cpp
@@ -0,0 +1,394 @@
+/*
+ * Copyright (c) 2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/graph.h"
+
+#include "support/ToolchainSupport.h"
+
+#include "tests/NEON/Accessor.h"
+#include "tests/validation/Validation.h"
+#include "tests/validation/reference/DepthwiseConvolutionLayer.h"
+#include "tests/validation/reference/Permute.h"
+
+#include "utils/CommonGraphOptions.h"
+#include "utils/GraphUtils.h"
+#include "utils/Utils.h"
+
+#include "ValidateExample.h"
+#include "graph_validate_utils.h"
+
+#include <utility>
+
+using namespace arm_compute::utils;
+using namespace arm_compute::graph::frontend;
+using namespace arm_compute::graph_utils;
+using namespace arm_compute::graph;
+using namespace arm_compute;
+using namespace arm_compute::test;
+using namespace arm_compute::test::validation;
+
+namespace
+{
+/** Depthwise Convolution command line options used to configure the graph examples
+ *
+ * (Similar to common options)
+ * The options in this object get populated when "parse()" is called on the parser used to construct it.
+ * The expected workflow is:
+ *
+ * CommandLineParser parser;
+ * CommonOptions options( parser );
+ * parser.parse(argc, argv);
+ */
+class DepthConvolutionOptions final : public CommonGraphValidateOptions
+{
+public:
+    explicit DepthConvolutionOptions(CommandLineParser &parser) noexcept
+        : CommonGraphValidateOptions(parser),
+          width(parser.add_option<SimpleOption<int>>("width", 9)),
+          height(parser.add_option<SimpleOption<int>>("height", 9)),
+          channels(parser.add_option<SimpleOption<int>>("channels", 1)),
+          batch(parser.add_option<SimpleOption<int>>("batch", 1)),
+          weights_width(parser.add_option<SimpleOption<int>>("weights_width", 3)),
+          weights_height(parser.add_option<SimpleOption<int>>("weights_height", 3)),
+          padding_top(parser.add_option<SimpleOption<int>>("padding_top", 0)),
+          padding_left(parser.add_option<SimpleOption<int>>("padding_left", 0)),
+          padding_bottom(parser.add_option<SimpleOption<int>>("padding_bottom", 0)),
+          padding_right(parser.add_option<SimpleOption<int>>("padding_right", 0)),
+          stride_x(parser.add_option<SimpleOption<int>>("stride_x", 1)),
+          stride_y(parser.add_option<SimpleOption<int>>("stride_y", 1)),
+          padding_mode(),
+          conv_mode(),
+          depth_multiplier(parser.add_option<SimpleOption<int>>("depth_multiplier", 1)),
+          data_layout(),
+          scale(parser.add_option<SimpleOption<float>>("scale", 1.0f)),
+          offset(parser.add_option<SimpleOption<int>>("offset", 0)),
+          weights_scale(parser.add_option<SimpleOption<float>>("weights_scale", 1.0f)),
+          weights_offset(parser.add_option<SimpleOption<int>>("weights_offset", 0)),
+          output_scale(parser.add_option<SimpleOption<float>>("output_scale", 1.0f)),
+          output_offset(parser.add_option<SimpleOption<int>>("output_offset", 0)),
+          input_range_low(parser.add_option<SimpleOption<uint64_t>>("input_range_low")),
+          input_range_high(parser.add_option<SimpleOption<uint64_t>>("input_range_high")),
+          weights_range_low(parser.add_option<SimpleOption<uint64_t>>("weights_range_low")),
+          weights_range_high(parser.add_option<SimpleOption<uint64_t>>("weights_range_high")),
+          input_npy(parser.add_option<SimpleOption<std::string>>("input_image")),
+          output_npy(parser.add_option<SimpleOption<std::string>>("reference_image")),
+          weights_npy(parser.add_option<SimpleOption<std::string>>("weights_npy")),
+          bias_npy(parser.add_option<SimpleOption<std::string>>("bias_image"))
+    {
+        const std::set<ConvolutionPaddingMode> available_padding_modes
+        {
+            ConvolutionPaddingMode::Valid,
+            ConvolutionPaddingMode::Same
+        };
+
+        const std::set<arm_compute::graph::DepthwiseConvolutionMethod> supported_convolution_methods
+        {
+            arm_compute::graph::DepthwiseConvolutionMethod::Default,
+            arm_compute::graph::DepthwiseConvolutionMethod::GEMV,
+            arm_compute::graph::DepthwiseConvolutionMethod::Optimized3x3,
+        };
+
+        const std::set<DataLayout> supported_data_layouts
+        {
+            DataLayout::NHWC,
+            DataLayout::NCHW,
+        };
+
+        padding_mode = parser.add_option<EnumOption<ConvolutionPaddingMode>>("padding_mode", available_padding_modes, ConvolutionPaddingMode::Valid);
+        conv_mode    = parser.add_option<EnumOption<arm_compute::graph::DepthwiseConvolutionMethod>>("convolution_method", supported_convolution_methods,
+                                                                                                     arm_compute::graph::DepthwiseConvolutionMethod::Default);
+        data_layout = parser.add_option<EnumOption<DataLayout>>("layout", supported_data_layouts, DataLayout::NHWC);
+
+        padding_mode->set_help("Set padding mode");
+        width->set_help("Set Input dimension width");
+        height->set_help("Set Input dimension height");
+        channels->set_help("Set Input dimension channels");
+        batch->set_help("Set Input dimension batch");
+        weights_width->set_help("Set weights_dimensions width");
+        weights_height->set_help("Set weights_dimensions height");
+        padding_top->set_help("Set padding top");
+        padding_bottom->set_help("Set padding bottom");
+        padding_left->set_help("Set padding left");
+        padding_right->set_help("Set padding right");
+        stride_x->set_help("Set padding stride x");
+        stride_y->set_help("Set padding stride y");
+        conv_mode->set_help("Set convolution method");
+        data_layout->set_help("Data layout to use");
+        scale->set_help("Quantization scale from QASYMM8");
+        offset->set_help("Quantization offset from QASYMM8");
+        output_scale->set_help("Quantization scale from QASYMM8");
+        output_offset->set_help("Quantization offset from QASYMM8");
+        input_npy->set_help("Use input .npy instead");
+        output_npy->set_help("Use .npy as a reference");
+        input_range_low->set_help("Lower bound for input randomization range");
+        input_range_high->set_help("Lower bound for input randomization range");
+        weights_scale->set_help("Quantization scale from QASYMM8");
+        weights_offset->set_help("Quantization offset from QASYMM8");
+        weights_range_low->set_help("Lower bound for input randomization range");
+        weights_range_high->set_help("Lower bound for input randomization range");
+        depth_multiplier->set_help("Depth multiplier");
+    }
+
+    /** Fill out the supplied parameters with user supplied parameters
+     *
+     * @param[out] os            Output stream.
+     * @param[in]  common_params Example parameters to output
+     *
+     * @return None.
+     */
+    void consume_parameters(ExampleParams &common_params)
+    {
+        common_params.input.width      = width->value();
+        common_params.input.height     = height->value();
+        common_params.input.fm         = channels->value();
+        common_params.input.batch      = batch->value();
+        common_params.input.quant_info = QuantizationInfo(scale->value(), offset->value());
+        common_params.input.npy        = input_npy->value();
+        common_params.input.range_low  = input_range_low->value();
+        common_params.input.range_high = input_range_high->value();
+
+        common_params.weights.width      = weights_width->value();
+        common_params.weights.height     = weights_height->value();
+        common_params.weights.npy        = weights_npy->value();
+        common_params.weights.range_low  = weights_range_low->value();
+        common_params.weights.range_high = weights_range_high->value();
+        common_params.weights.quant_info = QuantizationInfo(weights_scale->value(), weights_offset->value());
+
+        common_params.bias.npy = bias_npy->value();
+
+        common_params.output.quant_info = QuantizationInfo(output_scale->value(), output_offset->value());
+        common_params.output.npy        = output_npy->value();
+
+        common_params.convolution.padding_mode     = padding_mode->value();
+        common_params.convolution.padding_top      = padding_top->value();
+        common_params.convolution.padding_bottom   = padding_bottom->value();
+        common_params.convolution.padding_left     = padding_left->value();
+        common_params.convolution.padding_right    = padding_right->value();
+        common_params.convolution.padding_stride_x = stride_x->value();
+        common_params.convolution.padding_stride_y = stride_y->value();
+        common_params.convolution.depth_multiplier = depth_multiplier->value();
+
+        common_params.data_type                = data_type->value();
+        common_params.data_layout              = data_layout->value();
+        common_params.depth_convolution_method = conv_mode->value();
+    }
+
+    void print_parameters(::std::ostream &os, const ExampleParams &common_params) override
+    {
+        os << "Threads : " << common_params.common_params.threads << std::endl;
+        os << "Target : " << common_params.common_params.target << std::endl;
+        os << "Data type : " << common_params.data_type << std::endl;
+        os << "Input dimensions(X,Y, Channels, Batch) : (" << common_params.input.width << "," << common_params.input.height << "," << common_params.input.fm << "," << common_params.input.batch << ")"
+           << std::endl;
+        os << "Weight dimensions(X,Y, Channels(same as input)) : (" << common_params.weights.width << "," << common_params.weights.height << "," << common_params.input.fm << ","
+           << ")" << std::endl;
+        os << "Padding(top, bottom, left, right) (stride x, stride y) : (" << common_params.convolution.padding_top << "," << common_params.convolution.padding_bottom << "," <<
+           common_params.convolution.padding_left << "," << common_params.convolution.padding_right << ") (" << common_params.convolution.padding_stride_x << "," << common_params.convolution.padding_stride_y <<
+           ")" << std::endl;
+        os << "Padding Mode: " << common_params.convolution.padding_mode << std::endl;
+        os << "Convolution Method: " << common_params.depth_convolution_method << std::endl;
+        os << "Depth multiplier: " << common_params.convolution.depth_multiplier;
+    }
+
+    /** Prevent instances of this class from being copied (As this class contains pointers) */
+    DepthConvolutionOptions(const DepthConvolutionOptions &) = delete;
+    /** Prevent instances of this class from being copied (As this class contains pointers) */
+    DepthConvolutionOptions &operator=(const DepthConvolutionOptions &) = delete;
+    /** Allow instances of this class to be moved */
+    DepthConvolutionOptions(DepthConvolutionOptions &&) noexcept(true) = default;
+    /** Allow instances of this class to be moved */
+    DepthConvolutionOptions &operator=(DepthConvolutionOptions &&) noexcept(true) = default;
+    /** Default destructor */
+    ~DepthConvolutionOptions() override = default;
+
+private:
+    SimpleOption<int>                                          *width;              /**< Input width */
+    SimpleOption<int>                                          *height;             /**< Input height */
+    SimpleOption<int>                                          *channels;           /**< Input channels */
+    SimpleOption<int>                                          *batch;              /**< Input batch */
+    SimpleOption<int>                                          *weights_width;      /**< weights width */
+    SimpleOption<int>                                          *weights_height;     /**< weights height */
+    SimpleOption<int>                                          *padding_top;        /**< Padding top */
+    SimpleOption<int>                                          *padding_left;       /**< Padding left */
+    SimpleOption<int>                                          *padding_bottom;     /**< Padding bottom */
+    SimpleOption<int>                                          *padding_right;      /**< Padding right */
+    SimpleOption<int>                                          *stride_x;           /**< Padding stride x */
+    SimpleOption<int>                                          *stride_y;           /**< Padding stride y */
+    EnumOption<ConvolutionPaddingMode>                         *padding_mode;       /**< Padding mode */
+    EnumOption<arm_compute::graph::DepthwiseConvolutionMethod> *conv_mode;          /**< Convolution method */
+    SimpleOption<int>                                          *depth_multiplier;   /**< Depth multiplier */
+    EnumOption<arm_compute::DataLayout>                        *data_layout;        /**< Graph data layout */
+    SimpleOption<float>                                        *scale;              /**< Input Quantization scale from QASYMM8 */
+    SimpleOption<int>                                          *offset;             /**< Input Quantization offset from QASYMM8 */
+    SimpleOption<float>                                        *weights_scale;      /**< Weights Quantization scale from QASYMM8 */
+    SimpleOption<int>                                          *weights_offset;     /**< Weights Quantization offset from QASYMM8 */
+    SimpleOption<float>                                        *output_scale;       /**< Output Quantization scale from QASYMM8 */
+    SimpleOption<int>                                          *output_offset;      /**< Output Quantization offset from QASYMM8 */
+    SimpleOption<uint64_t>                                     *input_range_low;    /**< Lower bound for input randomization range */
+    SimpleOption<uint64_t>                                     *input_range_high;   /**< Upper bound for input randomization range */
+    SimpleOption<uint64_t>                                     *weights_range_low;  /**< Lower bound for weights randomization range */
+    SimpleOption<uint64_t>                                     *weights_range_high; /**< Upper bound for weights randomization range */
+
+    SimpleOption<std::string> *input_npy;   /**< Use input .npy image */
+    SimpleOption<std::string> *output_npy;  /**< Use output .npy image to verify*/
+    SimpleOption<std::string> *weights_npy; /**< Use weights .npy image */
+    SimpleOption<std::string> *bias_npy;    /**< Use bias .npy image */
+};
+
+/** DepthwiseConvolutionLayer Graph example validation accessor class */
+template <typename D>
+class DepthConvolutionVerifyAccessor final : public VerifyAccessor<D>
+{
+public:
+    using BaseClassType = VerifyAccessor<D>;
+    using BaseClassType::BaseClassType;
+    using BaseClassType::_params;
+    using TBias = typename std::conditional<std::is_same<typename std::decay<D>::type, uint8_t>::value, int32_t, D>::type;
+
+public:
+    SimpleTensor<D> reference(SimpleTensor<D> &src, SimpleTensor<D> &weights, SimpleTensor<TBias> &bias, const TensorShape &output_shape) override
+    {
+        // Calculate padding information
+        const PadStrideInfo padding_info = calculate_convolution_padding(_params);
+
+        //Calculate reference
+        return reference::depthwise_convolution<D>(src, weights, bias, output_shape, padding_info,
+                                                   _params.convolution.depth_multiplier,
+                                                   Size2D(1U, 1U),
+                                                   _params.output.quant_info);
+    }
+
+    float relative_tolerance() override
+    {
+        const std::map<arm_compute::graph::Target, const std::map<DataType, float>> relative_tolerance
+        {
+            {
+                arm_compute::graph::Target::CL,
+                {   { DataType::F16, 0.01f },
+                    { DataType::F32, 0.01f },
+                    { DataType::QASYMM8, 0.0f }
+                }
+            },
+            {
+                arm_compute::graph::Target::NEON,
+                {   { DataType::F16, 0.01f },
+                    { DataType::F32, 0.01f },
+                    { DataType::QASYMM8, 1.0f }
+                }
+            }
+        };
+
+        return relative_tolerance.at(_params.common_params.target).at(_params.data_type);
+    }
+
+    float absolute_tolerance() override
+    {
+        const std::map<Target, const std::map<DataType, float>> absolute_tolerance
+        {
+            {
+                Target::CL,
+                {   { DataType::F16, 0.0f },
+                    { DataType::F32, 0.0000f },
+                    { DataType::QASYMM8, 0.0f }
+                }
+            },
+            {
+                Target::NEON,
+                {   { DataType::F16, 0.2f },
+                    { DataType::F32, 0.002f },
+                    { DataType::QASYMM8, 0.0f }
+                }
+            }
+        };
+
+        return absolute_tolerance.at(_params.common_params.target).at(_params.data_type);
+    }
+
+    float tolerance_number() override
+    {
+        const std::map<Target, const std::map<DataType, float>> absolute_tolerance
+        {
+            {
+                Target::CL,
+                {   { DataType::F16, 0.05f },
+                    { DataType::F32, 0.00f },
+                    { DataType::QASYMM8, 0.0f }
+                }
+            },
+            {
+                Target::NEON,
+                {   { DataType::F16, 0.05f },
+                    { DataType::F32, 0.0f },
+                    { DataType::QASYMM8, 0.0f }
+                }
+            }
+        };
+
+        return absolute_tolerance.at(_params.common_params.target).at(_params.data_type);
+    }
+};
+
+} // namespace
+
+class GraphDepthwiseConvolutionValidateExample final : public GraphValidateExample<DepthwiseConvolutionLayer, DepthConvolutionOptions, DepthConvolutionVerifyAccessor>
+{
+    using GraphValidateExample::graph;
+
+public:
+    GraphDepthwiseConvolutionValidateExample()
+        : GraphValidateExample("DepthWiseConvolution Graph example")
+    {
+    }
+
+    DepthwiseConvolutionLayer GraphFunctionLayer(ExampleParams &params) override
+    {
+        const PixelValue lower = PixelValue(params.input.range_low, params.data_type, params.input.quant_info);
+        const PixelValue upper = PixelValue(params.input.range_high, params.data_type, params.input.quant_info);
+
+        const PixelValue weights_lower = PixelValue(params.weights.range_low, params.data_type, params.weights.quant_info);
+        const PixelValue weights_upper = PixelValue(params.weights.range_high, params.data_type, params.weights.quant_info);
+
+        // Calculate padding information
+        const PadStrideInfo padding_info = calculate_convolution_padding(params);
+
+        return DepthwiseConvolutionLayer(params.weights.width, params.weights.height,
+                                         get_accessor(params.weights, weights_lower, weights_upper, 1),
+                                         get_accessor(params.bias, lower, upper, 2),
+                                         padding_info, params.convolution.depth_multiplier, params.weights.quant_info, params.output.quant_info);
+    }
+};
+
+/** Main program for Graph Depthwise Convolution test
+ *
+ * @param[in] argc Number of arguments
+ * @param[in] argv Arguments ( Input dimensions [width, height, channels, batch]
+ *                             Weights dimensions [width, height, channels]
+ *                             Padding [top,bottom,left,right, Stride x, Stride y, mode [Valid / Same / Manual] )
+ *                             Convolution Method[ Default/GEMV/Optimized3x3]
+ *                             Verification[tolerance_number,absolute_tolerance,relative_tolerance] )
+ *
+ */
+int main(int argc, char **argv)
+{
+    return arm_compute::utils::run_example<GraphDepthwiseConvolutionValidateExample>(argc, argv);
+}
diff --git a/tests/validate_examples/graph_fully_connected.cpp b/tests/validate_examples/graph_fully_connected.cpp
new file mode 100644
index 0000000..645fa8b
--- /dev/null
+++ b/tests/validate_examples/graph_fully_connected.cpp
@@ -0,0 +1,315 @@
+/*
+ * Copyright (c) 2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/graph.h"
+
+#include "support/ToolchainSupport.h"
+
+#include "tests/NEON/Accessor.h"
+#include "tests/validation/Validation.h"
+#include "tests/validation/reference/FullyConnectedLayer.h"
+#include "tests/validation/reference/Permute.h"
+
+#include "utils/CommonGraphOptions.h"
+#include "utils/GraphUtils.h"
+#include "utils/Utils.h"
+
+#include "ValidateExample.h"
+#include "graph_validate_utils.h"
+
+#include <utility>
+
+using namespace arm_compute::utils;
+using namespace arm_compute::graph::frontend;
+using namespace arm_compute::graph_utils;
+using namespace arm_compute::graph;
+using namespace arm_compute;
+using namespace arm_compute::test;
+using namespace arm_compute::test::validation;
+
+namespace
+{
+/** Fully connected command line options used to configure the graph examples
+ *
+ * (Similar to common options)
+ * The options in this object get populated when "parse()" is called on the parser used to construct it.
+ * The expected workflow is:
+ *
+ * CommandLineParser parser;
+ * CommonOptions options( parser );
+ * parser.parse(argc, argv);
+ */
+class FullyConnectedOptions final : public CommonGraphValidateOptions
+{
+public:
+    explicit FullyConnectedOptions(CommandLineParser &parser) noexcept
+        : CommonGraphValidateOptions(parser),
+          width(parser.add_option<SimpleOption<int>>("width", 3)),
+          batch(parser.add_option<SimpleOption<int>>("batch", 1)),
+          input_scale(parser.add_option<SimpleOption<float>>("input_scale", 1.0f)),
+          input_offset(parser.add_option<SimpleOption<int>>("input_offset", 0)),
+          weights_scale(parser.add_option<SimpleOption<float>>("weights_scale", 1.0f)),
+          weights_offset(parser.add_option<SimpleOption<int>>("weights_offset", 0)),
+          output_scale(parser.add_option<SimpleOption<float>>("output_scale", 1.0f)),
+          output_offset(parser.add_option<SimpleOption<int>>("output_offset", 0)),
+          num_outputs(parser.add_option<SimpleOption<int>>("num_outputs", 1)),
+          input_range_low(parser.add_option<SimpleOption<uint64_t>>("input_range_low")),
+          input_range_high(parser.add_option<SimpleOption<uint64_t>>("input_range_high")),
+          weights_range_low(parser.add_option<SimpleOption<uint64_t>>("weights_range_low")),
+          weights_range_high(parser.add_option<SimpleOption<uint64_t>>("weights_range_high"))
+    {
+        width->set_help("Set Input dimension width");
+        batch->set_help("Set Input dimension batch");
+        input_scale->set_help("Quantization scale from QASYMM8");
+        input_offset->set_help("Quantization offset from QASYMM8");
+        weights_scale->set_help("Quantization scale from QASYMM8");
+        weights_offset->set_help("Quantization offset from QASYMM8");
+        output_scale->set_help("Quantization scale from QASYMM8");
+        output_offset->set_help("Quantization offset from QASYMM8");
+        num_outputs->set_help("Number of outputs.");
+        input_range_low->set_help("Lower bound for input randomization range");
+        input_range_high->set_help("Lower bound for input randomization range");
+        weights_range_low->set_help("Lower bound for input randomization range");
+        weights_range_high->set_help("Lower bound for input randomization range");
+    }
+
+    /** Fill out the supplied parameters with user supplied parameters
+     *
+     * @param[out] os            Output stream.
+     * @param[in]  common_params Example parameters to output
+     *
+     * @return None.
+     */
+    void consume_parameters(ExampleParams &common_params)
+    {
+        common_params.input.width      = width->value();
+        common_params.input.batch      = batch->value();
+        common_params.input.quant_info = QuantizationInfo(input_scale->value(), input_offset->value());
+        common_params.input.range_low  = input_range_low->value();
+        common_params.input.range_high = input_range_high->value();
+
+        common_params.weights.quant_info = QuantizationInfo(weights_scale->value(), weights_offset->value());
+        common_params.weights.range_low  = weights_range_low->value();
+        common_params.weights.range_high = weights_range_high->value();
+
+        common_params.output.quant_info = QuantizationInfo(output_scale->value(), output_offset->value());
+
+        common_params.data_type                   = data_type->value();
+        common_params.fully_connected.num_outputs = num_outputs->value();
+    }
+
+    void print_parameters(::std::ostream &os, const ExampleParams &common_params) override
+    {
+        os << "Threads : " << common_params.common_params.threads << std::endl;
+        os << "Target : " << common_params.common_params.target << std::endl;
+        os << "Data type : " << common_params.data_type << std::endl;
+        os << "Input dimensions(X,Y, Channels, Batch) : (" << common_params.input.width << "," << common_params.input.height << "," << common_params.input.fm << "," << common_params.input.batch << ")"
+           << std::endl;
+        os << "Number of outputs : " << common_params.fully_connected.num_outputs << std::endl;
+    }
+
+    /** Prevent instances of this class from being copied (As this class contains pointers) */
+    FullyConnectedOptions(const FullyConnectedOptions &) = delete;
+    /** Prevent instances of this class from being copied (As this class contains pointers) */
+    FullyConnectedOptions &operator=(const FullyConnectedOptions &) = delete;
+    /** Allow instances of this class to be moved */
+    FullyConnectedOptions(FullyConnectedOptions &&) noexcept(true) = default;
+    /** Allow instances of this class to be moved */
+    FullyConnectedOptions &operator=(FullyConnectedOptions &&) noexcept(true) = default;
+    /** Default destructor */
+    ~FullyConnectedOptions() override = default;
+
+private:
+    SimpleOption<int>      *width;              /**< Input width */
+    SimpleOption<int>      *batch;              /**< Input batch */
+    SimpleOption<float>    *input_scale;        /**< Input Quantization scale from QASSYMM8 */
+    SimpleOption<int>      *input_offset;       /**< Input Quantization offset from QASSYMM8 */
+    SimpleOption<float>    *weights_scale;      /**< Weights Quantization scale from QASSYMM8 */
+    SimpleOption<int>      *weights_offset;     /**< Weights Quantization offset from QASSYMM8 */
+    SimpleOption<float>    *output_scale;       /**< Output Quantization scale from QASSYMM8 */
+    SimpleOption<int>      *output_offset;      /**< Output Quantization offset from QASSYMM8 */
+    SimpleOption<int>      *num_outputs;        /**< Number of outputs. */
+    SimpleOption<uint64_t> *input_range_low;    /**< Lower bound for input randomization range */
+    SimpleOption<uint64_t> *input_range_high;   /**< Upper bound for input randomization range */
+    SimpleOption<uint64_t> *weights_range_low;  /**< Lower bound for weights randomization range */
+    SimpleOption<uint64_t> *weights_range_high; /**< Upper bound for weights randomization range */
+};
+
+/** Fully Connected Layer Graph example validation accessor class */
+template <typename D>
+class FullyConnectedVerifyAccessor final : public VerifyAccessor<D>
+{
+    using BaseClassType = VerifyAccessor<D>;
+    using BaseClassType::BaseClassType;
+    using BaseClassType::_params;
+    using TBias = typename std::conditional<std::is_same<typename std::decay<D>::type, uint8_t>::value, int32_t, D>::type;
+
+    // Inherited methods overriden:
+    void create_tensors(arm_compute::test::SimpleTensor<D>     &src,
+                        arm_compute::test::SimpleTensor<D>     &weights,
+                        arm_compute::test::SimpleTensor<TBias> &bias,
+                        ITensor                                &tensor) override
+    {
+        // Calculate Tensor shapes for verification
+        const TensorShape      input_shape        = TensorShape(_params.input.width, _params.input.height, _params.input.fm, _params.input.batch);
+        const TensorDescriptor input_descriptor   = TensorDescriptor(input_shape, _params.data_type, _params.input.quant_info);
+        const TensorDescriptor weights_descriptor = FullyConnectedLayerNode::compute_weights_descriptor(input_descriptor,
+                                                                                                        _params.fully_connected.num_outputs,
+                                                                                                        _params.fully_connected.info,
+                                                                                                        _params.weights.quant_info);
+        const TensorDescriptor output_desciptor = FullyConnectedLayerNode::compute_output_descriptor(input_descriptor, _params.fully_connected.num_outputs, _params.output.quant_info);
+
+        //Create Input tensors
+        src     = SimpleTensor<D> { input_descriptor.shape, _params.data_type, 1, input_descriptor.quant_info };
+        weights = SimpleTensor<D> { weights_descriptor.shape, _params.data_type, 1, weights_descriptor.quant_info };
+        bias    = SimpleTensor<TBias> { TensorShape(tensor.info()->tensor_shape().x()), _params.data_type, 1, _params.input.quant_info };
+    }
+
+    TensorShape output_shape(ITensor &tensor) override
+    {
+        ARM_COMPUTE_UNUSED(tensor);
+
+        const TensorShape      input_shape      = TensorShape(_params.input.width, _params.input.height, _params.input.fm, _params.input.batch);
+        const TensorDescriptor input_descriptor = TensorDescriptor(input_shape, _params.data_type, _params.input.quant_info);
+        const TensorDescriptor output_desciptor = FullyConnectedLayerNode::compute_output_descriptor(input_descriptor, _params.fully_connected.num_outputs, _params.output.quant_info);
+
+        return output_desciptor.shape;
+    }
+
+    arm_compute::test::SimpleTensor<D> reference(arm_compute::test::SimpleTensor<D>     &src,
+                                                 arm_compute::test::SimpleTensor<D>     &weights,
+                                                 arm_compute::test::SimpleTensor<TBias> &bias,
+                                                 const arm_compute::TensorShape         &output_shape) override
+    {
+        return reference::fully_connected_layer<D>(src, weights, bias, output_shape, _params.output.quant_info);
+    }
+
+    float relative_tolerance() override
+    {
+        const std::map<arm_compute::graph::Target, const std::map<DataType, float>> relative_tolerance
+        {
+            {
+                arm_compute::graph::Target::CL,
+                {   { DataType::F16, 0.2f },
+                    { DataType::F32, 0.05f },
+                    { DataType::QASYMM8, 1.0f }
+                }
+            },
+            {
+                arm_compute::graph::Target::NEON,
+                {   { DataType::F16, 0.2f },
+                    { DataType::F32, 0.01f },
+                    { DataType::QASYMM8, 1.0f }
+                }
+            }
+        };
+
+        return relative_tolerance.at(_params.common_params.target).at(_params.data_type);
+    }
+
+    float absolute_tolerance() override
+    {
+        const std::map<Target, const std::map<DataType, float>> absolute_tolerance
+        {
+            {
+                Target::CL,
+                {   { DataType::F16, 0.0f },
+                    { DataType::F32, 0.0001f },
+                    { DataType::QASYMM8, 1.0f }
+                }
+            },
+            {
+                Target::NEON,
+                {   { DataType::F16, 0.3f },
+                    { DataType::F32, 0.1f },
+                    { DataType::QASYMM8, 1.0f }
+                }
+            }
+        };
+
+        return absolute_tolerance.at(_params.common_params.target).at(_params.data_type);
+    }
+
+    float tolerance_number() override
+    {
+        const std::map<Target, const std::map<DataType, float>> absolute_tolerance
+        {
+            {
+                Target::CL,
+                {   { DataType::F16, 0.07f },
+                    { DataType::F32, 0.07f },
+                    { DataType::QASYMM8, 0.0f }
+                }
+            },
+            {
+                Target::NEON,
+                {   { DataType::F16, 0.07f },
+                    { DataType::F32, 0.0f },
+                    { DataType::QASYMM8, 0.0f }
+                }
+            }
+        };
+
+        return absolute_tolerance.at(_params.common_params.target).at(_params.data_type);
+    }
+};
+
+} // namespace
+
+class GraphFullyConnectedValidateExample final : public GraphValidateExample<FullyConnectedLayer, FullyConnectedOptions, FullyConnectedVerifyAccessor>
+{
+    using GraphValidateExample::graph;
+
+public:
+    GraphFullyConnectedValidateExample()
+        : GraphValidateExample("Fully_connected Graph example")
+    {
+    }
+
+    FullyConnectedLayer GraphFunctionLayer(ExampleParams &params) override
+    {
+        const PixelValue lower = PixelValue(params.input.range_low, params.data_type, params.input.quant_info);
+        const PixelValue upper = PixelValue(params.input.range_high, params.data_type, params.input.quant_info);
+
+        const PixelValue weights_lower = PixelValue(params.weights.range_low, params.data_type, params.weights.quant_info);
+        const PixelValue weights_upper = PixelValue(params.weights.range_high, params.data_type, params.weights.quant_info);
+
+        return FullyConnectedLayer(params.fully_connected.num_outputs,
+                                   get_random_accessor(weights_lower, weights_upper, 1),
+                                   get_random_accessor(lower, upper, 2),
+                                   params.fully_connected.info, params.weights.quant_info, params.output.quant_info);
+    }
+};
+
+/** Main program for Graph fully_connected test
+ *
+ * @param[in] argc Number of arguments
+ * @param[in] argv Arguments ( Input dimensions [width, batch]
+ *                             Fully connected  [num_outputs,type]
+ *                             Verification[tolerance_number,absolute_tolerance,relative_tolerance] )
+ *
+ */
+int main(int argc, char **argv)
+{
+    return arm_compute::utils::run_example<GraphFullyConnectedValidateExample>(argc, argv);
+}
diff --git a/tests/validate_examples/graph_validate_utils.h b/tests/validate_examples/graph_validate_utils.h
new file mode 100644
index 0000000..7342ccc
--- /dev/null
+++ b/tests/validate_examples/graph_validate_utils.h
@@ -0,0 +1,697 @@
+/*
+ * Copyright (c) 2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#ifndef __GRAPH_VALIDATE_UTILS_H__
+#define __GRAPH_VALIDATE_UTILS_H__
+
+#include "arm_compute/graph.h"
+
+#include "ValidateExample.h"
+#include "utils/command_line/CommandLineParser.h"
+
+namespace arm_compute
+{
+namespace utils
+{
+/*Available Padding modes */
+enum class ConvolutionPaddingMode
+{
+    Valid,
+    Same,
+    Manual
+};
+
+/** Stream Input operator for the ConvolutionPaddingMode type
+ *
+ * @param[in]  stream Input stream.
+ * @param[out] Mode   Convolution parameters to output
+ *
+ * @return input stream.
+ */
+inline ::std::istream &operator>>(::std::istream &stream, ConvolutionPaddingMode &Mode)
+{
+    static const std::map<std::string, ConvolutionPaddingMode> modes =
+    {
+        { "valid", ConvolutionPaddingMode::Valid },
+        { "same", ConvolutionPaddingMode::Same },
+        { "manual", ConvolutionPaddingMode::Manual }
+    };
+    std::string value;
+    stream >> value;
+#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
+    try
+    {
+#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
+        Mode = modes.at(arm_compute::utility::tolower(value));
+#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
+    }
+    catch(const std::out_of_range &)
+    {
+        throw std::invalid_argument(value);
+    }
+#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
+
+    return stream;
+}
+
+/** Formatted output of the ConvolutionPaddingMode type
+ *
+ * @param[out] os   Output stream.
+ * @param[in]  Mode ConvolutionPaddingMode to output
+ *
+ * @return Modified output stream.
+ */
+inline ::std::ostream &operator<<(::std::ostream &os, ConvolutionPaddingMode Mode)
+{
+    switch(Mode)
+    {
+        case ConvolutionPaddingMode::Valid:
+            os << "Valid";
+            break;
+        case ConvolutionPaddingMode::Same:
+            os << "Same";
+            break;
+        case ConvolutionPaddingMode::Manual:
+            os << "Manual";
+            break;
+        default:
+            throw std::invalid_argument("Unsupported padding mode format");
+    }
+
+    return os;
+}
+
+/** Structure holding all the input tensor graph parameters */
+struct TensorParams
+{
+    int              width{ 1 };
+    int              height{ 1 };
+    int              fm{ 1 };
+    int              batch{ 1 };
+    QuantizationInfo quant_info{ 1.0f, 0 };
+    std::string      npy{};
+    uint64_t         range_low{ 0 };
+    uint64_t         range_high{ 16 };
+};
+
+/** Structure holding all the verification graph parameters */
+struct VerificationParams
+{
+    float absolute_tolerance{ -1.f };
+    float relative_tolerance{ -1.f };
+    float tolerance_number{ -1.f };
+};
+
+/** Structure holding all the common graph parameters */
+struct FrameworkParams
+{
+    bool                       help{ false };
+    int                        threads{ 0 };
+    arm_compute::graph::Target target{ arm_compute::graph::Target::NEON };
+};
+
+/** Structure holding all the graph Example parameters */
+struct CommonParams
+{
+    FrameworkParams       common_params{};
+    TensorParams          input{};
+    TensorParams          weights{};
+    TensorParams          bias{};
+    TensorParams          output{};
+    VerificationParams    verification{};
+    arm_compute::DataType data_type{ DataType::F32 };
+};
+
+/** Structure holding all the Convolution layer graph parameters */
+struct ConvolutionParams
+{
+    int depth_multiplier{ 1 };
+    /** Padding graph parameters */
+    int                    padding_top{ 0 };
+    int                    padding_bottom{ 0 };
+    int                    padding_left{ 0 };
+    int                    padding_right{ 0 };
+    int                    padding_stride_x{ 0 };
+    int                    padding_stride_y{ 0 };
+    ConvolutionPaddingMode padding_mode{ ConvolutionPaddingMode::Valid };
+    struct
+    {
+        struct
+        {
+            int X{ 0 };
+            int Y{ 0 };
+        } stride{};
+        ConvolutionPaddingMode mode{ ConvolutionPaddingMode::Valid };
+    } padding{};
+};
+
+/** Structure holding all the fully_connected layer graph parameters */
+struct FullyConnectedParams
+{
+    FullyConnectedLayerInfo info{};
+    int                     num_outputs{ 1 };
+};
+
+/** Structure holding all the graph Example parameters */
+struct ExampleParams : public CommonParams
+{
+    FullyConnectedParams                           fully_connected{};
+    ConvolutionParams                              convolution{};
+    arm_compute::graph::DepthwiseConvolutionMethod depth_convolution_method{ arm_compute::graph::DepthwiseConvolutionMethod::Default };
+    arm_compute::graph::ConvolutionMethod          convolution_method{ arm_compute::graph::ConvolutionMethod::Default };
+    arm_compute::DataLayout                        data_layout{ DataLayout::NCHW };
+};
+
+/** Calculate stride information.
+ *
+ * Depending on the selected padding mode create the desired PadStrideInfo
+ *
+ * @param[in] params Convolution parameters supplied by the user.
+ *
+ * @return PadStrideInfo with the correct padding mode.
+ */
+inline PadStrideInfo calculate_convolution_padding(ExampleParams params)
+{
+    switch(params.convolution.padding_mode)
+    {
+        case ConvolutionPaddingMode::Manual:
+        {
+            return PadStrideInfo(params.convolution.padding_stride_x, params.convolution.padding_stride_y, params.convolution.padding_left, params.convolution.padding_right, params.convolution.padding_top,
+                                 params.convolution.padding_bottom, DimensionRoundingType::FLOOR);
+        }
+        case ConvolutionPaddingMode::Valid:
+        {
+            return PadStrideInfo();
+        }
+        case ConvolutionPaddingMode::Same:
+        {
+            return arm_compute::calculate_same_pad(TensorShape(params.input.width, params.input.height), TensorShape(params.weights.width, params.weights.height),
+                                                   PadStrideInfo(params.convolution.padding_stride_x,
+                                                                 params.convolution.padding_stride_y));
+        }
+        default:
+            ARM_COMPUTE_ERROR("NOT SUPPORTED!");
+    }
+}
+/** CommonGraphValidateOptions command line options used to configure the graph examples
+ *
+ * (Similar to common options)
+ * The options in this object get populated when "parse()" is called on the parser used to construct it.
+ * The expected workflow is:
+ *
+ * CommandLineParser parser;
+ * CommonOptions options( parser );
+ * parser.parse(argc, argv);
+ */
+class CommonGraphValidateOptions
+{
+public:
+    explicit CommonGraphValidateOptions(CommandLineParser &parser) noexcept
+        : help(parser.add_option<ToggleOption>("help")),
+          threads(parser.add_option<SimpleOption<int>>("threads")),
+          target(),
+          data_type(),
+          absolute_tolerance(parser.add_option<SimpleOption<float>>("abs_tolerance", -1.0f)),
+          relative_tolerance(parser.add_option<SimpleOption<float>>("rel_tolerance", -1.0f)),
+          tolerance_number(parser.add_option<SimpleOption<float>>("tolerance_num", -1.0f))
+    {
+        const std::set<arm_compute::graph::Target> supported_targets
+        {
+            arm_compute::graph::Target::NEON,
+            arm_compute::graph::Target::CL,
+            arm_compute::graph::Target::GC,
+        };
+
+        const std::set<arm_compute::DataType> supported_data_types
+        {
+            DataType::F16,
+            DataType::F32,
+            DataType::QASYMM8,
+        };
+
+        target    = parser.add_option<EnumOption<arm_compute::graph::Target>>("target", supported_targets, arm_compute::graph::Target::NEON);
+        data_type = parser.add_option<EnumOption<DataType>>("type", supported_data_types, DataType::F32);
+
+        target->set_help("Target to execute on");
+        data_type->set_help("Data type to use");
+        help->set_help("Show this help message");
+        absolute_tolerance->set_help("Absolute tolerance used for verification");
+        relative_tolerance->set_help("Absolute tolerance used for verification");
+        tolerance_number->set_help("Absolute tolerance used for verification");
+        ;
+    }
+
+    /** Prevent instances of this class from being copied (As this class contains pointers) */
+    CommonGraphValidateOptions(const CommonGraphValidateOptions &) = delete;
+    /** Prevent instances of this class from being copied (As this class contains pointers) */
+    CommonGraphValidateOptions &operator=(const CommonGraphValidateOptions &) = delete;
+    /** Allow instances of this class to be moved */
+    CommonGraphValidateOptions(CommonGraphValidateOptions &&) noexcept(true) = default;
+    /** Allow instances of this class to be moved */
+    CommonGraphValidateOptions &operator=(CommonGraphValidateOptions &&) noexcept(true) = default;
+    /** Default destructor */
+    virtual ~CommonGraphValidateOptions() = default;
+
+    void consume_common_parameters(CommonParams &common_params)
+    {
+        common_params.common_params.help    = help->is_set() ? help->value() : false;
+        common_params.common_params.threads = threads->value();
+        common_params.common_params.target  = target->value();
+
+        common_params.verification.absolute_tolerance = absolute_tolerance->value();
+        common_params.verification.relative_tolerance = relative_tolerance->value();
+        common_params.verification.tolerance_number   = tolerance_number->value();
+    }
+
+    /** Formatted output of the ExampleParams type
+     *
+     * @param[out] os            Output stream.
+     * @param[in]  common_params Example parameters to output
+     *
+     * @return None.
+     */
+    virtual void print_parameters(::std::ostream &os, const ExampleParams &common_params)
+    {
+        os << "Threads : " << common_params.common_params.threads << std::endl;
+        os << "Target : " << common_params.common_params.target << std::endl;
+        os << "Data type : " << common_params.data_type << std::endl;
+    }
+
+    ToggleOption                           *help;               /**< show help message */
+    SimpleOption<int>                      *threads;            /**< Number of threads option */
+    EnumOption<arm_compute::graph::Target> *target;             /**< Graph execution target */
+    EnumOption<arm_compute::DataType>      *data_type;          /**< Graph data type */
+    SimpleOption<float>                    *absolute_tolerance; /**< Absolute tolerance used in verification */
+    SimpleOption<float>                    *relative_tolerance; /**< Relative tolerance used in verification */
+    SimpleOption<float>                    *tolerance_number;   /**< Tolerance number used in verification */
+};
+
+/** Consumes the consume_common_graph_parameters graph options and creates a structure containing any information
+ *
+ * @param[in]  options       Options to consume
+ * @param[out] common_params params structure to consume.
+ *
+ * @return consume_common_graph_parameters structure containing the common graph parameters
+ */
+void consume_common_graph_parameters(CommonGraphValidateOptions &options, CommonParams &common_params)
+{
+    common_params.common_params.help    = options.help->is_set() ? options.help->value() : false;
+    common_params.common_params.threads = options.threads->value();
+    common_params.common_params.target  = options.target->value();
+
+    common_params.verification.absolute_tolerance = options.absolute_tolerance->value();
+    common_params.verification.relative_tolerance = options.relative_tolerance->value();
+    common_params.verification.tolerance_number   = options.tolerance_number->value();
+}
+
+/** Generates appropriate accessor according to the specified graph parameters
+ *
+ * @param[in] tensor Tensor parameters
+ * @param[in] lower  Lower random values bound
+ * @param[in] upper  Upper random values bound
+ * @param[in] seed   Random generator seed
+ *
+ * @return An appropriate tensor accessor
+ */
+inline std::unique_ptr<graph::ITensorAccessor> get_accessor(const TensorParams &tensor, PixelValue lower, PixelValue upper, const std::random_device::result_type seed = 0)
+{
+    if(!tensor.npy.empty())
+    {
+        return arm_compute::support::cpp14::make_unique<arm_compute::graph_utils::NumPyBinLoader>(tensor.npy);
+    }
+    else
+    {
+        return arm_compute::support::cpp14::make_unique<arm_compute::graph_utils::RandomAccessor>(lower, upper, seed);
+    }
+}
+
+/** Graph example validation accessor class */
+template <typename D>
+class VerifyAccessor : public graph::ITensorAccessor
+{
+public:
+    using TBias = typename std::conditional<std::is_same<typename std::decay<D>::type, uint8_t>::value, int32_t, D>::type;
+    /** Constructor
+     *
+     * @param[in] params Convolution parameters
+     */
+    explicit VerifyAccessor(ExampleParams &params)
+        : _params(std::move(params))
+    {
+    }
+    // Inherited methods overriden:
+    bool access_tensor(ITensor &tensor) override
+    {
+        if(_params.output.npy.empty())
+        {
+            arm_compute::test::SimpleTensor<D>     src;
+            arm_compute::test::SimpleTensor<D>     weights;
+            arm_compute::test::SimpleTensor<TBias> bias;
+
+            //Create Input tensors
+            create_tensors(src, weights, bias, tensor);
+
+            //Fill the tensors with random values
+            fill_tensor(src, 0, static_cast<D>(_params.input.range_low), static_cast<D>(_params.input.range_high));
+            fill_tensor(weights, 1, static_cast<D>(_params.weights.range_low), static_cast<D>(_params.weights.range_high));
+            fill_tensor(bias, 2, static_cast<TBias>(_params.input.range_low), static_cast<TBias>(_params.input.range_high));
+
+            arm_compute::test::SimpleTensor<D> output = reference(src, weights, bias, output_shape(tensor));
+
+            validate(tensor, output);
+        }
+        else
+        {
+            //The user provided a reference file use an npy accessor to validate
+            arm_compute::graph_utils::NumPyAccessor(_params.output.npy, tensor.info()->tensor_shape(), tensor.info()->data_type()).access_tensor(tensor);
+        }
+        return false;
+    }
+
+    /** Create reference tensors.
+     *
+     * Validate the given tensor against the reference result.
+     *
+     * @param[out] src     The tensor with the source data.
+     * @param[out] weights The tensor with the weigths data.
+     * @param[out] bias    The tensor with the bias data.
+     * @param[in]  tensor  Tensor result of the actual operation passed into the Accessor.
+     *
+     * @return None.
+     */
+    virtual void create_tensors(arm_compute::test::SimpleTensor<D>     &src,
+                                arm_compute::test::SimpleTensor<D>     &weights,
+                                arm_compute::test::SimpleTensor<TBias> &bias,
+                                ITensor                                &tensor)
+    {
+        ARM_COMPUTE_UNUSED(tensor);
+        //Create Input tensors
+        src     = arm_compute::test::SimpleTensor<D> { TensorShape(_params.input.width, _params.input.height, _params.input.fm, _params.input.batch), _params.data_type, 1, _params.input.quant_info };
+        weights = arm_compute::test::SimpleTensor<D> { TensorShape(_params.weights.width, _params.weights.height, _params.weights.fm), _params.data_type, 1, _params.weights.quant_info };
+        bias    = arm_compute::test::SimpleTensor<TBias> { TensorShape(_params.input.height), _params.data_type, 1, _params.input.quant_info };
+    }
+
+    /** Calculate reference output tensor shape.
+     *
+     * @param[in] tensor Tensor result of the actual operation passed into the Accessor.
+     *
+     * @return output tensor shape.
+     */
+    virtual TensorShape output_shape(ITensor &tensor)
+    {
+        return arm_compute::graph_utils::permute_shape(tensor.info()->tensor_shape(), _params.data_layout, DataLayout::NCHW);
+    }
+
+    /** Calculate reference tensor.
+     *
+     * Validate the given tensor against the reference result.
+     *
+     * @param[in] src          The tensor with the source data.
+     * @param[in] weights      The tensor with the weigths data.
+     * @param[in] bias         The tensor with the bias data.
+     * @param[in] output_shape Shape of the output tensor.
+     *
+     * @return Tensor with the reference output.
+     */
+    virtual arm_compute::test::SimpleTensor<D> reference(arm_compute::test::SimpleTensor<D>     &src,
+                                                         arm_compute::test::SimpleTensor<D>     &weights,
+                                                         arm_compute::test::SimpleTensor<TBias> &bias,
+                                                         const arm_compute::TensorShape         &output_shape) = 0;
+
+    /** Fill QASYMM tensor with Random values.
+     *
+     * Validate the given tensor against the reference result.
+     *
+     * @param[out] tensor The tensor we want to file
+     * @param[in]  seed   seed for the randomization function
+     * @param[in]  low    lower bound for random values
+     * @param[in]  high   upper bound for random values
+     *
+     * @return None.
+     */
+    void fill_tensor(arm_compute::test::SimpleTensor<uint8_t> &tensor, std::random_device::result_type seed, uint8_t low, uint8_t high)
+    {
+        ARM_COMPUTE_ERROR_ON(tensor.data_type() != arm_compute::DataType::QASYMM8);
+
+        const UniformQuantizationInfo qinfo = tensor.quantization_info().uniform();
+
+        uint8_t qasymm8_low  = quantize_qasymm8(low, qinfo);
+        uint8_t qasymm8_high = quantize_qasymm8(high, qinfo);
+
+        std::mt19937                           gen(seed);
+        std::uniform_int_distribution<uint8_t> distribution(qasymm8_low, qasymm8_high);
+
+        for(int i = 0; i < tensor.num_elements(); ++i)
+        {
+            tensor[i] = quantize_qasymm8(distribution(gen), qinfo);
+        }
+    }
+    /** Fill S32 tensor with Random values.
+     *
+     * Validate the given tensor against the reference result.
+     *
+     * @param[out] tensor The tensor we want to file
+     * @param[in]  seed   seed for the randomization function
+     * @param[in]  low    lower bound for random values
+     * @param[in]  high   upper bound for random values
+     *
+     * @return None.
+     */
+    void fill_tensor(arm_compute::test::SimpleTensor<int32_t> &tensor, std::random_device::result_type seed, int32_t low, int32_t high)
+    {
+        std::mt19937                           gen(seed);
+        std::uniform_int_distribution<int32_t> distribution(static_cast<int32_t>(low), static_cast<uint32_t>(high));
+
+        for(int i = 0; i < tensor.num_elements(); ++i)
+        {
+            tensor[i] = distribution(gen);
+        }
+    }
+    /** Fill F32 tensor with Random values.
+     *
+     * Validate the given tensor against the reference result.
+     *
+     * @param[out] tensor The tensor we want to file
+     * @param[in]  seed   seed for the randomization function
+     * @param[in]  low    lower bound for random values
+     * @param[in]  high   upper bound for random values
+     *
+     * @return None.
+     */
+    void fill_tensor(arm_compute::test::SimpleTensor<float> &tensor, std::random_device::result_type seed, float low, float high)
+    {
+        ARM_COMPUTE_ERROR_ON(tensor.data_type() != arm_compute::DataType::F32);
+        std::mt19937                          gen(seed);
+        std::uniform_real_distribution<float> distribution(low, high);
+
+        for(int i = 0; i < tensor.num_elements(); ++i)
+        {
+            tensor[i] = distribution(gen);
+        }
+    }
+    /** Fill F16 tensor with Random values.
+     *
+     * Validate the given tensor against the reference result.
+     *
+     * @param[out] tensor The tensor we want to file
+     * @param[in]  seed   seed for the randomization function
+     * @param[in]  low    lower bound for random values
+     * @param[in]  high   upper bound for random values
+     *
+     * @return None.
+     */
+    void fill_tensor(arm_compute::test::SimpleTensor<half> &tensor, std::random_device::result_type seed, half low, half high)
+    {
+        ARM_COMPUTE_ERROR_ON(tensor.data_type() != arm_compute::DataType::F16);
+        std::mt19937                          gen(seed);
+        std::uniform_real_distribution<float> distribution(static_cast<half>(low), static_cast<half>(high));
+
+        for(int i = 0; i < tensor.num_elements(); ++i)
+        {
+            tensor[i] = static_cast<half>(distribution(gen));
+        }
+    }
+
+    /** Select relative tolerance.
+     *
+     * Select relative tolerance if not supplied by user.
+     *
+     * @return Appropriate relative tolerance.
+     */
+    virtual float relative_tolerance() = 0;
+
+    /** Select absolute tolerance.
+     *
+     * Select absolute tolerance if not supplied by user.
+     *
+     * @return Appropriate absolute tolerance.
+     */
+    virtual float absolute_tolerance() = 0;
+
+    /** Select tolerance number.
+     *
+     * Select tolerance number if not supplied by user.
+     *
+     * @return Appropriate tolerance number.
+     */
+    virtual float tolerance_number() = 0;
+
+    /** Validate the output versus the reference.
+     *
+     * @param[in] tensor Tensor result of the actual operation passed into the Accessor.
+     * @param[in] output Tensor result of the reference implementation.
+     *
+     * @return None.
+     */
+    void validate(ITensor &tensor, arm_compute::test::SimpleTensor<D> output)
+    {
+        float user_relative_tolerance = _params.verification.relative_tolerance;
+        float user_absolute_tolerance = _params.verification.absolute_tolerance;
+        float user_tolerance_num      = _params.verification.tolerance_number;
+        /* If no user input was provided override with defaults. */
+        if(user_relative_tolerance == -1)
+        {
+            user_relative_tolerance = relative_tolerance();
+        }
+
+        if(user_absolute_tolerance == -1)
+        {
+            user_absolute_tolerance = absolute_tolerance();
+        }
+
+        if(user_tolerance_num == -1)
+        {
+            user_tolerance_num = tolerance_number();
+        }
+
+        const arm_compute::test::validation::RelativeTolerance<float> rel_tolerance(user_relative_tolerance); /**< Relative tolerance */
+        const arm_compute::test::validation::AbsoluteTolerance<float> abs_tolerance(user_absolute_tolerance); /**< Absolute tolerance */
+        const float                                                   tolerance_num(user_tolerance_num);      /**< Tolerance number */
+
+        arm_compute::test::validation::validate(arm_compute::test::Accessor(tensor), output, rel_tolerance, tolerance_num, abs_tolerance);
+    }
+
+    ExampleParams _params;
+};
+
+/** Generates appropriate convolution verify accessor
+ *
+ * @param[in] params User supplied parameters for convolution.
+ *
+ * @return A convolution verify accessor for the requested datatype.
+ */
+template <template <typename D> class VerifyAccessorT>
+inline std::unique_ptr<graph::ITensorAccessor> get_verify_accessor(ExampleParams params)
+{
+    switch(params.data_type)
+    {
+        case DataType::QASYMM8:
+        {
+            return arm_compute::support::cpp14::make_unique<VerifyAccessorT<uint8_t>>(
+                       params);
+        }
+        case DataType::F16:
+        {
+            return arm_compute::support::cpp14::make_unique<VerifyAccessorT<half>>(
+                       params);
+        }
+        case DataType::F32:
+        {
+            return arm_compute::support::cpp14::make_unique<VerifyAccessorT<float>>(
+                       params);
+        }
+        default:
+            ARM_COMPUTE_ERROR("NOT SUPPORTED!");
+    }
+}
+
+template <typename LayerT, typename OptionsT, template <typename D> class VerifyAccessorT>
+class GraphValidateExample : public ValidateExample
+{
+public:
+    GraphValidateExample(std::string name)
+        : graph(0, name)
+    {
+    }
+
+    virtual LayerT GraphFunctionLayer(ExampleParams &params) = 0;
+
+    bool do_setup(int argc, char **argv) override
+    {
+        CommandLineParser parser;
+
+        OptionsT Options(parser);
+
+        parser.parse(argc, argv);
+
+        ExampleParams params;
+
+        Options.consume_common_parameters(params);
+        Options.consume_parameters(params);
+
+        if(params.common_params.help)
+        {
+            parser.print_help(argv[0]);
+            return false;
+        }
+
+        Options.print_parameters(std::cout, params);
+        // Create input descriptor
+        const TensorShape input_shape = arm_compute::graph_utils::permute_shape(TensorShape(params.input.width, params.input.height, params.input.fm, params.input.batch),
+                                                                                DataLayout::NCHW, params.data_layout);
+        arm_compute::graph::TensorDescriptor input_descriptor = arm_compute::graph::TensorDescriptor(input_shape, params.data_type, params.input.quant_info, params.data_layout);
+
+        const PixelValue lower = PixelValue(params.input.range_low, params.data_type, params.input.quant_info);
+        const PixelValue upper = PixelValue(params.input.range_high, params.data_type, params.input.quant_info);
+
+        graph << params.common_params.target
+              << params.convolution_method
+              << params.depth_convolution_method
+              << arm_compute::graph::frontend::InputLayer(input_descriptor, get_accessor(params.input, lower, upper, 0))
+              << GraphFunctionLayer(params)
+              << arm_compute::graph::frontend::OutputLayer(get_verify_accessor<VerifyAccessorT>(params));
+
+        arm_compute::graph::GraphConfig config;
+        config.num_threads = params.common_params.threads;
+
+        graph.finalize(params.common_params.target, config);
+
+        return true;
+    }
+
+    void do_run() override
+    {
+        graph.run();
+    }
+
+    void do_teardown() override
+    {
+    }
+
+    arm_compute::graph::frontend::Stream graph;
+};
+
+} // graph_validate_utils
+} // arm_compute
+#endif //__GRAPH_VALIDATE_UTILS_H__