arm_compute v20.02
diff --git a/documentation/activation__layer_8cl_source.xhtml b/documentation/activation__layer_8cl_source.xhtml
index 69e3651..18a773b 100644
--- a/documentation/activation__layer_8cl_source.xhtml
+++ b/documentation/activation__layer_8cl_source.xhtml
@@ -40,7 +40,7 @@
   <img alt="Compute Library" src="https://raw.githubusercontent.com/ARM-software/ComputeLibrary/gh-pages/ACL_logo.png" style="max-width: 100%;margin-top: 15px;margin-left: 10px"/>
   <td style="padding-left: 0.5em;">
    <div id="projectname">
-   &#160;<span id="projectnumber">19.11.1</span>
+   &#160;<span id="projectnumber">20.02</span>
    </div>
   </td>
  </tr>
@@ -100,7 +100,7 @@
 <div class="title">activation_layer.cl</div>  </div>
 </div><!--header-->
 <div class="contents">
-<a href="activation__layer_8cl.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2016-2019 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> * of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment"> * THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#if defined(ACT) &amp;&amp; defined(DATA_TYPE) &amp;&amp; defined(VEC_SIZE)</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;</div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="preprocessor">#define TYPE VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)</span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;</div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="activation__float__helpers_8h.xhtml">activation_float_helpers.h</a>&quot;</span></div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;<span class="comment">/** This performs an activation function floating point inputs.</span></div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;<span class="comment"> * @note In order to perform the activation function &quot;in-place&quot;, the pre-processor -DIN_PLACE must be passed at compile time</span></div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;<span class="comment"> * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short</span></div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;<span class="comment"> * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16</span></div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;<span class="comment"> * @note Activation function should be given as a preprocessor argument using -DACT=name. e.g. -DACT=TANH</span></div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;<span class="comment"> * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively.</span></div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;<span class="comment"> * @param[in]  input_ptr                            Pointer to the source image. Supported data types: F16/F32</span></div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;<span class="comment"> * @param[in]  input_stride_x                       Stride of the source image in X dimension (in bytes)</span></div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;<span class="comment"> * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;<span class="comment"> * @param[in]  input_stride_y                       Stride of the source image in Y dimension (in bytes)</span></div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;<span class="comment"> * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;<span class="comment"> * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;<span class="comment"> * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;<span class="comment"> * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source image</span></div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;<span class="comment"> * @param[out] output_ptr                           Pointer to the destination image. Supported data types: same as @p input_ptr</span></div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;<span class="comment"> * @param[in]  output_stride_x                      Stride of the destination image in X dimension (in bytes)</span></div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;<span class="comment"> * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;<span class="comment"> * @param[in]  output_stride_y                      Stride of the destination image in Y dimension (in bytes)</span></div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;<span class="comment"> * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;<span class="comment"> * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;<span class="comment"> * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;<span class="comment"> * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination image</span></div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;__kernel <span class="keywordtype">void</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a3802a0604503a4f9c4eb7189db69f11d">activation_layer</a>(</div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8fcf2ddd9a1d58b1b280f5c0aed71845">input</a>)</div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;#ifndef IN_PLACE</div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;    ,</div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(output)</div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;#endif <span class="comment">/* not IN_PLACE */</span></div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;)</div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;{</div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;    <span class="comment">// Get pixels pointer</span></div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8fcf2ddd9a1d58b1b280f5c0aed71845">input</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8fcf2ddd9a1d58b1b280f5c0aed71845">input</a>);</div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;<span class="preprocessor">#ifdef IN_PLACE</span></div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> output = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8fcf2ddd9a1d58b1b280f5c0aed71845">input</a>;</div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;<span class="preprocessor">#else  </span><span class="comment">/* IN_PLACE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> output = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(output);</div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* IN_PLACE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;    <span class="comment">// Load data</span></div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;    <a class="code" href="activation__quant__helpers_8h.xhtml#a5a392548f2df67370cb15d2a5d75cd7b">TYPE</a> data = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8fcf2ddd9a1d58b1b280f5c0aed71845">input</a>.ptr);</div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;</div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;    <span class="comment">// Perform activation</span></div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;    data = <a class="code" href="activation__float__helpers_8h.xhtml#abbc420da5dec17216bb014c05ad65304">ACTIVATION</a>(ACT, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, data, A_VAL, B_VAL);</div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;    <span class="comment">// Store result</span></div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;    (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)output.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a>);</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;}</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;</div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(ACT) */</span><span class="preprocessor"></span></div><div class="ttc" id="namespacearm__compute_1_1test_1_1validation_1_1reference_xhtml_a3802a0604503a4f9c4eb7189db69f11d"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a3802a0604503a4f9c4eb7189db69f11d">arm_compute::test::validation::reference::activation_layer</a></div><div class="ttdeci">SimpleTensor&lt; T &gt; activation_layer(const SimpleTensor&lt; T &gt; &amp;src, ActivationLayerInfo info, const QuantizationInfo &amp;oq_info)</div><div class="ttdef"><b>Definition:</b> <a href="validation_2reference_2_activation_layer_8cpp_source.xhtml#l00038">ActivationLayer.cpp:38</a></div></div>
+<a href="activation__layer_8cl.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2016-2019 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> * of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment"> * THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#if defined(ACT) &amp;&amp; defined(DATA_TYPE) &amp;&amp; defined(VEC_SIZE)</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;</div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="preprocessor">#define TYPE VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)</span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;</div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="activation__float__helpers_8h.xhtml">activation_float_helpers.h</a>&quot;</span></div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;<span class="comment">/** This performs an activation function floating point inputs.</span></div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;<span class="comment"> * @note In order to perform the activation function &quot;in-place&quot;, the pre-processor -DIN_PLACE must be passed at compile time</span></div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;<span class="comment"> * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short</span></div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;<span class="comment"> * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16</span></div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;<span class="comment"> * @note Activation function should be given as a preprocessor argument using -DACT=name. e.g. -DACT=TANH</span></div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;<span class="comment"> * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively.</span></div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;<span class="comment"> * @param[in]  input_ptr                            Pointer to the source image. Supported data types: F16/F32</span></div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;<span class="comment"> * @param[in]  input_stride_x                       Stride of the source image in X dimension (in bytes)</span></div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;<span class="comment"> * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;<span class="comment"> * @param[in]  input_stride_y                       Stride of the source image in Y dimension (in bytes)</span></div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;<span class="comment"> * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;<span class="comment"> * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;<span class="comment"> * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;<span class="comment"> * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source image</span></div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;<span class="comment"> * @param[out] output_ptr                           Pointer to the destination image. Supported data types: same as @p input_ptr</span></div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;<span class="comment"> * @param[in]  output_stride_x                      Stride of the destination image in X dimension (in bytes)</span></div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;<span class="comment"> * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;<span class="comment"> * @param[in]  output_stride_y                      Stride of the destination image in Y dimension (in bytes)</span></div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;<span class="comment"> * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;<span class="comment"> * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;<span class="comment"> * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;<span class="comment"> * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination image</span></div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;__kernel <span class="keywordtype">void</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a3802a0604503a4f9c4eb7189db69f11d">activation_layer</a>(</div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8fcf2ddd9a1d58b1b280f5c0aed71845">input</a>)</div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;#ifndef IN_PLACE</div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;    ,</div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(output)</div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;#endif <span class="comment">/* not IN_PLACE */</span></div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;)</div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;{</div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;    <span class="comment">// Get pixels pointer</span></div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8fcf2ddd9a1d58b1b280f5c0aed71845">input</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8fcf2ddd9a1d58b1b280f5c0aed71845">input</a>);</div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;<span class="preprocessor">#ifdef IN_PLACE</span></div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> output = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8fcf2ddd9a1d58b1b280f5c0aed71845">input</a>;</div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;<span class="preprocessor">#else  </span><span class="comment">/* IN_PLACE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> output = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(output);</div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* IN_PLACE */</span><span class="preprocessor"></span></div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;    <span class="comment">// Load data</span></div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;    <a class="code" href="activation__quant__helpers_8h.xhtml#a5a392548f2df67370cb15d2a5d75cd7b">TYPE</a> data = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8fcf2ddd9a1d58b1b280f5c0aed71845">input</a>.ptr);</div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;</div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;    <span class="comment">// Perform activation</span></div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;    data = <a class="code" href="activation__float__helpers_8h.xhtml#abbc420da5dec17216bb014c05ad65304">ACTIVATION</a>(ACT, <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, data, A_VAL, B_VAL);</div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;    <span class="comment">// Store result</span></div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;    (data, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)output.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a>);</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;}</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;</div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(ACT) */</span><span class="preprocessor"></span></div><div class="ttc" id="namespacearm__compute_1_1test_1_1validation_1_1reference_xhtml_a3802a0604503a4f9c4eb7189db69f11d"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation_1_1reference.xhtml#a3802a0604503a4f9c4eb7189db69f11d">arm_compute::test::validation::reference::activation_layer</a></div><div class="ttdeci">SimpleTensor&lt; T &gt; activation_layer(const SimpleTensor&lt; T &gt; &amp;src, ActivationLayerInfo info, const QuantizationInfo &amp;oq_info)</div><div class="ttdef"><b>Definition:</b> <a href="reference_2_activation_layer_8cpp_source.xhtml#l00038">ActivationLayer.cpp:38</a></div></div>
 <div class="ttc" id="activation__float__helpers_8h_xhtml"><div class="ttname"><a href="activation__float__helpers_8h.xhtml">activation_float_helpers.h</a></div></div>
 <div class="ttc" id="depthwise__convolution__quantized_8cl_xhtml_a3fffea119c04c7680f2e9cf3fadf63b4"><div class="ttname"><a href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a></div><div class="ttdeci">#define VEC_SIZE</div><div class="ttdef"><b>Definition:</b> <a href="depthwise__convolution__quantized_8cl_source.xhtml#l00031">depthwise_convolution_quantized.cl:31</a></div></div>
 <div class="ttc" id="convolution3x3_8cl_xhtml_afb8c72ce35c4a1f4a2588d6573e54aa1"><div class="ttname"><a href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a></div><div class="ttdeci">#define DATA_TYPE</div><div class="ttdef"><b>Definition:</b> <a href="convolution3x3_8cl_source.xhtml#l00027">convolution3x3.cl:27</a></div></div>
@@ -119,7 +119,7 @@
 <div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
   <ul>
     <li class="navelem"><a class="el" href="dir_68267d1309a1af8e8297ef4c3efbcdba.xhtml">src</a></li><li class="navelem"><a class="el" href="dir_aebb8dcc11953d78e620bbef0b9e2183.xhtml">core</a></li><li class="navelem"><a class="el" href="dir_8c278f79c760e5c5fbd911f9870614c1.xhtml">CL</a></li><li class="navelem"><a class="el" href="dir_25885286e9dad4fa105b7b25a8031bbf.xhtml">cl_kernels</a></li><li class="navelem"><a class="el" href="activation__layer_8cl.xhtml">activation_layer.cl</a></li>
-    <li class="footer">Generated on Wed Jan 22 2020 18:07:38 for Compute Library by
+    <li class="footer">Generated on Fri Feb 21 2020 11:10:11 for Compute Library by
     <a href="http://www.doxygen.org/index.html">
     <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.15 </li>
   </ul>