arm_compute v20.02
diff --git a/documentation/concatenate_8cl_source.xhtml b/documentation/concatenate_8cl_source.xhtml
index 6b9121d..961584a 100644
--- a/documentation/concatenate_8cl_source.xhtml
+++ b/documentation/concatenate_8cl_source.xhtml
@@ -40,7 +40,7 @@
   <img alt="Compute Library" src="https://raw.githubusercontent.com/ARM-software/ComputeLibrary/gh-pages/ACL_logo.png" style="max-width: 100%;margin-top: 15px;margin-left: 10px"/>
   <td style="padding-left: 0.5em;">
    <div id="projectname">
-   &#160;<span id="projectnumber">19.11.1</span>
+   &#160;<span id="projectnumber">20.02</span>
    </div>
   </td>
  </tr>
@@ -100,7 +100,7 @@
 <div class="title">concatenate.cl</div>  </div>
 </div><!--header-->
 <div class="contents">
-<a href="concatenate_8cl.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2017-2019 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> * of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment"> * THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml">helpers.h</a>&quot;</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;</div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="preprocessor">#if defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT)</span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;<span class="preprocessor">#define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE)</span></div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;<span class="preprocessor">#define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE)</span></div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;<span class="preprocessor">#define VEC_UCHAR VEC_DATA_TYPE(uchar, VEC_SIZE)</span></div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;<span class="preprocessor">#define CONVERT_RTE(x, type) (convert_##type##_rte((x)))</span></div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;<span class="preprocessor">#define CONVERT_DOWN(x, type) CONVERT_RTE(x, type)</span></div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;<span class="keyword">inline</span> <a class="code" href="softmax__layer__quantized_8cl.xhtml#af5987b09a234231612b2b1eded343025">VEC_UCHAR</a> requantize(<a class="code" href="softmax__layer__quantized_8cl.xhtml#af5987b09a234231612b2b1eded343025">VEC_UCHAR</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8fcf2ddd9a1d58b1b280f5c0aed71845">input</a>, <span class="keywordtype">float</span> in_offset, <span class="keywordtype">float</span> out_offset, <span class="keywordtype">float</span> in_scale, <span class="keywordtype">float</span> out_scale)</div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;{</div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;    <span class="keyword">const</span> <a class="code" href="activation__layer__quant_8cl.xhtml#ade2e33e6f303ce93468eef7e56d95c0c">VEC_FLOAT</a> in_f32  = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8fcf2ddd9a1d58b1b280f5c0aed71845">input</a>, <a class="code" href="activation__layer__quant_8cl.xhtml#ade2e33e6f303ce93468eef7e56d95c0c">VEC_FLOAT</a>) - (<a class="code" href="activation__layer__quant_8cl.xhtml#ade2e33e6f303ce93468eef7e56d95c0c">VEC_FLOAT</a>)((<span class="keywordtype">float</span>)in_offset)) * (<a class="code" href="activation__layer__quant_8cl.xhtml#ade2e33e6f303ce93468eef7e56d95c0c">VEC_FLOAT</a>)((<span class="keywordtype">float</span>)in_scale);</div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;    <span class="keyword">const</span> <a class="code" href="activation__layer__quant_8cl.xhtml#ade2e33e6f303ce93468eef7e56d95c0c">VEC_FLOAT</a> out_f32 = in_f32 / ((<a class="code" href="activation__layer__quant_8cl.xhtml#ade2e33e6f303ce93468eef7e56d95c0c">VEC_FLOAT</a>)(<span class="keywordtype">float</span>)out_scale) + ((<a class="code" href="activation__layer__quant_8cl.xhtml#ade2e33e6f303ce93468eef7e56d95c0c">VEC_FLOAT</a>)((float)out_offset));</div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;    <span class="keyword">const</span> <a class="code" href="softmax__layer__quantized_8cl.xhtml#af5987b09a234231612b2b1eded343025">VEC_UCHAR</a> res_u8  = <a class="code" href="direct__convolution1x1_8cl.xhtml#a1f15728672380ade7a238f5e783d54d2">CONVERT_SAT</a>(<a class="code" href="depth__convert_8cl.xhtml#a5b0d9908c0af31eaa7a31d0b5cf8e56d">CONVERT_DOWN</a>(out_f32, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#aee190caf3b3571e939ac129e12c368cd">VEC_INT</a>), <a class="code" href="softmax__layer__quantized_8cl.xhtml#af5987b09a234231612b2b1eded343025">VEC_UCHAR</a>);</div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;    <span class="keywordflow">return</span> res_u8;</div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;}</div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;</div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;<span class="preprocessor">#if defined(DATA_TYPE) &amp;&amp; defined(VEC_SIZE)</span></div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;<span class="preprocessor">#if defined(DEPTH) &amp;&amp; defined(ELEMENT_SIZE)</span></div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;</div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;<span class="preprocessor">#if defined(INPUT1_WIDTH)</span></div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;</div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;<span class="preprocessor">#if ELEMENT_SIZE == 1</span></div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;<span class="preprocessor">#define COND_DATA_TYPE char</span></div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;<span class="preprocessor">#elif ELEMENT_SIZE == 2</span></div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;<span class="preprocessor">#define COND_DATA_TYPE short</span></div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;<span class="preprocessor">#elif ELEMENT_SIZE == 4</span></div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;<span class="preprocessor">#define COND_DATA_TYPE int</span></div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;<span class="preprocessor">#else // ELEMENT_SIZE</span></div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;<span class="preprocessor">#error &quot;Element size not supported&quot;</span></div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;<span class="preprocessor">#endif // ELEMENT_SIZE</span></div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;</div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;<span class="preprocessor">#if VEC_SIZE == 2</span></div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;<span class="preprocessor">#define SEQ ((int2)(0, 1))</span></div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;<span class="preprocessor">#elif VEC_SIZE == 4</span></div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;<span class="preprocessor">#define SEQ ((int4)(0, 1, 2, 3))</span></div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;<span class="preprocessor">#elif VEC_SIZE == 8</span></div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;<span class="preprocessor">#define SEQ ((int8)(0, 1, 2, 3, 4, 5, 6, 7))</span></div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;<span class="preprocessor">#elif VEC_SIZE == 16</span></div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;<span class="preprocessor">#define SEQ ((int16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15))</span></div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;<span class="preprocessor">#else // VEC_SIZE</span></div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;<span class="preprocessor">#error &quot;Vector size not supported&quot;</span></div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;<span class="preprocessor">#endif // VEC_SIZE</span></div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;<span class="comment">/** This kernel concatenates two input tensors into the output tensor along the first dimension</span></div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;<span class="comment"> * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float</span></div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;<span class="comment"> * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16</span></div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;<span class="comment"> * @note The offset for the first spatial dimension has to be passed at compile time using -DWIDTH_OFFSET. i.e. -DWIDTH_OFFSET=128</span></div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;<span class="comment"> * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16</span></div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;<span class="comment"> * @note First input tensor width should be given as a preprocessor argument using -DINPUT1_WIDTH=width. e.g. -DINPUT1_WIDTH=8</span></div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;<span class="comment"> * @param[in]  src1_ptr                           Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32</span></div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;<span class="comment"> * @param[in]  src1_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;<span class="comment"> * @param[in]  src1_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;<span class="comment"> * @param[in]  src1_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;<span class="comment"> * @param[in]  src1_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;<span class="comment"> * @param[in]  src1_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;<span class="comment"> * @param[in]  src1_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;<span class="comment"> * @param[in]  src1_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;<span class="comment"> * @param[in]  src1_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;<span class="comment"> * @param[in]  src1_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;<span class="comment"> * @param[in]  src2_ptr                           Pointer to the source tensor. Supported data types: same as @p src1_ptr</span></div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;<span class="comment"> * @param[in]  src2_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;<span class="comment"> * @param[in]  src2_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;<span class="comment"> * @param[in]  src2_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;<span class="comment"> * @param[in]  src2_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;<span class="comment"> * @param[in]  src2_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;<span class="comment"> * @param[in]  src2_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;<span class="comment"> * @param[in]  src2_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;<span class="comment"> * @param[in]  src2_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;<span class="comment"> * @param[in]  src2_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;<span class="comment"> * @param[out] dst_ptr                            Pointer to the destination tensor. Supported data types: same as @p src1_ptr</span></div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                       Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;<span class="comment"> * @param[in]  dst_step_x                         dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                       Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;<span class="comment"> * @param[in]  dst_step_y                         dst_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                       Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;<span class="comment"> * @param[in]  dst_step_z                         dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;<span class="comment"> * @param[in]  dst_stride_w                       Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;<span class="comment"> * @param[in]  dst_step_w                         output_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes  The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;<span class="comment"> * @param[in]  src1_pad_right                     Right paddings of the first input tensor in unit of elements</span></div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;<span class="comment"> * @param[in]  src1_pad_left                      Left paddings of the second input tensor in unit of elements</span></div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;__kernel <span class="keywordtype">void</span> concatenate_width_x2(</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(src1),</div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(src2),</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;    uint src1_pad_right,</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;    uint src2_pad_left)</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;{</div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;    <a class="code" href="struct_tensor4_d.xhtml">Tensor4D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a23b9032d1b9d59547545e457f82ee478">CONVERT_TO_TENSOR4D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, DEPTH);</div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;    <span class="comment">// Calculate input indices</span></div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x  = get_global_id(0) * (int)<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>;</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> y  = get_global_id(1);</div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> z  = get_global_id(2) % (int)DEPTH;</div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a>  = get_global_id(2) / (int)DEPTH;</div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x1 = min(x, (<span class="keywordtype">int</span>)INPUT1_WIDTH + (<span class="keywordtype">int</span>)src1_pad_right - (<span class="keywordtype">int</span>)<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>);</div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x2 = max(x - (<span class="keywordtype">int</span>)INPUT1_WIDTH, -(<span class="keywordtype">int</span>)src2_pad_left);</div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;</div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;    <span class="comment">// Calculate inputs and output addresses</span></div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;    <span class="keyword">const</span> __global uchar *in1_ptr = src1_ptr + (int)src1_offset_first_element_in_bytes + x1 * (<span class="keywordtype">int</span>)src1_stride_x + y * (int)src1_stride_y + z * (<span class="keywordtype">int</span>)src1_stride_z + <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a> * (int)src1_stride_w;</div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;    <span class="keyword">const</span> __global uchar *in2_ptr = src2_ptr + (int)src2_offset_first_element_in_bytes + x2 * (<span class="keywordtype">int</span>)src2_stride_x + y * (int)src2_stride_y + z * (<span class="keywordtype">int</span>)src2_stride_z + <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a> * (int)src2_stride_w;</div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;</div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;    src1_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)in1_ptr);</div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;    src2_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)in2_ptr);</div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;</div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;<span class="preprocessor">#if defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_IN2) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_IN2) &amp;&amp; defined(SCALE_OUT)</span></div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;    src1_values = requantize(src1_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;    src2_values = requantize(src2_values, OFFSET_IN2, OFFSET_OUT, SCALE_IN2, SCALE_OUT);</div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_IN2) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1)  &amp;&amp; defined(SCALE_IN2) &amp;&amp; defined(SCALE_OUT) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;    <span class="keyword">const</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>) x_coords        = SEQ + (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>))(x);</div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;    <span class="keyword">const</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>) cond = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(x_coords &lt; (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>))(INPUT1_WIDTH), <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>));</div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;    <span class="keyword">const</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>) values    = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(src2_values, src1_values, cond);</div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;</div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;    (values, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr);</div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;}</div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;</div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;<span class="preprocessor">#if defined(INPUT2_WIDTH) &amp;&amp; defined(INPUT3_WIDTH)</span></div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;<span class="comment">/** This kernel concatenates four input tensors into the output tensor along the first dimension</span></div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;<span class="comment"> * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float</span></div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;<span class="comment"> * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16</span></div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;<span class="comment"> * @note The offset for the first spatial dimension has to be passed at compile time using -DWIDTH_OFFSET. i.e. -DWIDTH_OFFSET=128</span></div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;<span class="comment"> * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16</span></div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;<span class="comment"> * @note First input tensor width should be given as a preprocessor argument using -DINPUT1_WIDTH=width. e.g. -DINPUT1_WIDTH=8</span></div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;<span class="comment"> * @note Second input tensor width should be given as a preprocessor argument using -DINPUT2_WIDTH=width. e.g. -DINPUT2_WIDTH=8</span></div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;<span class="comment"> * @note Third input tensor width should be given as a preprocessor argument using -DINPUT3_WIDTH=width. e.g. -DINPUT3_WIDTH=8</span></div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;<span class="comment"> * @param[in]  src1_ptr                           Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32</span></div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;<span class="comment"> * @param[in]  src1_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;<span class="comment"> * @param[in]  src1_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;<span class="comment"> * @param[in]  src1_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;<span class="comment"> * @param[in]  src1_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;<span class="comment"> * @param[in]  src1_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;<span class="comment"> * @param[in]  src1_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;<span class="comment"> * @param[in]  src1_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;<span class="comment"> * @param[in]  src1_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;<span class="comment"> * @param[in]  src1_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;<span class="comment"> * @param[in]  src2_ptr                           Pointer to the source tensor. Supported data types: same as @p src1_ptr</span></div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;<span class="comment"> * @param[in]  src2_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;<span class="comment"> * @param[in]  src2_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;<span class="comment"> * @param[in]  src2_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;<span class="comment"> * @param[in]  src2_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;<span class="comment"> * @param[in]  src2_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;<span class="comment"> * @param[in]  src2_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;<span class="comment"> * @param[in]  src2_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;<span class="comment"> * @param[in]  src2_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;<span class="comment"> * @param[in]  src2_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;<span class="comment"> * @param[in]  src3_ptr                           Pointer to the source tensor. Supported data types: same as @p src1_ptr</span></div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;<span class="comment"> * @param[in]  src3_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;<span class="comment"> * @param[in]  src3_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;<span class="comment"> * @param[in]  src3_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;<span class="comment"> * @param[in]  src3_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;<span class="comment"> * @param[in]  src3_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;<span class="comment"> * @param[in]  src3_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;<span class="comment"> * @param[in]  src3_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;<span class="comment"> * @param[in]  src3_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;<span class="comment"> * @param[in]  src3_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;<span class="comment"> * @param[in]  src4_ptr                           Pointer to the source tensor. Supported data types: same as @p src1_ptr</span></div><div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;<span class="comment"> * @param[in]  src4_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;<span class="comment"> * @param[in]  src4_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;<span class="comment"> * @param[in]  src4_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;<span class="comment"> * @param[in]  src4_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;<span class="comment"> * @param[in]  src4_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;<span class="comment"> * @param[in]  src4_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;<span class="comment"> * @param[in]  src4_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;<span class="comment"> * @param[in]  src4_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;<span class="comment"> * @param[in]  src4_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;<span class="comment"> * @param[out] dst_ptr                            Pointer to the destination tensor. Supported data types: same as @p src1_ptr</span></div><div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                       Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;<span class="comment"> * @param[in]  dst_step_x                         dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                       Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;<span class="comment"> * @param[in]  dst_step_y                         dst_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                       Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;<span class="comment"> * @param[in]  dst_step_z                         dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;<span class="comment"> * @param[in]  dst_stride_w                       Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;<span class="comment"> * @param[in]  dst_step_w                         output_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes  The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;<span class="comment"> * @param[in]  src1_pad_right                     Right paddings of the first input tensor in unit of elements</span></div><div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;<span class="comment"> * @param[in]  src2_pad_left                      Left paddings of the second input tensor in unit of elements</span></div><div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;<span class="comment"> * @param[in]  src2_pad_right                     Right paddings of the second input tensor in unit of elements</span></div><div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;<span class="comment"> * @param[in]  src3_pad_left                      Left paddings of the third input tensor in unit of elements</span></div><div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;<span class="comment"> * @param[in]  src3_pad_right                     Right paddings of the third input tensor in unit of elements</span></div><div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;<span class="comment"> * @param[in]  src4_pad_left                      Left paddings of the fourth input tensor in unit of elements</span></div><div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;__kernel <span class="keywordtype">void</span> concatenate_width_x4(</div><div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(src1),</div><div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(src2),</div><div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(src3),</div><div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(src4),</div><div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;    uint src1_pad_right,</div><div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;    uint src2_pad_left,</div><div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;    uint src2_pad_right,</div><div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;    uint src3_pad_left,</div><div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;    uint src3_pad_right,</div><div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;    uint src4_pad_left)</div><div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;{</div><div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;    <a class="code" href="struct_tensor4_d.xhtml">Tensor4D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a23b9032d1b9d59547545e457f82ee478">CONVERT_TO_TENSOR4D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, DEPTH);</div><div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;</div><div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;    <span class="comment">// Calculate input indices</span></div><div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x = get_global_id(0) * (int)<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>;</div><div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> y = get_global_id(1);</div><div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> z = get_global_id(2) % (int)DEPTH;</div><div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a> = get_global_id(2) / (int)DEPTH;</div><div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;</div><div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x1 = min(x, (<span class="keywordtype">int</span>)INPUT1_WIDTH + (<span class="keywordtype">int</span>)src1_pad_right - (<span class="keywordtype">int</span>)<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>);</div><div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x2 = min(max(x - (<span class="keywordtype">int</span>)INPUT1_WIDTH, -(<span class="keywordtype">int</span>)src2_pad_left), (<span class="keywordtype">int</span>)INPUT2_WIDTH + (<span class="keywordtype">int</span>)src2_pad_right - (<span class="keywordtype">int</span>)<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>);</div><div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x3 = min(max(x - (<span class="keywordtype">int</span>)INPUT1_WIDTH - (<span class="keywordtype">int</span>)INPUT2_WIDTH, -(<span class="keywordtype">int</span>)src3_pad_left), (<span class="keywordtype">int</span>)INPUT3_WIDTH + (<span class="keywordtype">int</span>)src3_pad_right - (<span class="keywordtype">int</span>)<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>);</div><div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x4 = max(x - (<span class="keywordtype">int</span>)INPUT1_WIDTH - (<span class="keywordtype">int</span>)INPUT2_WIDTH - (<span class="keywordtype">int</span>)INPUT3_WIDTH, -(<span class="keywordtype">int</span>)src4_pad_left);</div><div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;</div><div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;    <span class="comment">// Calculate inputs and output addresses</span></div><div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;    <span class="keyword">const</span> __global uchar *in1_ptr = src1_ptr + (int)src1_offset_first_element_in_bytes + x1 * (<span class="keywordtype">int</span>)src1_stride_x + y * (int)src1_stride_y + z * (<span class="keywordtype">int</span>)src1_stride_z + <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a> * (int)src1_stride_w;</div><div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;    <span class="keyword">const</span> __global uchar *in2_ptr = src2_ptr + (int)src2_offset_first_element_in_bytes + x2 * (<span class="keywordtype">int</span>)src2_stride_x + y * (int)src2_stride_y + z * (<span class="keywordtype">int</span>)src2_stride_z + <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a> * (int)src2_stride_w;</div><div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;    <span class="keyword">const</span> __global uchar *in3_ptr = src3_ptr + (int)src3_offset_first_element_in_bytes + x3 * (<span class="keywordtype">int</span>)src3_stride_x + y * (int)src3_stride_y + z * (<span class="keywordtype">int</span>)src3_stride_z + <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a> * (int)src3_stride_w;</div><div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;    <span class="keyword">const</span> __global uchar *in4_ptr = src4_ptr + (int)src4_offset_first_element_in_bytes + x4 * (<span class="keywordtype">int</span>)src4_stride_x + y * (int)src4_stride_y + z * (<span class="keywordtype">int</span>)src4_stride_z + <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a> * (int)src4_stride_w;</div><div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;</div><div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;    src1_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)in1_ptr);</div><div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;    src2_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)in2_ptr);</div><div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00252"></a><span class="lineno">  252</span>&#160;    src3_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)in3_ptr);</div><div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;    src4_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)in4_ptr);</div><div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;</div><div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;<span class="preprocessor">#if defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) &amp;&amp; defined(OFFSET_IN2) &amp;&amp; defined(SCALE_IN2) &amp;&amp; defined(OFFSET_IN3) &amp;&amp; defined(SCALE_IN3) &amp;&amp; defined(OFFSET_IN4) &amp;&amp; defined(SCALE_IN4)</span></div><div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;    src1_values = requantize(src1_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);</div><div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;    src2_values = requantize(src2_values, OFFSET_IN2, OFFSET_OUT, SCALE_IN2, SCALE_OUT);</div><div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;    src3_values = requantize(src3_values, OFFSET_IN3, OFFSET_OUT, SCALE_IN3, SCALE_OUT);</div><div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;    src4_values = requantize(src4_values, OFFSET_IN4, OFFSET_OUT, SCALE_IN4, SCALE_OUT);</div><div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) &amp;&amp; defined(OFFSET_IN2) &amp;&amp; defined(SCALE_IN2) &amp;&amp; defined(OFFSET_IN3) &amp;&amp; defined(SCALE_IN3) &amp;&amp; defined(OFFSET_IN4) &amp;&amp; defined(SCALE_IN4) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;</div><div class="line"><a name="l00263"></a><span class="lineno">  263</span>&#160;    <span class="keyword">const</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>) x_coords = SEQ + (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>))(x);</div><div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;</div><div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;    <span class="keyword">const</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>) cond_in2 = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(x_coords &lt; (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>))(INPUT1_WIDTH), <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>));</div><div class="line"><a name="l00266"></a><span class="lineno">  266</span>&#160;    <span class="keyword">const</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>) cond_in3 = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(x_coords &lt; (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>))(INPUT1_WIDTH + INPUT2_WIDTH), <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>));</div><div class="line"><a name="l00267"></a><span class="lineno">  267</span>&#160;    <span class="keyword">const</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>) cond_in4 = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(x_coords &lt; (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>))(INPUT1_WIDTH + INPUT2_WIDTH + INPUT3_WIDTH), <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>));</div><div class="line"><a name="l00268"></a><span class="lineno">  268</span>&#160;</div><div class="line"><a name="l00269"></a><span class="lineno">  269</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00270"></a><span class="lineno">  270</span>&#160;    values = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(src2_values, src1_values, cond_in2);</div><div class="line"><a name="l00271"></a><span class="lineno">  271</span>&#160;    values = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(src3_values, values, cond_in3);</div><div class="line"><a name="l00272"></a><span class="lineno">  272</span>&#160;    values = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(src4_values, values, cond_in4);</div><div class="line"><a name="l00273"></a><span class="lineno">  273</span>&#160;</div><div class="line"><a name="l00274"></a><span class="lineno">  274</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;    (values, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr);</div><div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;}</div><div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(INPUT2_WIDTH) &amp;&amp; defined(INPUT3_WIDTH) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(INPUT1_WIDTH) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(DEPTH) &amp;&amp; defined(ELEMENT_SIZE) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;</div><div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;<span class="preprocessor">#if defined(WIDTH_OFFSET) &amp;&amp; defined(DEPTH)</span></div><div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;<span class="comment">/** This kernel concatenates the input tensor into the output tensor along the first dimension</span></div><div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;<span class="comment"> * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float</span></div><div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;<span class="comment"> * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16</span></div><div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;<span class="comment"> * @note The offset for the first spatial dimension has to be passed at compile time using -DWIDTH_OFFSET. i.e. -DWIDTH_OFFSET=128</span></div><div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;<span class="comment"> * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16</span></div><div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;<span class="comment"> * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32</span></div><div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;<span class="comment"> * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;<span class="comment"> * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00292"></a><span class="lineno">  292</span>&#160;<span class="comment"> * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00293"></a><span class="lineno">  293</span>&#160;<span class="comment"> * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00294"></a><span class="lineno">  294</span>&#160;<span class="comment"> * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00295"></a><span class="lineno">  295</span>&#160;<span class="comment"> * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00296"></a><span class="lineno">  296</span>&#160;<span class="comment"> * @param[in]  src_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00297"></a><span class="lineno">  297</span>&#160;<span class="comment"> * @param[in]  src_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00298"></a><span class="lineno">  298</span>&#160;<span class="comment"> * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00299"></a><span class="lineno">  299</span>&#160;<span class="comment"> * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00300"></a><span class="lineno">  300</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00301"></a><span class="lineno">  301</span>&#160;<span class="comment"> * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00302"></a><span class="lineno">  302</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00303"></a><span class="lineno">  303</span>&#160;<span class="comment"> * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00304"></a><span class="lineno">  304</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00305"></a><span class="lineno">  305</span>&#160;<span class="comment"> * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00306"></a><span class="lineno">  306</span>&#160;<span class="comment"> * @param[in]  dst_stride_w                      Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00307"></a><span class="lineno">  307</span>&#160;<span class="comment"> * @param[in]  dst_step_w                        output_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00308"></a><span class="lineno">  308</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;</div><div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;__kernel <span class="keywordtype">void</span> concatenate_width(</div><div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>))</div><div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;{</div><div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;    <a class="code" href="struct_tensor4_d.xhtml">Tensor4D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a23b9032d1b9d59547545e457f82ee478">CONVERT_TO_TENSOR4D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, DEPTH);</div><div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;    <a class="code" href="struct_tensor4_d.xhtml">Tensor4D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a23b9032d1b9d59547545e457f82ee478">CONVERT_TO_TENSOR4D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, DEPTH);</div><div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;</div><div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;    source_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>.ptr);</div><div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;</div><div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;<span class="preprocessor">#if defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT)</span></div><div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;    <span class="keyword">const</span> <a class="code" href="softmax__layer__quantized_8cl.xhtml#af5987b09a234231612b2b1eded343025">VEC_UCHAR</a> out = requantize(source_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);</div><div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;    (out, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr) + WIDTH_OFFSET);</div><div class="line"><a name="l00325"></a><span class="lineno">  325</span>&#160;<span class="preprocessor">#else  </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00326"></a><span class="lineno">  326</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00327"></a><span class="lineno">  327</span>&#160;    (source_values, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr) + WIDTH_OFFSET);</div><div class="line"><a name="l00328"></a><span class="lineno">  328</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00329"></a><span class="lineno">  329</span>&#160;}</div><div class="line"><a name="l00330"></a><span class="lineno">  330</span>&#160;</div><div class="line"><a name="l00331"></a><span class="lineno">  331</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(WIDTH_OFFSET) &amp;&amp; defined(DEPTH) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00332"></a><span class="lineno">  332</span>&#160;</div><div class="line"><a name="l00333"></a><span class="lineno">  333</span>&#160;<span class="preprocessor">#if defined(HEIGHT_OFFSET) &amp;&amp; defined(DEPTH) &amp;&amp; defined(VEC_SIZE)</span></div><div class="line"><a name="l00334"></a><span class="lineno">  334</span>&#160;<span class="comment">/** This kernel concatenates the input tensor into the output tensor along the second dimension</span></div><div class="line"><a name="l00335"></a><span class="lineno">  335</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00336"></a><span class="lineno">  336</span>&#160;<span class="comment"> * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float</span></div><div class="line"><a name="l00337"></a><span class="lineno">  337</span>&#160;<span class="comment"> * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16</span></div><div class="line"><a name="l00338"></a><span class="lineno">  338</span>&#160;<span class="comment"> * @note Vector sizes supported are 2,4,8 and 16.</span></div><div class="line"><a name="l00339"></a><span class="lineno">  339</span>&#160;<span class="comment"> * @note The offset for the second spatial dimension has to be passed at compile time using -DHEIGHT_OFFSET. i.e. -DHEIGHT_OFFSET=128</span></div><div class="line"><a name="l00340"></a><span class="lineno">  340</span>&#160;<span class="comment"> * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16</span></div><div class="line"><a name="l00341"></a><span class="lineno">  341</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00342"></a><span class="lineno">  342</span>&#160;<span class="comment"> * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32</span></div><div class="line"><a name="l00343"></a><span class="lineno">  343</span>&#160;<span class="comment"> * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00344"></a><span class="lineno">  344</span>&#160;<span class="comment"> * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00345"></a><span class="lineno">  345</span>&#160;<span class="comment"> * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00346"></a><span class="lineno">  346</span>&#160;<span class="comment"> * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00347"></a><span class="lineno">  347</span>&#160;<span class="comment"> * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00348"></a><span class="lineno">  348</span>&#160;<span class="comment"> * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00349"></a><span class="lineno">  349</span>&#160;<span class="comment"> * @param[in]  src_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00350"></a><span class="lineno">  350</span>&#160;<span class="comment"> * @param[in]  src_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00351"></a><span class="lineno">  351</span>&#160;<span class="comment"> * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00352"></a><span class="lineno">  352</span>&#160;<span class="comment"> * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00353"></a><span class="lineno">  353</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00354"></a><span class="lineno">  354</span>&#160;<span class="comment"> * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00355"></a><span class="lineno">  355</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00356"></a><span class="lineno">  356</span>&#160;<span class="comment"> * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00357"></a><span class="lineno">  357</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00358"></a><span class="lineno">  358</span>&#160;<span class="comment"> * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00359"></a><span class="lineno">  359</span>&#160;<span class="comment"> * @param[in]  dst_stride_w                      Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00360"></a><span class="lineno">  360</span>&#160;<span class="comment"> * @param[in]  dst_step_w                        output_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00361"></a><span class="lineno">  361</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00362"></a><span class="lineno">  362</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00363"></a><span class="lineno">  363</span>&#160;</div><div class="line"><a name="l00364"></a><span class="lineno">  364</span>&#160;__kernel <span class="keywordtype">void</span> concatenate_height(</div><div class="line"><a name="l00365"></a><span class="lineno">  365</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00366"></a><span class="lineno">  366</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>))</div><div class="line"><a name="l00367"></a><span class="lineno">  367</span>&#160;{</div><div class="line"><a name="l00368"></a><span class="lineno">  368</span>&#160;    <a class="code" href="struct_tensor4_d.xhtml">Tensor4D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a23b9032d1b9d59547545e457f82ee478">CONVERT_TO_TENSOR4D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, DEPTH);</div><div class="line"><a name="l00369"></a><span class="lineno">  369</span>&#160;    <a class="code" href="struct_tensor4_d.xhtml">Tensor4D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a23b9032d1b9d59547545e457f82ee478">CONVERT_TO_TENSOR4D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, DEPTH);</div><div class="line"><a name="l00370"></a><span class="lineno">  370</span>&#160;</div><div class="line"><a name="l00371"></a><span class="lineno">  371</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00372"></a><span class="lineno">  372</span>&#160;    source_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>.ptr);</div><div class="line"><a name="l00373"></a><span class="lineno">  373</span>&#160;</div><div class="line"><a name="l00374"></a><span class="lineno">  374</span>&#160;<span class="preprocessor">#if defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT)</span></div><div class="line"><a name="l00375"></a><span class="lineno">  375</span>&#160;    <span class="keyword">const</span> <a class="code" href="softmax__layer__quantized_8cl.xhtml#af5987b09a234231612b2b1eded343025">VEC_UCHAR</a> out = requantize(source_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);</div><div class="line"><a name="l00376"></a><span class="lineno">  376</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00377"></a><span class="lineno">  377</span>&#160;    (out, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + HEIGHT_OFFSET * dst_stride_y));</div><div class="line"><a name="l00378"></a><span class="lineno">  378</span>&#160;<span class="preprocessor">#else  </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00379"></a><span class="lineno">  379</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00380"></a><span class="lineno">  380</span>&#160;    (source_values, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + HEIGHT_OFFSET * dst_stride_y));</div><div class="line"><a name="l00381"></a><span class="lineno">  381</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00382"></a><span class="lineno">  382</span>&#160;}</div><div class="line"><a name="l00383"></a><span class="lineno">  383</span>&#160;</div><div class="line"><a name="l00384"></a><span class="lineno">  384</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(HEIGHT_OFFSET) &amp;&amp; defined(DEPTH) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00385"></a><span class="lineno">  385</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00386"></a><span class="lineno">  386</span>&#160;<span class="comment">/** This kernel concatenates the input tensor into the output tensor along the third dimension</span></div><div class="line"><a name="l00387"></a><span class="lineno">  387</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00388"></a><span class="lineno">  388</span>&#160;<span class="comment"> * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float</span></div><div class="line"><a name="l00389"></a><span class="lineno">  389</span>&#160;<span class="comment"> * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16</span></div><div class="line"><a name="l00390"></a><span class="lineno">  390</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00391"></a><span class="lineno">  391</span>&#160;<span class="comment"> * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F16, F32</span></div><div class="line"><a name="l00392"></a><span class="lineno">  392</span>&#160;<span class="comment"> * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00393"></a><span class="lineno">  393</span>&#160;<span class="comment"> * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00394"></a><span class="lineno">  394</span>&#160;<span class="comment"> * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00395"></a><span class="lineno">  395</span>&#160;<span class="comment"> * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00396"></a><span class="lineno">  396</span>&#160;<span class="comment"> * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00397"></a><span class="lineno">  397</span>&#160;<span class="comment"> * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00398"></a><span class="lineno">  398</span>&#160;<span class="comment"> * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00399"></a><span class="lineno">  399</span>&#160;<span class="comment"> * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00400"></a><span class="lineno">  400</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00401"></a><span class="lineno">  401</span>&#160;<span class="comment"> * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00402"></a><span class="lineno">  402</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00403"></a><span class="lineno">  403</span>&#160;<span class="comment"> * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00404"></a><span class="lineno">  404</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00405"></a><span class="lineno">  405</span>&#160;<span class="comment"> * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00406"></a><span class="lineno">  406</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00407"></a><span class="lineno">  407</span>&#160;<span class="comment"> * @param[in]  offsets                           The offsets to the first valid element of the output tensor in bytes</span></div><div class="line"><a name="l00408"></a><span class="lineno">  408</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00409"></a><span class="lineno">  409</span>&#160;__kernel <span class="keywordtype">void</span> concatenate(</div><div class="line"><a name="l00410"></a><span class="lineno">  410</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00411"></a><span class="lineno">  411</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00412"></a><span class="lineno">  412</span>&#160;    <span class="keywordtype">int</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>)</div><div class="line"><a name="l00413"></a><span class="lineno">  413</span>&#160;{</div><div class="line"><a name="l00414"></a><span class="lineno">  414</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>);</div><div class="line"><a name="l00415"></a><span class="lineno">  415</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>);</div><div class="line"><a name="l00416"></a><span class="lineno">  416</span>&#160;</div><div class="line"><a name="l00417"></a><span class="lineno">  417</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00418"></a><span class="lineno">  418</span>&#160;    source_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>.ptr);</div><div class="line"><a name="l00419"></a><span class="lineno">  419</span>&#160;</div><div class="line"><a name="l00420"></a><span class="lineno">  420</span>&#160;<span class="preprocessor">#if defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT)</span></div><div class="line"><a name="l00421"></a><span class="lineno">  421</span>&#160;    source_values = requantize(source_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);</div><div class="line"><a name="l00422"></a><span class="lineno">  422</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00423"></a><span class="lineno">  423</span>&#160;</div><div class="line"><a name="l00424"></a><span class="lineno">  424</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00425"></a><span class="lineno">  425</span>&#160;    (source_values, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>));</div><div class="line"><a name="l00426"></a><span class="lineno">  426</span>&#160;}</div><div class="line"><a name="l00427"></a><span class="lineno">  427</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(DATA_TYPE) &amp;&amp; defined(VEC_SIZE) */</span><span class="preprocessor"></span></div><div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a009469e4d9b8fce3b6d5e97d2077827d"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a></div><div class="ttdeci">__global uchar * offset(const Image *img, int x, int y)</div><div class="ttdoc">Get the pointer position of a Image.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00510">helpers.h:510</a></div></div>
+<a href="concatenate_8cl.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2017-2020 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> * of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment"> * THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml">helpers.h</a>&quot;</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;</div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="preprocessor">#if defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT)</span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;<span class="preprocessor">#define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE)</span></div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;<span class="preprocessor">#define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE)</span></div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;<span class="preprocessor">#define VEC_QUANT VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)</span></div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;<span class="preprocessor">#define CONVERT_RTE(x, type) (convert_##type##_rte((x)))</span></div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;<span class="preprocessor">#define CONVERT_DOWN(x, type) CONVERT_RTE(x, type)</span></div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;<span class="keyword">inline</span> VEC_QUANT requantize(VEC_QUANT <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8fcf2ddd9a1d58b1b280f5c0aed71845">input</a>, <span class="keywordtype">float</span> in_offset, <span class="keywordtype">float</span> out_offset, <span class="keywordtype">float</span> in_scale, <span class="keywordtype">float</span> out_scale)</div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;{</div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;    <span class="keyword">const</span> <a class="code" href="activation__layer__quant_8cl.xhtml#ade2e33e6f303ce93468eef7e56d95c0c">VEC_FLOAT</a> in_f32  = (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a8fcf2ddd9a1d58b1b280f5c0aed71845">input</a>, <a class="code" href="activation__layer__quant_8cl.xhtml#ade2e33e6f303ce93468eef7e56d95c0c">VEC_FLOAT</a>) - (<a class="code" href="activation__layer__quant_8cl.xhtml#ade2e33e6f303ce93468eef7e56d95c0c">VEC_FLOAT</a>)((<span class="keywordtype">float</span>)in_offset)) * (<a class="code" href="activation__layer__quant_8cl.xhtml#ade2e33e6f303ce93468eef7e56d95c0c">VEC_FLOAT</a>)((<span class="keywordtype">float</span>)in_scale);</div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;    <span class="keyword">const</span> <a class="code" href="activation__layer__quant_8cl.xhtml#ade2e33e6f303ce93468eef7e56d95c0c">VEC_FLOAT</a> out_f32 = in_f32 / ((<a class="code" href="activation__layer__quant_8cl.xhtml#ade2e33e6f303ce93468eef7e56d95c0c">VEC_FLOAT</a>)(<span class="keywordtype">float</span>)out_scale) + ((<a class="code" href="activation__layer__quant_8cl.xhtml#ade2e33e6f303ce93468eef7e56d95c0c">VEC_FLOAT</a>)((float)out_offset));</div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;    <span class="keyword">const</span> VEC_QUANT res_q8  = <a class="code" href="direct__convolution1x1_8cl.xhtml#a1f15728672380ade7a238f5e783d54d2">CONVERT_SAT</a>(<a class="code" href="depth__convert_8cl.xhtml#a5b0d9908c0af31eaa7a31d0b5cf8e56d">CONVERT_DOWN</a>(out_f32, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#aee190caf3b3571e939ac129e12c368cd">VEC_INT</a>), VEC_QUANT);</div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;    <span class="keywordflow">return</span> res_q8;</div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;}</div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;</div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;<span class="preprocessor">#if defined(DATA_TYPE) &amp;&amp; defined(VEC_SIZE)</span></div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;<span class="preprocessor">#if defined(DEPTH) &amp;&amp; defined(ELEMENT_SIZE)</span></div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;</div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;<span class="preprocessor">#if defined(INPUT1_WIDTH)</span></div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;</div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;<span class="preprocessor">#if ELEMENT_SIZE == 1</span></div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;<span class="preprocessor">#define COND_DATA_TYPE char</span></div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;<span class="preprocessor">#elif ELEMENT_SIZE == 2</span></div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;<span class="preprocessor">#define COND_DATA_TYPE short</span></div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;<span class="preprocessor">#elif ELEMENT_SIZE == 4</span></div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;<span class="preprocessor">#define COND_DATA_TYPE int</span></div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;<span class="preprocessor">#else // ELEMENT_SIZE</span></div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;<span class="preprocessor">#error &quot;Element size not supported&quot;</span></div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;<span class="preprocessor">#endif // ELEMENT_SIZE</span></div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;</div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;<span class="preprocessor">#if VEC_SIZE == 2</span></div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;<span class="preprocessor">#define SEQ ((int2)(0, 1))</span></div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;<span class="preprocessor">#elif VEC_SIZE == 4</span></div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;<span class="preprocessor">#define SEQ ((int4)(0, 1, 2, 3))</span></div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;<span class="preprocessor">#elif VEC_SIZE == 8</span></div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;<span class="preprocessor">#define SEQ ((int8)(0, 1, 2, 3, 4, 5, 6, 7))</span></div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;<span class="preprocessor">#elif VEC_SIZE == 16</span></div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;<span class="preprocessor">#define SEQ ((int16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15))</span></div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;<span class="preprocessor">#else // VEC_SIZE</span></div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;<span class="preprocessor">#error &quot;Vector size not supported&quot;</span></div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;<span class="preprocessor">#endif // VEC_SIZE</span></div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;<span class="comment">/** This kernel concatenates two input tensors into the output tensor along the first dimension</span></div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;<span class="comment"> * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float</span></div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;<span class="comment"> * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16</span></div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;<span class="comment"> * @note The offset for the first spatial dimension has to be passed at compile time using -DWIDTH_OFFSET. i.e. -DWIDTH_OFFSET=128</span></div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;<span class="comment"> * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16</span></div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;<span class="comment"> * @note First input tensor width should be given as a preprocessor argument using -DINPUT1_WIDTH=width. e.g. -DINPUT1_WIDTH=8</span></div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;<span class="comment"> * @param[in]  src1_ptr                           Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32</span></div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;<span class="comment"> * @param[in]  src1_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;<span class="comment"> * @param[in]  src1_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;<span class="comment"> * @param[in]  src1_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;<span class="comment"> * @param[in]  src1_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;<span class="comment"> * @param[in]  src1_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;<span class="comment"> * @param[in]  src1_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;<span class="comment"> * @param[in]  src1_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;<span class="comment"> * @param[in]  src1_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;<span class="comment"> * @param[in]  src1_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;<span class="comment"> * @param[in]  src2_ptr                           Pointer to the source tensor. Supported data types: same as @p src1_ptr</span></div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;<span class="comment"> * @param[in]  src2_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;<span class="comment"> * @param[in]  src2_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;<span class="comment"> * @param[in]  src2_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;<span class="comment"> * @param[in]  src2_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;<span class="comment"> * @param[in]  src2_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;<span class="comment"> * @param[in]  src2_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;<span class="comment"> * @param[in]  src2_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;<span class="comment"> * @param[in]  src2_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;<span class="comment"> * @param[in]  src2_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;<span class="comment"> * @param[out] dst_ptr                            Pointer to the destination tensor. Supported data types: same as @p src1_ptr</span></div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                       Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;<span class="comment"> * @param[in]  dst_step_x                         dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                       Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;<span class="comment"> * @param[in]  dst_step_y                         dst_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                       Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;<span class="comment"> * @param[in]  dst_step_z                         dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;<span class="comment"> * @param[in]  dst_stride_w                       Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;<span class="comment"> * @param[in]  dst_step_w                         output_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes  The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;<span class="comment"> * @param[in]  src1_pad_right                     Right paddings of the first input tensor in unit of elements</span></div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;<span class="comment"> * @param[in]  src1_pad_left                      Left paddings of the second input tensor in unit of elements</span></div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;__kernel <span class="keywordtype">void</span> concatenate_width_x2(</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(src1),</div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(src2),</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;    uint src1_pad_right,</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;    uint src2_pad_left)</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;{</div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;    <a class="code" href="struct_tensor4_d.xhtml">Tensor4D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a23b9032d1b9d59547545e457f82ee478">CONVERT_TO_TENSOR4D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, DEPTH);</div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;    <span class="comment">// Calculate input indices</span></div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x  = get_global_id(0) * (int)<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>;</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> y  = get_global_id(1);</div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> z  = get_global_id(2) % (int)DEPTH;</div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a>  = get_global_id(2) / (int)DEPTH;</div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x1 = min(x, (<span class="keywordtype">int</span>)INPUT1_WIDTH + (<span class="keywordtype">int</span>)src1_pad_right - (<span class="keywordtype">int</span>)<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>);</div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x2 = max(x - (<span class="keywordtype">int</span>)INPUT1_WIDTH, -(<span class="keywordtype">int</span>)src2_pad_left);</div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;</div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;    <span class="comment">// Calculate inputs and output addresses</span></div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;    <span class="keyword">const</span> __global uchar *in1_ptr = src1_ptr + (int)src1_offset_first_element_in_bytes + x1 * (<span class="keywordtype">int</span>)src1_stride_x + y * (int)src1_stride_y + z * (<span class="keywordtype">int</span>)src1_stride_z + <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a> * (int)src1_stride_w;</div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;    <span class="keyword">const</span> __global uchar *in2_ptr = src2_ptr + (int)src2_offset_first_element_in_bytes + x2 * (<span class="keywordtype">int</span>)src2_stride_x + y * (int)src2_stride_y + z * (<span class="keywordtype">int</span>)src2_stride_z + <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a> * (int)src2_stride_w;</div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;</div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;    src1_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)in1_ptr);</div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;    src2_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)in2_ptr);</div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;</div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;<span class="preprocessor">#if defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_IN2) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_IN2) &amp;&amp; defined(SCALE_OUT)</span></div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;    src1_values = requantize(src1_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;    src2_values = requantize(src2_values, OFFSET_IN2, OFFSET_OUT, SCALE_IN2, SCALE_OUT);</div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_IN2) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1)  &amp;&amp; defined(SCALE_IN2) &amp;&amp; defined(SCALE_OUT) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;    <span class="keyword">const</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>) x_coords        = SEQ + (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>))(x);</div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;    <span class="keyword">const</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>) cond = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(x_coords &lt; (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>))(INPUT1_WIDTH), <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>));</div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;    <span class="keyword">const</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>) values    = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(src2_values, src1_values, cond);</div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;</div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;    (values, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr);</div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;}</div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;</div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;<span class="preprocessor">#if defined(INPUT2_WIDTH) &amp;&amp; defined(INPUT3_WIDTH)</span></div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;<span class="comment">/** This kernel concatenates four input tensors into the output tensor along the first dimension</span></div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;<span class="comment"> * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float</span></div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;<span class="comment"> * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16</span></div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;<span class="comment"> * @note The offset for the first spatial dimension has to be passed at compile time using -DWIDTH_OFFSET. i.e. -DWIDTH_OFFSET=128</span></div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;<span class="comment"> * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16</span></div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;<span class="comment"> * @note First input tensor width should be given as a preprocessor argument using -DINPUT1_WIDTH=width. e.g. -DINPUT1_WIDTH=8</span></div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;<span class="comment"> * @note Second input tensor width should be given as a preprocessor argument using -DINPUT2_WIDTH=width. e.g. -DINPUT2_WIDTH=8</span></div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;<span class="comment"> * @note Third input tensor width should be given as a preprocessor argument using -DINPUT3_WIDTH=width. e.g. -DINPUT3_WIDTH=8</span></div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;<span class="comment"> * @param[in]  src1_ptr                           Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32</span></div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;<span class="comment"> * @param[in]  src1_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;<span class="comment"> * @param[in]  src1_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;<span class="comment"> * @param[in]  src1_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;<span class="comment"> * @param[in]  src1_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;<span class="comment"> * @param[in]  src1_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;<span class="comment"> * @param[in]  src1_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;<span class="comment"> * @param[in]  src1_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;<span class="comment"> * @param[in]  src1_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;<span class="comment"> * @param[in]  src1_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;<span class="comment"> * @param[in]  src2_ptr                           Pointer to the source tensor. Supported data types: same as @p src1_ptr</span></div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;<span class="comment"> * @param[in]  src2_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;<span class="comment"> * @param[in]  src2_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;<span class="comment"> * @param[in]  src2_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;<span class="comment"> * @param[in]  src2_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;<span class="comment"> * @param[in]  src2_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;<span class="comment"> * @param[in]  src2_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;<span class="comment"> * @param[in]  src2_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;<span class="comment"> * @param[in]  src2_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;<span class="comment"> * @param[in]  src2_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;<span class="comment"> * @param[in]  src3_ptr                           Pointer to the source tensor. Supported data types: same as @p src1_ptr</span></div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;<span class="comment"> * @param[in]  src3_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;<span class="comment"> * @param[in]  src3_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;<span class="comment"> * @param[in]  src3_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;<span class="comment"> * @param[in]  src3_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;<span class="comment"> * @param[in]  src3_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;<span class="comment"> * @param[in]  src3_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;<span class="comment"> * @param[in]  src3_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;<span class="comment"> * @param[in]  src3_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;<span class="comment"> * @param[in]  src3_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;<span class="comment"> * @param[in]  src4_ptr                           Pointer to the source tensor. Supported data types: same as @p src1_ptr</span></div><div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;<span class="comment"> * @param[in]  src4_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;<span class="comment"> * @param[in]  src4_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;<span class="comment"> * @param[in]  src4_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;<span class="comment"> * @param[in]  src4_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;<span class="comment"> * @param[in]  src4_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;<span class="comment"> * @param[in]  src4_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;<span class="comment"> * @param[in]  src4_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;<span class="comment"> * @param[in]  src4_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;<span class="comment"> * @param[in]  src4_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;<span class="comment"> * @param[out] dst_ptr                            Pointer to the destination tensor. Supported data types: same as @p src1_ptr</span></div><div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                       Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;<span class="comment"> * @param[in]  dst_step_x                         dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                       Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;<span class="comment"> * @param[in]  dst_step_y                         dst_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                       Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;<span class="comment"> * @param[in]  dst_step_z                         dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;<span class="comment"> * @param[in]  dst_stride_w                       Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;<span class="comment"> * @param[in]  dst_step_w                         output_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes  The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;<span class="comment"> * @param[in]  src1_pad_right                     Right paddings of the first input tensor in unit of elements</span></div><div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;<span class="comment"> * @param[in]  src2_pad_left                      Left paddings of the second input tensor in unit of elements</span></div><div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;<span class="comment"> * @param[in]  src2_pad_right                     Right paddings of the second input tensor in unit of elements</span></div><div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;<span class="comment"> * @param[in]  src3_pad_left                      Left paddings of the third input tensor in unit of elements</span></div><div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;<span class="comment"> * @param[in]  src3_pad_right                     Right paddings of the third input tensor in unit of elements</span></div><div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;<span class="comment"> * @param[in]  src4_pad_left                      Left paddings of the fourth input tensor in unit of elements</span></div><div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;__kernel <span class="keywordtype">void</span> concatenate_width_x4(</div><div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(src1),</div><div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(src2),</div><div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(src3),</div><div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(src4),</div><div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;    uint src1_pad_right,</div><div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;    uint src2_pad_left,</div><div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;    uint src2_pad_right,</div><div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;    uint src3_pad_left,</div><div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;    uint src3_pad_right,</div><div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;    uint src4_pad_left)</div><div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;{</div><div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;    <a class="code" href="struct_tensor4_d.xhtml">Tensor4D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a23b9032d1b9d59547545e457f82ee478">CONVERT_TO_TENSOR4D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, DEPTH);</div><div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;</div><div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;    <span class="comment">// Calculate input indices</span></div><div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x = get_global_id(0) * (int)<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>;</div><div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> y = get_global_id(1);</div><div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> z = get_global_id(2) % (int)DEPTH;</div><div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a> = get_global_id(2) / (int)DEPTH;</div><div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;</div><div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x1 = min(x, (<span class="keywordtype">int</span>)INPUT1_WIDTH + (<span class="keywordtype">int</span>)src1_pad_right - (<span class="keywordtype">int</span>)<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>);</div><div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x2 = min(max(x - (<span class="keywordtype">int</span>)INPUT1_WIDTH, -(<span class="keywordtype">int</span>)src2_pad_left), (<span class="keywordtype">int</span>)INPUT2_WIDTH + (<span class="keywordtype">int</span>)src2_pad_right - (<span class="keywordtype">int</span>)<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>);</div><div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x3 = min(max(x - (<span class="keywordtype">int</span>)INPUT1_WIDTH - (<span class="keywordtype">int</span>)INPUT2_WIDTH, -(<span class="keywordtype">int</span>)src3_pad_left), (<span class="keywordtype">int</span>)INPUT3_WIDTH + (<span class="keywordtype">int</span>)src3_pad_right - (<span class="keywordtype">int</span>)<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>);</div><div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;    <span class="keyword">const</span> <span class="keywordtype">int</span> x4 = max(x - (<span class="keywordtype">int</span>)INPUT1_WIDTH - (<span class="keywordtype">int</span>)INPUT2_WIDTH - (<span class="keywordtype">int</span>)INPUT3_WIDTH, -(<span class="keywordtype">int</span>)src4_pad_left);</div><div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;</div><div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;    <span class="comment">// Calculate inputs and output addresses</span></div><div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;    <span class="keyword">const</span> __global uchar *in1_ptr = src1_ptr + (int)src1_offset_first_element_in_bytes + x1 * (<span class="keywordtype">int</span>)src1_stride_x + y * (int)src1_stride_y + z * (<span class="keywordtype">int</span>)src1_stride_z + <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a> * (int)src1_stride_w;</div><div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;    <span class="keyword">const</span> __global uchar *in2_ptr = src2_ptr + (int)src2_offset_first_element_in_bytes + x2 * (<span class="keywordtype">int</span>)src2_stride_x + y * (int)src2_stride_y + z * (<span class="keywordtype">int</span>)src2_stride_z + <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a> * (int)src2_stride_w;</div><div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;    <span class="keyword">const</span> __global uchar *in3_ptr = src3_ptr + (int)src3_offset_first_element_in_bytes + x3 * (<span class="keywordtype">int</span>)src3_stride_x + y * (int)src3_stride_y + z * (<span class="keywordtype">int</span>)src3_stride_z + <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a> * (int)src3_stride_w;</div><div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;    <span class="keyword">const</span> __global uchar *in4_ptr = src4_ptr + (int)src4_offset_first_element_in_bytes + x4 * (<span class="keywordtype">int</span>)src4_stride_x + y * (int)src4_stride_y + z * (<span class="keywordtype">int</span>)src4_stride_z + <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">w</a> * (int)src4_stride_w;</div><div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;</div><div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;    src1_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)in1_ptr);</div><div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;    src2_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)in2_ptr);</div><div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00252"></a><span class="lineno">  252</span>&#160;    src3_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)in3_ptr);</div><div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;    src4_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)in4_ptr);</div><div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;</div><div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;<span class="preprocessor">#if defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) &amp;&amp; defined(OFFSET_IN2) &amp;&amp; defined(SCALE_IN2) &amp;&amp; defined(OFFSET_IN3) &amp;&amp; defined(SCALE_IN3) &amp;&amp; defined(OFFSET_IN4) &amp;&amp; defined(SCALE_IN4)</span></div><div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;    src1_values = requantize(src1_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);</div><div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;    src2_values = requantize(src2_values, OFFSET_IN2, OFFSET_OUT, SCALE_IN2, SCALE_OUT);</div><div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;    src3_values = requantize(src3_values, OFFSET_IN3, OFFSET_OUT, SCALE_IN3, SCALE_OUT);</div><div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;    src4_values = requantize(src4_values, OFFSET_IN4, OFFSET_OUT, SCALE_IN4, SCALE_OUT);</div><div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) &amp;&amp; defined(OFFSET_IN2) &amp;&amp; defined(SCALE_IN2) &amp;&amp; defined(OFFSET_IN3) &amp;&amp; defined(SCALE_IN3) &amp;&amp; defined(OFFSET_IN4) &amp;&amp; defined(SCALE_IN4) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;</div><div class="line"><a name="l00263"></a><span class="lineno">  263</span>&#160;    <span class="keyword">const</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>) x_coords = SEQ + (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>))(x);</div><div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;</div><div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;    <span class="keyword">const</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>) cond_in2 = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(x_coords &lt; (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>))(INPUT1_WIDTH), <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>));</div><div class="line"><a name="l00266"></a><span class="lineno">  266</span>&#160;    <span class="keyword">const</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>) cond_in3 = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(x_coords &lt; (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>))(INPUT1_WIDTH + INPUT2_WIDTH), <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>));</div><div class="line"><a name="l00267"></a><span class="lineno">  267</span>&#160;    <span class="keyword">const</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>) cond_in4 = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a>(x_coords &lt; (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<span class="keywordtype">int</span>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>))(INPUT1_WIDTH + INPUT2_WIDTH + INPUT3_WIDTH), <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(COND_DATA_TYPE, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>));</div><div class="line"><a name="l00268"></a><span class="lineno">  268</span>&#160;</div><div class="line"><a name="l00269"></a><span class="lineno">  269</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00270"></a><span class="lineno">  270</span>&#160;    values = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(src2_values, src1_values, cond_in2);</div><div class="line"><a name="l00271"></a><span class="lineno">  271</span>&#160;    values = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(src3_values, values, cond_in3);</div><div class="line"><a name="l00272"></a><span class="lineno">  272</span>&#160;    values = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">select</a>(src4_values, values, cond_in4);</div><div class="line"><a name="l00273"></a><span class="lineno">  273</span>&#160;</div><div class="line"><a name="l00274"></a><span class="lineno">  274</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;    (values, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr);</div><div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;}</div><div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(INPUT2_WIDTH) &amp;&amp; defined(INPUT3_WIDTH) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(INPUT1_WIDTH) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(DEPTH) &amp;&amp; defined(ELEMENT_SIZE) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;</div><div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;<span class="preprocessor">#if defined(WIDTH_OFFSET) &amp;&amp; defined(DEPTH)</span></div><div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;<span class="comment">/** This kernel concatenates the input tensor into the output tensor along the first dimension</span></div><div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;<span class="comment"> * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float</span></div><div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;<span class="comment"> * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16</span></div><div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;<span class="comment"> * @note The offset for the first spatial dimension has to be passed at compile time using -DWIDTH_OFFSET. i.e. -DWIDTH_OFFSET=128</span></div><div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;<span class="comment"> * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16</span></div><div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;<span class="comment"> * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32</span></div><div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;<span class="comment"> * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;<span class="comment"> * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00292"></a><span class="lineno">  292</span>&#160;<span class="comment"> * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00293"></a><span class="lineno">  293</span>&#160;<span class="comment"> * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00294"></a><span class="lineno">  294</span>&#160;<span class="comment"> * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00295"></a><span class="lineno">  295</span>&#160;<span class="comment"> * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00296"></a><span class="lineno">  296</span>&#160;<span class="comment"> * @param[in]  src_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00297"></a><span class="lineno">  297</span>&#160;<span class="comment"> * @param[in]  src_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00298"></a><span class="lineno">  298</span>&#160;<span class="comment"> * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00299"></a><span class="lineno">  299</span>&#160;<span class="comment"> * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00300"></a><span class="lineno">  300</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00301"></a><span class="lineno">  301</span>&#160;<span class="comment"> * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00302"></a><span class="lineno">  302</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00303"></a><span class="lineno">  303</span>&#160;<span class="comment"> * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00304"></a><span class="lineno">  304</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00305"></a><span class="lineno">  305</span>&#160;<span class="comment"> * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00306"></a><span class="lineno">  306</span>&#160;<span class="comment"> * @param[in]  dst_stride_w                      Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00307"></a><span class="lineno">  307</span>&#160;<span class="comment"> * @param[in]  dst_step_w                        output_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00308"></a><span class="lineno">  308</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;</div><div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;__kernel <span class="keywordtype">void</span> concatenate_width(</div><div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>))</div><div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;{</div><div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;    <a class="code" href="struct_tensor4_d.xhtml">Tensor4D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a23b9032d1b9d59547545e457f82ee478">CONVERT_TO_TENSOR4D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, DEPTH);</div><div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;    <a class="code" href="struct_tensor4_d.xhtml">Tensor4D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a23b9032d1b9d59547545e457f82ee478">CONVERT_TO_TENSOR4D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, DEPTH);</div><div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;</div><div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;    source_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>.ptr);</div><div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;</div><div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;<span class="preprocessor">#if defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT)</span></div><div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;    <span class="keyword">const</span> VEC_QUANT out = requantize(source_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);</div><div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;    (out, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr) + WIDTH_OFFSET);</div><div class="line"><a name="l00325"></a><span class="lineno">  325</span>&#160;<span class="preprocessor">#else  </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00326"></a><span class="lineno">  326</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00327"></a><span class="lineno">  327</span>&#160;    (source_values, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr) + WIDTH_OFFSET);</div><div class="line"><a name="l00328"></a><span class="lineno">  328</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00329"></a><span class="lineno">  329</span>&#160;}</div><div class="line"><a name="l00330"></a><span class="lineno">  330</span>&#160;</div><div class="line"><a name="l00331"></a><span class="lineno">  331</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(WIDTH_OFFSET) &amp;&amp; defined(DEPTH) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00332"></a><span class="lineno">  332</span>&#160;</div><div class="line"><a name="l00333"></a><span class="lineno">  333</span>&#160;<span class="preprocessor">#if defined(HEIGHT_OFFSET) &amp;&amp; defined(DEPTH) &amp;&amp; defined(VEC_SIZE)</span></div><div class="line"><a name="l00334"></a><span class="lineno">  334</span>&#160;<span class="comment">/** This kernel concatenates the input tensor into the output tensor along the second dimension</span></div><div class="line"><a name="l00335"></a><span class="lineno">  335</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00336"></a><span class="lineno">  336</span>&#160;<span class="comment"> * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float</span></div><div class="line"><a name="l00337"></a><span class="lineno">  337</span>&#160;<span class="comment"> * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16</span></div><div class="line"><a name="l00338"></a><span class="lineno">  338</span>&#160;<span class="comment"> * @note Vector sizes supported are 2,4,8 and 16.</span></div><div class="line"><a name="l00339"></a><span class="lineno">  339</span>&#160;<span class="comment"> * @note The offset for the second spatial dimension has to be passed at compile time using -DHEIGHT_OFFSET. i.e. -DHEIGHT_OFFSET=128</span></div><div class="line"><a name="l00340"></a><span class="lineno">  340</span>&#160;<span class="comment"> * @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16</span></div><div class="line"><a name="l00341"></a><span class="lineno">  341</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00342"></a><span class="lineno">  342</span>&#160;<span class="comment"> * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32</span></div><div class="line"><a name="l00343"></a><span class="lineno">  343</span>&#160;<span class="comment"> * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00344"></a><span class="lineno">  344</span>&#160;<span class="comment"> * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00345"></a><span class="lineno">  345</span>&#160;<span class="comment"> * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00346"></a><span class="lineno">  346</span>&#160;<span class="comment"> * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00347"></a><span class="lineno">  347</span>&#160;<span class="comment"> * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00348"></a><span class="lineno">  348</span>&#160;<span class="comment"> * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00349"></a><span class="lineno">  349</span>&#160;<span class="comment"> * @param[in]  src_stride_w                      Stride of the first source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00350"></a><span class="lineno">  350</span>&#160;<span class="comment"> * @param[in]  src_step_w                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00351"></a><span class="lineno">  351</span>&#160;<span class="comment"> * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00352"></a><span class="lineno">  352</span>&#160;<span class="comment"> * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00353"></a><span class="lineno">  353</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00354"></a><span class="lineno">  354</span>&#160;<span class="comment"> * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00355"></a><span class="lineno">  355</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00356"></a><span class="lineno">  356</span>&#160;<span class="comment"> * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00357"></a><span class="lineno">  357</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00358"></a><span class="lineno">  358</span>&#160;<span class="comment"> * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00359"></a><span class="lineno">  359</span>&#160;<span class="comment"> * @param[in]  dst_stride_w                      Stride of the destination tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00360"></a><span class="lineno">  360</span>&#160;<span class="comment"> * @param[in]  dst_step_w                        output_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00361"></a><span class="lineno">  361</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00362"></a><span class="lineno">  362</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00363"></a><span class="lineno">  363</span>&#160;</div><div class="line"><a name="l00364"></a><span class="lineno">  364</span>&#160;__kernel <span class="keywordtype">void</span> concatenate_height(</div><div class="line"><a name="l00365"></a><span class="lineno">  365</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00366"></a><span class="lineno">  366</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>))</div><div class="line"><a name="l00367"></a><span class="lineno">  367</span>&#160;{</div><div class="line"><a name="l00368"></a><span class="lineno">  368</span>&#160;    <a class="code" href="struct_tensor4_d.xhtml">Tensor4D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a23b9032d1b9d59547545e457f82ee478">CONVERT_TO_TENSOR4D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>, DEPTH);</div><div class="line"><a name="l00369"></a><span class="lineno">  369</span>&#160;    <a class="code" href="struct_tensor4_d.xhtml">Tensor4D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a23b9032d1b9d59547545e457f82ee478">CONVERT_TO_TENSOR4D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, DEPTH);</div><div class="line"><a name="l00370"></a><span class="lineno">  370</span>&#160;</div><div class="line"><a name="l00371"></a><span class="lineno">  371</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00372"></a><span class="lineno">  372</span>&#160;    source_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>.ptr);</div><div class="line"><a name="l00373"></a><span class="lineno">  373</span>&#160;</div><div class="line"><a name="l00374"></a><span class="lineno">  374</span>&#160;<span class="preprocessor">#if defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT)</span></div><div class="line"><a name="l00375"></a><span class="lineno">  375</span>&#160;    <span class="keyword">const</span> VEC_QUANT out = requantize(source_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);</div><div class="line"><a name="l00376"></a><span class="lineno">  376</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00377"></a><span class="lineno">  377</span>&#160;    (out, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + HEIGHT_OFFSET * dst_stride_y));</div><div class="line"><a name="l00378"></a><span class="lineno">  378</span>&#160;<span class="preprocessor">#else  </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00379"></a><span class="lineno">  379</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00380"></a><span class="lineno">  380</span>&#160;    (source_values, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + HEIGHT_OFFSET * dst_stride_y));</div><div class="line"><a name="l00381"></a><span class="lineno">  381</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00382"></a><span class="lineno">  382</span>&#160;}</div><div class="line"><a name="l00383"></a><span class="lineno">  383</span>&#160;</div><div class="line"><a name="l00384"></a><span class="lineno">  384</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(HEIGHT_OFFSET) &amp;&amp; defined(DEPTH) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00385"></a><span class="lineno">  385</span>&#160;<span class="comment"></span></div><div class="line"><a name="l00386"></a><span class="lineno">  386</span>&#160;<span class="comment">/** This kernel concatenates the input tensor into the output tensor along the third dimension</span></div><div class="line"><a name="l00387"></a><span class="lineno">  387</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00388"></a><span class="lineno">  388</span>&#160;<span class="comment"> * @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float</span></div><div class="line"><a name="l00389"></a><span class="lineno">  389</span>&#160;<span class="comment"> * @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16</span></div><div class="line"><a name="l00390"></a><span class="lineno">  390</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00391"></a><span class="lineno">  391</span>&#160;<span class="comment"> * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F16, F32</span></div><div class="line"><a name="l00392"></a><span class="lineno">  392</span>&#160;<span class="comment"> * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00393"></a><span class="lineno">  393</span>&#160;<span class="comment"> * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00394"></a><span class="lineno">  394</span>&#160;<span class="comment"> * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00395"></a><span class="lineno">  395</span>&#160;<span class="comment"> * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00396"></a><span class="lineno">  396</span>&#160;<span class="comment"> * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00397"></a><span class="lineno">  397</span>&#160;<span class="comment"> * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00398"></a><span class="lineno">  398</span>&#160;<span class="comment"> * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor</span></div><div class="line"><a name="l00399"></a><span class="lineno">  399</span>&#160;<span class="comment"> * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr</span></div><div class="line"><a name="l00400"></a><span class="lineno">  400</span>&#160;<span class="comment"> * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)</span></div><div class="line"><a name="l00401"></a><span class="lineno">  401</span>&#160;<span class="comment"> * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)</span></div><div class="line"><a name="l00402"></a><span class="lineno">  402</span>&#160;<span class="comment"> * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)</span></div><div class="line"><a name="l00403"></a><span class="lineno">  403</span>&#160;<span class="comment"> * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)</span></div><div class="line"><a name="l00404"></a><span class="lineno">  404</span>&#160;<span class="comment"> * @param[in]  dst_stride_z                      Stride of the source tensor in Z dimension (in bytes)</span></div><div class="line"><a name="l00405"></a><span class="lineno">  405</span>&#160;<span class="comment"> * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)</span></div><div class="line"><a name="l00406"></a><span class="lineno">  406</span>&#160;<span class="comment"> * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor</span></div><div class="line"><a name="l00407"></a><span class="lineno">  407</span>&#160;<span class="comment"> * @param[in]  offsets                           The offsets to the first valid element of the output tensor in bytes</span></div><div class="line"><a name="l00408"></a><span class="lineno">  408</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00409"></a><span class="lineno">  409</span>&#160;__kernel <span class="keywordtype">void</span> concatenate(</div><div class="line"><a name="l00410"></a><span class="lineno">  410</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>),</div><div class="line"><a name="l00411"></a><span class="lineno">  411</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00412"></a><span class="lineno">  412</span>&#160;    <span class="keywordtype">int</span> <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>)</div><div class="line"><a name="l00413"></a><span class="lineno">  413</span>&#160;{</div><div class="line"><a name="l00414"></a><span class="lineno">  414</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>);</div><div class="line"><a name="l00415"></a><span class="lineno">  415</span>&#160;    <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>);</div><div class="line"><a name="l00416"></a><span class="lineno">  416</span>&#160;</div><div class="line"><a name="l00417"></a><span class="lineno">  417</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, <a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00418"></a><span class="lineno">  418</span>&#160;    source_values = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)(0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a989ab3e96426615bb98e04e0235088ca">src</a>.ptr);</div><div class="line"><a name="l00419"></a><span class="lineno">  419</span>&#160;</div><div class="line"><a name="l00420"></a><span class="lineno">  420</span>&#160;<span class="preprocessor">#if defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT)</span></div><div class="line"><a name="l00421"></a><span class="lineno">  421</span>&#160;    source_values = requantize(source_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);</div><div class="line"><a name="l00422"></a><span class="lineno">  422</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(OFFSET_IN1) &amp;&amp; defined(OFFSET_OUT) &amp;&amp; defined(SCALE_IN1) &amp;&amp; defined(SCALE_OUT) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00423"></a><span class="lineno">  423</span>&#160;</div><div class="line"><a name="l00424"></a><span class="lineno">  424</span>&#160;    <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a>(<a class="code" href="depthwise__convolution__quantized_8cl.xhtml#a3fffea119c04c7680f2e9cf3fadf63b4">VEC_SIZE</a>)</div><div class="line"><a name="l00425"></a><span class="lineno">  425</span>&#160;    (source_values, 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.ptr + <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>));</div><div class="line"><a name="l00426"></a><span class="lineno">  426</span>&#160;}</div><div class="line"><a name="l00427"></a><span class="lineno">  427</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* defined(DATA_TYPE) &amp;&amp; defined(VEC_SIZE) */</span><span class="preprocessor"></span></div><div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a009469e4d9b8fce3b6d5e97d2077827d"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a></div><div class="ttdeci">__global uchar * offset(const Image *img, int x, int y)</div><div class="ttdoc">Get the pointer position of a Image.</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00510">helpers.h:510</a></div></div>
 <div class="ttc" id="depth__convert_8cl_xhtml_a5b0d9908c0af31eaa7a31d0b5cf8e56d"><div class="ttname"><a href="depth__convert_8cl.xhtml#a5b0d9908c0af31eaa7a31d0b5cf8e56d">CONVERT_DOWN</a></div><div class="ttdeci">#define CONVERT_DOWN(x, type)</div><div class="ttdef"><b>Definition:</b> <a href="depth__convert_8cl_source.xhtml#l00034">depth_convert.cl:34</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a1a367830ae09bf6138df822888ec1d71"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a1a367830ae09bf6138df822888ec1d71">arm_compute::test::validation::w</a></div><div class="ttdeci">SimpleTensor&lt; float &gt; w</div><div class="ttdef"><b>Definition:</b> <a href="_c_p_p_2_d_f_t_8cpp_source.xhtml#l00156">DFT.cpp:156</a></div></div>
 <div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_aa8d95ba04fc73845abc6045952cae5be"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aa8d95ba04fc73845abc6045952cae5be">CONVERT</a></div><div class="ttdeci">#define CONVERT(x, type)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00261">helpers.h:261</a></div></div>
@@ -117,7 +117,6 @@
 <div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a31c8c760f08fb1a331b16b7c204321dc"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a></div><div class="ttdeci">#define CONVERT_TO_TENSOR3D_STRUCT(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00326">helpers.h:326</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_af77145fbdc6b0c8931148f5597d9de53"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#af77145fbdc6b0c8931148f5597d9de53">arm_compute::test::validation::select</a></div><div class="ttdeci">CLSelect select</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_select_8cpp_source.xhtml#l00164">Select.cpp:164</a></div></div>
 <div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml">helpers.h</a></div></div>
-<div class="ttc" id="softmax__layer__quantized_8cl_xhtml_af5987b09a234231612b2b1eded343025"><div class="ttname"><a href="softmax__layer__quantized_8cl.xhtml#af5987b09a234231612b2b1eded343025">VEC_UCHAR</a></div><div class="ttdeci">#define VEC_UCHAR</div><div class="ttdef"><b>Definition:</b> <a href="softmax__layer__quantized_8cl_source.xhtml#l00063">softmax_layer_quantized.cl:63</a></div></div>
 <div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_acb282042d1edeeaa3cc979a206f78b54"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#acb282042d1edeeaa3cc979a206f78b54">VSTORE</a></div><div class="ttdeci">#define VSTORE(size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00198">helpers.h:198</a></div></div>
 <div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a481bdc6d61b3df9dcdbdb244f0f97790"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a481bdc6d61b3df9dcdbdb244f0f97790">TENSOR4D_DECLARATION</a></div><div class="ttdeci">#define TENSOR4D_DECLARATION(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00293">helpers.h:293</a></div></div>
 <div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a287e2fc366c312b468382c95bb90f91f"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a287e2fc366c312b468382c95bb90f91f">VLOAD</a></div><div class="ttdeci">#define VLOAD(size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00195">helpers.h:195</a></div></div>
@@ -130,7 +129,7 @@
 <div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
   <ul>
     <li class="navelem"><a class="el" href="dir_68267d1309a1af8e8297ef4c3efbcdba.xhtml">src</a></li><li class="navelem"><a class="el" href="dir_aebb8dcc11953d78e620bbef0b9e2183.xhtml">core</a></li><li class="navelem"><a class="el" href="dir_8c278f79c760e5c5fbd911f9870614c1.xhtml">CL</a></li><li class="navelem"><a class="el" href="dir_25885286e9dad4fa105b7b25a8031bbf.xhtml">cl_kernels</a></li><li class="navelem"><a class="el" href="concatenate_8cl.xhtml">concatenate.cl</a></li>
-    <li class="footer">Generated on Wed Jan 22 2020 18:07:38 for Compute Library by
+    <li class="footer">Generated on Fri Feb 21 2020 11:10:11 for Compute Library by
     <a href="http://www.doxygen.org/index.html">
     <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.15 </li>
   </ul>